IL-17在系统性红斑狼疮中的作用
Role of IL-17 in Systemic Lupus Erythematosus
DOI: 10.12677/ACM.2024.142653, PDF, HTML, XML, 下载: 38  浏览: 70 
作者: 冯晓琰:新疆医科大学研究生院,新疆 乌鲁木齐;武丽君*:新疆维吾尔自治区人民医院风湿免疫科,新疆 乌鲁木齐
关键词: 系统性红斑狼疮白介素17机制治疗Systemic Lupus Erythematosus Interleukin 17 Mechanism Treatment
摘要: SLE是一种全身多器官受累的慢性自身免疫性疾病,其具体发病机制尚不明确,目前越来越多的研究表明IL-17及其相关细胞因子参与SLE的发病,本文就IL-17在SLE发病机制及治疗中的相关研究进行综述。
Abstract: SLE is a chronic autoimmune disease with multiple organ involvement, and the specific pathogene-sis is still unclear. At present, more and more studies show that IL-17 and its related cytokines are involved in the pathogenesis of SLE. Therefore, this paper reviews the related studies of IL-17 in the pathogenesis and treatment of SLE.
文章引用:冯晓琰, 武丽君. IL-17在系统性红斑狼疮中的作用[J]. 临床医学进展, 2024, 14(2): 4726-4729. https://doi.org/10.12677/ACM.2024.142653

1. 引言

系统性红斑狼疮(Systemic lupus erythematosus, SLE)是一种典型的系统性自身免疫性疾病,其特征为免疫耐受的丧失和自身抗体的持续产生,临床症状具有异质性,范围从轻度皮疹到更严重的多器官多系统受累。SLE好发于育龄期女性,流行病学研究表明,该病的发病率和患病率在不同种族人群中具有一定的差异,在亚洲及太平洋地区,SLE的年发病率为(2.5~9.9)/10万,患病率为(3.2~97.5)/10万,我国SLE的患病率为(30~70)/10万 [1] 。目前认为,遗传易感个体的环境因素促进了抗原的耐受性丧失,随后激活先天性和适应性免疫反应 [2] 。SLE中的慢性免疫激活导致大量炎症细胞因子的产生,并促进局部炎症和组织损伤,因此炎症通路对于开发新的靶向生物疗法非常重要 [3] 。近年来,白介素17 (IL-17)在SLE中的作用受到越来越多的关注,因此在本篇文章中,我们将主要从机制及治疗方面对这一问题展开综述。

2. IL-17

IL-17是一种与人类自身免疫性疾病的发生发展密切相关的细胞因子。同时,对人类和小鼠的研究也阐明了IL-17在SLE中功能失调,并有助于疾病的进展。IL-17细胞因子组由6个不同的配体(IL-17A、IL-17B、IL-17C、IL-17D、IL-17E和IL-17F)和5个不同的受体(IL-17RA~IL-17RE)组成 [4] ,其可促进T细胞的激活和多种细胞因子的产生,从而导致炎症,同时,它也会促进炎症细胞,如单核细胞和中性粒细胞,被招募到炎症器官 [5] ,目前研究最多的为IL-17A和IL-17F,两者有50%的同源性,而IL-17B、IL-17C、IL-17D的功能尚不清楚,IL-17E被证明参与二型免疫反应。IL-17A与受体结合后,可通过MAP 激酶途径和核转录因子kB (nuclear factor kB, NF-kB)途径发挥其生物学作用。虽然IL-17A主要由Th17细胞产生,但IL-17A也可由其他类型的细胞产生,包括γδT细胞、自然杀伤T细胞(NKT细胞)、CD8+ T细胞和3型先天淋巴细胞(ILC3s)等 [6] 。

IL-17A和IL-17F均与自身免疫性疾病相关,一方面IL-17A和IL-17F通过触发促炎反应来促进组织介导的先天免疫,另一方面IL-17A/F与其他细胞因子如肿瘤坏死因子-α (TNF-α)、IL-1β和干扰素-γ的联合作用可协同增强不同靶细胞的促炎反应。Zúñiga等发现IL-17A也与代谢性疾病相关的炎症有关,阻断IL-17A可减少动脉粥样硬化模型中的病变大小、脂质堆积和细胞浸润 [7] 。有研究指出IL-17-A通过促进血管生成和肿瘤细胞从原位灶点的释放,促进肿瘤的生长,此外,它也促进了抗肿瘤细胞毒性T淋巴细胞反应,致使肿瘤消退。IL-17F能显著抑制人内皮细胞的血管生成,诱导内皮细胞产生IL-2、TGF-β和MCP-1,有抗血管生成的保护性功能。另外还有研究显示IL-17A可促进破骨细胞生成,同时也促进了成骨细胞分化、骨再生和重塑 [8] 。IL-17A还可调控造血功能,在诱导造血干细胞的增殖和分化中起作用 [9] 。

