基于硼掺杂石墨烯气凝胶阴极光子增强热电子发射特性研究
Study on Photon-Enhanced Thermionic Emission Characteristics of Boron-Doped Graphene Aerogel Photocathode Material
摘要: 光子增强热电子发射(PETE)转换器是将光伏发电和热离子发电结合到一个单一的物理过程的能量转换器。本文采用了一锅水热还原工艺以及冷冻干燥工艺,分别以氧化石墨烯(GO)和硼酸作为碳(C)源和硼(B)源制备了硼掺杂石墨烯气凝胶(BGA),用自制装置测试了样品的PETE性能。硼原子掺杂可以调控石墨烯气凝胶的带隙,并且可以使石墨烯气凝胶呈现P型半导体特性,与未掺杂石墨烯气凝胶(GA)相比,BGA具有更好的PETE效应,其PETE电流(3.85 μA)约为GA (0.45 μA)的8.5倍。
Abstract: Photon-enhanced thermionic emission (PETE) converter is an energy converter that combines photovoltaic power generation and thermionic power generation into a single physical process. In this paper, boron-doped graphene aerogel (BGA) was prepared by one-pot hydrothermal reduction process and freeze-drying process using graphene oxide (GO) and boric acid as carbon (C) source and boron (B) source, respectively. The PETE properties of the samples were tested by a self-made device. Boron atom doping can regulate the band gap of graphene aerogels, so that graphene aerogels exhibit P-type semiconductor properties. Compared with undoped graphene aerogel (GA), BGA has a better PETE effect, and its PETE current (3.85 μA) is about 8.5 times that of GA (0.45 μA).
文章引用:罗晟昊, 沈晓明. 基于硼掺杂石墨烯气凝胶阴极光子增强热电子发射特性研究[J]. 材料科学, 2024, 14(3): 358-367. https://doi.org/10.12677/ms.2024.143042

1. 引言

近些年,太阳能有效利用是科学研究和工程市场的一大焦点。传统的太阳能电池技术包括光伏发电和光热发电。光伏发电的原理是基于半导体内部的光生伏特效应 [1] 。由于Shockley Queisser (SQ)效率限制,单结光伏太阳能电池的最大理论效率约为30% [2] [3] [4] 。将光伏太阳能电池和光热转换器相结合,混合系统的理论效率可以超过60% [5] 。但是,光伏电池在高温下的效率和太阳能热转换器在低温下的效率急剧下降 [6] ,以及混合系统复杂性或高成本,使得这在实验中很难实现。2010年,Schwede等人提出的光子增强热离子发射(PETE)理论为这些问题提供了新的解决方案,它将光伏技术和热离子发射结合到一个单一的物理过程中,可以实现40%以上的转换效率,并被认为是一种很有前途的太阳能转换原理 [7] 。

PETE转换器是将光伏发电和热离子发电结合到一个单一的物理过程,PETE太阳能转换器使用p型半导体作为阴极最为合适 [8] ,它可以吸收能量大于带隙的光子,将电子激发到导带中,而能量小于带隙的量子则用于加热电子并帮助它们发射,它可以在较低的温度下实现更高的转换效率,理论上实现了太阳能的高效利用 [9] [10] 。自PETE概念提出以来,研究人员对PETE效应进行了广泛的理论研究,实验研究相对较少,例如GaAs [2] [11] [12] 、AlGaAs [13] 、InGaN [14] 、InN [4] 等化合物作为阴极材料在研究中受到关注。

近年来,石墨烯气凝胶成为一类新的碳材料,具有许多有前途的特征 [15] 。除了它们的大表面积 [16] 、良好的导电性 [17] 和高电化学稳定性 [18] 之外,3D石墨烯气凝胶可以允许照射的光在其3D多孔互连网络和通道内多反射,从而最大化光收集效率并提高量子产率 [19] ,进一步促进光生载流子的有效分离和快速的电荷转移 [20] 。但是石墨烯零带隙这一缺点大大限制了石墨烯在光电领域的进一步发展和研究 [21] 。迄今为止,已经开发了多种不同的方法来调控石墨烯的能带结构,以提高其半导体性能,特别是,掺杂给电子基团(n型,给电子体)或吸电子基团(p型,电子受体)可以有效地调节石墨烯片的电子密度,从而影响其电化学性能和表面化学 [22] [23] 。众所周知,硼掺杂表现出P型掺杂,带隙对硼掺杂剂的原子含量和键合配置的类型都敏感 [24] 。因此,深入了解B掺杂水平如何对其掺杂位点、键合构型以及本征材料中的带隙产生相当大的影响,对于实现具有定制电子性能和新功能的GA至关重要 [25] 。本文通过一种绿色和可持续的一锅水热还原诱导自组装方法以及冷冻干燥工艺,开发了一系列具有不同掺杂剂浓度的B掺杂石墨烯气凝胶(BGA),使其呈现P型半导体性质。我们的方法的主要优点是简单和低成本。此外,所使用的成分是安全、无毒和环保的。然后,基于反射型PETE太阳能电池,研究了石墨烯气凝胶基PETE器件的微观结构和光电性能。

2. 实验

2.1. 材料

氧化石墨烯(GO)粉末购自苏州炭峰石墨烯有限公司(中国苏州)。GO粉末的纯度为98%,片层直径为0.2~10 μm。硼酸(H3BO3)购置于广东光华科技股份有限公司,所用材料无需任何额外纯化。在整个实验中使用了超纯水。

2.2. 硼掺杂石墨烯气凝胶的合成

采用简单的一步水热法制备了硼掺杂石墨烯气凝胶(BGA)。首先在10 ml玻璃瓶中配置4 mL GO (2 mg/ml)溶液,然后将所需量的H3BO3加入到所配置的GO水性分散体中,把玻璃瓶放在超声波清洗机(KQ3200B)超声处理60分钟。随后将玻璃瓶密封在25 mL聚四氟乙烯内衬的不锈钢高压釜中,并在180℃下进行水热处理持续12小时,然后将高压釜自然冷却至环境温度。把合成的水凝胶用超纯水反复洗涤以去除任何残留的化学物质,最后冷冻干燥5小时以获得气凝胶,实验流程图如图1所示。通过改变H3BO3的质量,制备的材料被标记为“BGA-X”,其中X表示H3BO3与GO的质量比(=2.25, 1.75, 1.25)。为了进行比较,还制备了不掺硼的石墨烯气凝胶(表示为“GA”)。

Figure 1. Experimental flow chart

图1. 实验流程图

2.3. 材料表征及性能测试

通过X射线衍射(Bruker XRD Goniomerter (A24A10))、拉曼光谱(inVia Reflex)、X射线光电子能谱(XPS, Escalab 250XI+)和配备能量色散光谱(EDS,EDAX)的场发射扫描电子显微镜(SEM, SU-8020)研究了制备样品的微观结构。通过紫外可见光近红外分光光谱仪(UV-3600Plus)测试其吸收光谱并计算其直接带隙。在自行研制的设备上测量了气凝胶基PETE太阳能电池的光电特性电流–电压(I-V),由Keithley 2400数字源表在蓝紫光(450 nm)下记录。

3. 结果和讨论

3.1. 微观结构

首先,研究了硼掺杂对石墨烯气凝胶结晶度的影响,用XRD对其宏观结构进行表征(图2),气凝胶材料的XRD谱图显示出2θ = 24.2˚为中心的宽衍射峰,对应于石墨烯的(002)晶体平面 [26] 。从图中可以看出,氧化石墨烯基本上还原成石墨烯 [27] ,与GA相比,BGA峰强较大,这意味着由于C原子被B原子取代而导致晶格畸变。BGA中,BGA-1.75峰强最高,其体相缺陷少,相反BGA-2.25峰强最低,说明掺杂浓度高,其体相中缺陷相对较多。

Figure 2. XRD spectra of doped and undoped graphene aerogels

图2. 掺杂和未掺杂石墨烯气凝胶的XRD谱图

我们测试了红外光谱对其分子结构和化学键的影响(图3),在3440 cm−1归因于-OH拉伸振动 [28] ,而在1738 cm−1是由于C=O拉伸振动 [29] 。此外,在1573 cm−1归因于C=C键的红外振动 [30] 。与GA相比,BGA在1391 cm−1和1058 cm−1处的B-O和B-C拉伸模式下出现了两条新的吸收带 [31] ,证实了B原子成功结合到碳基体中。

Figure 3. FTIR spectra of GA, BGA-1.25, BGA-1.75 and BGA-2.25

图3. GA、BGA-1.25、BGA-1.75和BGA-2.25的FTIR光谱

随后,通过SEM对制备的气凝胶的形貌和微观结构进行了研究,如图4所示,BGA具有定义明确且相互连接的三维多孔网络结构,孔径从亚微米到几微米不等,孔壁由堆叠的石墨烯纳米片薄层组成。分层多孔形态不仅可以防止单个石墨烯片聚集和重新堆积,还可以支持电子和离子在3D中的快速迁移。在将B原子纳入其蜂窝晶格后,也呈现出多孔网状结构,但石墨烯片似乎在彼此之间形成了相当强的联系(图4(b)~(d)),孔径大小均匀。网状结构可以获得较高的光捕获性能,可以提高阴极的导电性 [19] 。

Figure 4. SEM images of (a) GA, (b) BGA-2.25, (c) BGA-1.75 and (d) BGA-1.25

图4. (a) GA、(b) BGA-2.25、(c) BGA-1.75、(d) BGA-1.25的SEM图像

3.2. 光电性能

众所周知,杂原子掺杂可以有效地打开石墨烯的带隙,从而导致半金属/半导体过渡。于是我们测试了BGA紫外可见光吸收光谱(图5(a))来评估其光吸收特性,无论掺杂浓度如何,每个单体在整个可见光区域都有对光的吸收。根据Kubelka-Munk带隙估计理论,计算出BGA-2.25、BGA-1.75和BGA-1.25直接带隙(Eg)分别为1.59 eV (图5(b))、1.55 eV (图5(c))、1.58 eV (图5(d)),计算出的直接带隙与理论计算出的最佳PETE阴极带隙(1.4 eV [9] )非常接近,结合拉曼分析,硼掺杂可以使石墨烯气凝胶呈现P型半导体性质,因此可以看出BGA作为PETE阴极材料的可行性。

图6为反射式PETE太阳能电池原理图,其中ITO导电玻璃为阳极,气凝胶样品固定在铜板上为阴极。阳极和阴极平行放置在真空中,阴极可以加热来控制温度,当光线通过阳极照射到阴极的正面时,

Figure 5. (a) UV-Vis diffuse reflectance absorption spectra of BGA; (b)~(d) (αhv)2-hv diagram

图5. (a) BGA的紫外–可见漫反射吸收光谱;(b)~(d) (αhv)2-hv图

Figure 6. Schematic diagram of reflective PETE solar cells

图6. 反射式PETE太阳能电池原理图

产生大量的光电子,并通过吸收热量从阴极表面溢出。这些具有足够能量的热电子可以通过克服表面亲和力而发射到真空中,从而被阳极收集形成电流 [8] 。

为了研究这些器件的PETE性能,我们测试了其I-V曲线(图7(a))和P-V曲线(图7(b)),在反向偏压下,电流随着电压的增加而减小,并在临界电压处变为负值。一般将反电场作用下正向电流输出的区域定义为PETE的实际工作区域,显然BGA-1.75的PETE工作区域最大。四个器件的短路电流,开路电压和最大功率如表1所示,当GA为阴极时,短路电流为0.45 μA,开路电压为−2.01 V,最大功率仅为−0.15 μW。当BGA-1.25为阴极时,短路电流增加到2.96 μA,开路电压为−2.24 V,最大功率提升到−1.12 μW。当BGA-1.75为阴极时,短路电流继续增加到3.85 μA,开路电压为−2.15 V,最大功率为−1.24 μW。当BGA-2.25为阴极时,短路电流反而下降到2.24 μA,开路电压为−2.03 V,最大功率为−0.65 μW。硼掺杂含量对短路电流和开路电压都有较大的影响,结合表征分析,GA、BGA-1.25和BGA-2.25的XRD图谱强度较低,结晶度低,缺陷相对较多,同时孔洞不是很均匀,连接不是很紧密,这都不利于电子发射和吸收太阳光。BGA-1.75 XRD强度较高,结晶度高,缺陷相对较少,并且其孔洞分布均匀,网状结构连接紧密,以及带隙相对较小,这些都有助于电子发射和光子吸收 [32] 。随后又对BGA-1.75 PETE电流、

Figure 7. (a) I-V characteristic curves of different aerogels; (b) P-V characteristic curves of different aerogels; (c) BGA-1.75 electron emission characteristics

图7. (a) 不同气凝胶的I-V特性曲线;(b) 不同气凝胶的P-V特性曲线;(c) BGA-1.75电子发射特性

光电流和热电流进行分析(图7(c)),仅加热阴极时,热离子发射的短路电流为80μA,光电子发射的短路电流为1.37 μA。加热和辐照的结合使短路电流大大增加到3.85 μA。这一结果充分证明了PETE过程中的光热协同作用机制。

Table 1. Short-circuit current, open-circuit voltage and maximum power of different aerogels

表1. 不同气凝胶的短路电流、开路电压和最大功率

4. 结论

综上所述,通过一种简单环保的一锅水热方法以及冷冻干燥工艺,制备了不同掺杂浓度的三维互连层叠多孔B掺杂石墨烯气凝胶,硼掺杂可以使石墨烯呈现P型半导体性质,并且也可以打开石墨烯的带隙(1.5 eV)。当BGA-1.75为阴极时,PETE电流、光电流和热电流分别为3.85 μA、1.37 μA和0.08 μA,PETE开路电压为−2.55 V以及最大功率为−1.24 μW,由此可见BGA-1.75作为阴极可以表现出更好的PETE性能。因此,基于BGA的器件由于阴极的热阱和光阱而表现出良好的PETE效应。总的来说,我们的研究结果证明了调整B掺杂石墨烯气凝胶的掺杂量,是提高其PETE性能的基本条件之一。

参考文献

[1] Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H. (1999) Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science, 285, 692-698.
https://doi.org/10.1126/science.285.5428.692
[2] Xie, L., et al. (2023) Theoretical Research and Simulation of GaAs Nanowire Arrays in Reflection-Type Photon-Enhanced Thermionic Emission Solar Converters. Solar Energy, 251, 295-305.
https://doi.org/10.1016/j.solener.2023.01.025
[3] Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. Journal of Applied Physics, 32, 510-519.
https://doi.org/10.1063/1.1736034
[4] Yang, N., Xie, L., Wang, P., Xu, Y., Li, S., Shen, X., Fu, Y. and He, H. (2022) Theoretical Analysis and Experimental Research of Photon-Enhanced Thermionic Emission Solar Energy Converters with InN Photocathode. Solar Energy Materials and Solar Cells, 242, Article ID: 111766.
https://doi.org/10.1016/j.solmat.2022.111766
[5] Luque, A. and Martı́, A. (1999) Limiting Efficiency of Coupled Thermal and Photovoltaic Converters. Solar Energy Materials and Solar Cells, 58, 147-165.
https://doi.org/10.1016/S0927-0248(98)00199-8
[6] Meneses-Rodrı́guez, D., Horley, P.P., González-Hernández, J., Vorobiev, Y.V. and Gorley, P.N. (2005) Photovoltaic Solar Cells Performance at Elevated Temperatures. Solar Energy, 78, 243-251.
https://doi.org/10.1016/j.solener.2004.05.016
[7] Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.-X. and Melosh, N.A. (2010) Photon-Enhanced Thermionic Emission for Solar Concentrator Systems. Nature Materials, 9, 762-767.
https://doi.org/10.1038/nmat2814
[8] Qiu, H., et al. (2023) Hybrid Photon-Enhanced Thermionic Emission and Photovoltaic Converter with Concentrated Solar Power. Solar Energy Materials and Solar Cells, 254, Article ID: 112279.
https://doi.org/10.1016/j.solmat.2023.112279
[9] Schwede, J.W., Sarmiento, T., Narasimhan, V.K., Rosenthal, S.J., Riley, D.C., Schmitt, F., Bargatin, I., Sahasrabuddhe, K., Howe, R.T., Harris, J.S., Melosh, N.A. and Shen, Z.X. (2013) Photon-Enhanced Thermionic Emission from Heterostructures with Low Interface Recombination. Nature Communications, 4, Article No. 1576.
https://doi.org/10.1038/ncomms2577
[10] Tang, W., Yang, W., Yang, Y., Sun, C. and Cai, Z. (2014) GaAs Film for Photon-Enhanced Thermionic Emission Solar Harvesters. Materials Science in Semiconductor Processing, 25, Article ID: 143147.
https://doi.org/10.1016/j.mssp.2013.10.009
[11] Diao, Y., Liu, L. and Xia, S. (2019) Photon-Enhanced Thermionic Emission Solar Energy Converters with GaAs Wire Array Cathode under External Electric Field. Applied Nanoscience, 10, 807-817.
https://doi.org/10.1007/s13204-019-01156-5
[12] Yang, Y., Yang, W. and Sun, C. (2015) Heterostructured Cathode with Graded Bandgap Window-Layer for Photon-Enhanced Thermionic Emission Solar Energy Converters. Solar Energy Materials and Solar Cells, 132, 410-417.
https://doi.org/10.1016/j.solmat.2014.09.027
[13] Wang, K., Fu, R., Wang, G., Tran, H., Chang, B. and Yang, L. (2017) High-Performance Photon-Enhanced Thermionic Emission Solar Energy Converters with AlXGa1XAs/GaAs Cathode under Multilevel Built-In Electric Field. Optics Communications, 402, 85-90.
https://doi.org/10.1016/j.optcom.2017.05.030
[14] Wang, P., et al. (2023) Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission. Energies, 16, Article 3483.
https://doi.org/10.3390/en16083483
[15] Yin, M., Jiang, H., Shi, L., Zhang, D., He, Z., Luo, Y. and Pan, B. (2023) Air-Enclosed Pores in Graphene Aerogel Inhibit the Adsorption of Bisphenol A but Accelerate the Adsorption of Naphthalene. Ecotoxicology and Environmental Safety, 259, Article ID: 114989.
https://doi.org/10.1016/j.ecoenv.2023.114989
[16] Lisiane, S.S., Pascal, S.T., Diana, R.L., Cezar, A.D., Marcos, A.Z.V., Luis, E.G.A., Eder, C.L., Edilson, V.B. and Eliana, W.D.M. (2023) 3D Graphene Sponge Biomass-Derived with High Surface Area Applied as Adsorbent for Nitrophenols. Journal of Environmental Chemical Engineering, 11, Article ID: 109924.
https://doi.org/10.1016/j.jece.2023.109924
[17] Yang, G.C., et al. (2023) Ultralight, Superelastic Pure Graphene Aerogel for Piezoresistive Sensing Application. Journal of Materials Science, 58, 850-863.
https://doi.org/10.1007/s10853-022-08113-8
[18] Mahamad Yusoff, N.F., Idris, N.H., Md Din, M.F., Majid, S.R., Harun, N.A. and Noerochim, L. (2023) Coupling of Mn2O3 with Heteroatom-Doped Reduced Graphene Oxide Aerogels with Improved Electrochemical Performances for Sodium-Ion Batteries. Nanomaterials, 13, Article 732.
https://doi.org/10.3390/nano13040732
[19] Cao, X.L., et al. (2023) BC/GO-Ag Composite Aerogel with Synergistic Enhanced Photothermal Performance for Efficient Solar Water Evaporation. Solar Energy, 255, 26-35.
https://doi.org/10.1016/j.solener.2023.03.022
[20] Lu, K.-Q., Yuan, L., Xin, X. and Xu, Y.-J. (2017) Hybridization of Graphene Oxide with Commercial Graphene for Constructing 3D Metal-Free Aerogel with Enhanced Photocatalysis. Applied Catalysis B: Environmental, 226, 16-22.
https://doi.org/10.1016/j.apcatb.2017.12.032
[21] Fei, Y., Tong, T., Bao, J. and Hu, Y.H. (2022) New Chemistry for One-Step Synthesis of Tunable 3D Hydrogenated Graphene. Journal of Physics and Chemistry of Solids, 167, Article ID: 110772.
https://doi.org/10.1016/j.jpcs.2022.110772
[22] Li, D. and Yang, P. (2023) B, N, and Si Single-Doping at Graphene/Cu(111) Interfaces to Adjust Electrical Properties. Langmuir, 39, 9172-9179.
https://doi.org/10.1021/acs.langmuir.3c00952
[23] Maryam, M., Mohammad Sadeq Akhoundi, K. and Aliasghar, S. (2023) Band Gap Tuning of AGNRs within the Atmospheric IR Windows. Journal of Electronic Materials, 52, 5345-5351.
https://doi.org/10.1007/s11664-023-10459-x
[24] Marc, G.C., Daniele, P., Sena, T., Joel, D., Felix, H., Matthias, M., Francesco, A., Cristiana Di, V. and Willi, A. (2022) Spatial Segregation of Substitutional B Atoms in Graphene Patterned by the Moiré Superlattice on Ir(111). Carbon, 201, 881-890.
https://doi.org/10.1016/j.carbon.2022.09.087
[25] Amanpreet, K., Pandey, O.P. and Loveleen, K.B. (2023) Synergic Effect of B and N Dopants in Graphene for Supercapacitance and Electrochemical Sensing Applications. Journal of Physics and Chemistry of Solids, 180, Article ID: 111460.
https://doi.org/10.1016/j.jpcs.2023.111460
[26] Chowdhury, S. and Balasubramanian, R. (2015) Highly Efficient, Rapid and Selective CO2 Capture by Thermally Treated Graphene Nanosheets. Journal of CO2 Utilization, 13, 50-60.
https://doi.org/10.1016/j.jcou.2015.12.001
[27] Xu, Y., et al. (2023) Photon-Enhanced Thermionic Emission Solar Cells Based on Three Dimensional Graphene Aerogel Cathode Materials. Journal of Materials Science: Materials in Electronics, 34, Article No. 1122.
https://doi.org/10.1007/s10854-023-10508-5
[28] De, D., Chakraborty, M., Majumdar, S. and Giri, S. (2014) Bandgap Engineering through Nanocrystalline Magnetic Alloy Grafting on Reduced Graphene Oxide. Physical Chemistry Chemical Physics, 16, 19661-19667.
https://doi.org/10.1039/C4CP02259A
[29] Chowdhury, S., Jiang, Y., Muthukaruppan, S. and Balasubramanian, R. (2018) Effect of Boron Doping Level on the Photocatalytic Activity of Graphene Aerogels. Carbon, 128, 237-248.
https://doi.org/10.1016/j.carbon.2017.11.089
[30] Gurunathan, S., Han, J.W., Park, J.H., Kim, E., Choi, Y.-J., Kwon, D.-N. and Kim, J.-H. (2015) Reduced Graphene Oxide-Silver Nanoparticle Nanocomposite: A Potential Anticancer Nanotherapy. International Journal of Nanomedicine, 19, 6257-6276.
https://doi.org/10.2147/IJN.S92449
[31] Yu, X., Han, P., Wei, Z., Huang, L., Gu, Z., Peng, S., Ma, J. and Zheng, G. (2018) Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule, 2, 1610-1622.
https://doi.org/10.1016/j.joule.2018.06.007
[32] Mattias Klaus, J., Friedemann, D.H., Gianluca, C., Fiacre, E.R., Chang, S., Michelle, V.C., Tim, N., Jacob, K. and Martin, C.S. (2023) On the Conversion between Recombination Rates and Electronic Defect Parameters in Semiconductors. IEEE Journal of Photovoltaics, 13, 524-534.
https://doi.org/10.1109/JPHOTOV.2023.3267173