3. IL-17及其相关细胞因子在SLE中的作用

已有多项研究表明,与健康对照相比,SLE患者血清中IL-17A水平显著升高 [10] ,但其是否与狼疮疾病活动度有关目前存在不同的意见,有研究发现SLE患者血清中IL-17水平与疾病活动度显著相关,但也有部分研究认为二者无明显相关性 [10] [11] 。Ebrahimi Chaharom等通过病例对照研究发现SLE患者血清IL-17A水平与肾脏及神经系统受累相关 [12] 。此外,有报道称,SLE患者尿液中IL-17和IL-23相关基因的表达增加,并与LN的活动性相关 [13] 。Sippl等发现SLE合并关节炎患者滑膜内IL-17A水平升高,使用IL-17阻断后关节炎症状得到改善 [14] 。

IL-23可与IL-23R结合,通过Janus激酶2 (JAK2)和酪氨酸激酶2 (TYK2)促进信号转导和转录激活因子3 (STAT3)的磷酸化。它还能增强维甲酸相关核孤儿受体γt (RORγt)的表达,RORγt参与了IL-17和其他Th17细胞因子的表达 [15] 。因此,IL-23可通过促进Th17细胞介导的组织炎症,在小鼠模型 [16] 和人类 [17] 的各种自身免疫性疾病的发展中发挥了重要作用。已有研究表明,在IL-23受体缺乏的狼疮易发小鼠中,使用抗IL-23抗体治疗后,LN的临床和病理结果可以减轻 [18] 。SLE患者肾组织中IL-23表达的升高进一步证明了IL-23在SLE中发挥重要作用。

4. IL-17及其相关细胞因子在SLE治疗中的作用

目前一些靶向IL-17或IL-17R的生物制剂已被批准用于一些免疫介导的炎症性疾病,如银屑病 [19] 、银屑病关节炎 [20] 和强直性脊柱炎 [21] 。尽管针对IL-17A的抑制剂已被证明对狼疮易发小鼠的治疗有效,但目前仅有部分病例报道描述了IL-17A抑制剂在SLE患者中的疗效 [22] ,未来还需进一步的临床试验来评估IL-17抑制剂在SLE患者中的长期疗效和安全性。

乌司奴单抗(ustekinumab)是一种抗IL-12/23 p40中和性单克隆抗体,目前已有研究报道了其在亚急性皮肤狼疮 [23] 、银屑病 [24] 和银屑病关节炎 [25] 患者中的有效性和安全性。近年来,一项II期随机双盲临床研究表明,乌司奴单抗对于活动性SLE患者具有较好的疗效和安全性 [26] 。但遗憾的是其III临床试验因未取得预期疗效而提前终止。

5. 总结及展望

综上所述,IL-17与SLE的发病密切相关,但由于SLE是一种具有高度异质性的自身免疫性疾病,单纯IL-17阻断可能不适用于所有患者,未来寻找对LI-17抑制剂有较好治疗反应的临床标志物尤为重要。同时,还需更多的随机临床试验来证明LI-17抑制剂在SLE治疗中的确切价值。

NOTES

*通讯作者。

参考文献

[1] Rees, F., Doherty, M., Grainge, M.J., et al. (2017) The Worldwide Incidence and Prevalence of Systemic Lupus Erythe-matosus: A Systematic Review of Epidemiological Studies. Rheumatology, 56, 1945-1961.
https://doi.org/10.1093/rheumatology/kex260
[2] Liu, Z. and Davidson, A. (2012) Taming Lupus—A New Un-derstanding of Pathogenesis Is Leading to Clinical Advances. Nature Medicine, 18, 871-882.
https://doi.org/10.1038/nm.2752
[3] Gottschalk, T.A., Tsantikos, E. and Hibbs, M. (2015) Pathogenic Inflamma-tion and Its Therapeutic Targeting in Systemic Lupus Erythematosus. Frontiers in Immunology, 6, Article 550.
https://doi.org/10.3389/fimmu.2015.00550
[4] McGeachy, M.J., Cua, D.J. and Gaffen, S.L. (2019) The IL-17 Family of Cytokines in Health and Disease. Immunity, 50, 892-906.
https://doi.org/10.1016/j.immuni.2019.03.021
[5] Burkett, P.R., Meyer Zu Horste, G. and Kuchroo, V. (2015) Pouring Fuel on the Fire: Th17 Cells, the Environment, and Autoimmunity. Journal of Clinical Investigation, 125, 2211-2219.
https://doi.org/10.1172/JCI78085
[6] Ruiz De Morales, J.M.G., Daudén, E., et al. (2019) Critical Role of Interleukin (IL)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmunity Reviews, 19, Article 102429.
https://doi.org/10.1016/j.autrev.2019.102429
[7] Cao, H, Su, S, Yang, Q, et al. (2021) Metabolic Profiling Re-veals Interleukin-17A Monoclonal Antibody Treatment Ameliorate Lipids Metabolism with the Potentiality to Reduce Cardiovascular Risk in Psoriasis Patients. Lipids in Health and Disease, 20, Article No. 16.
https://doi.org/10.1186/s12944-021-01441-9
[8] Kim, H.J., Seo, S.J., Kim J.Y., et al. (2020) IL-17 Promotes Os-teoblast Differentiation, Bone Regeneration, and Remodeling in Mice. Biochemical and Biophysical Research Communi-cations, 524, 1044-1050.
https://doi.org/10.1016/j.bbrc.2020.02.054
[9] Tu, Z, Xiong, J, Xiao, R, et al. (2019) Loss of miR-146b-5p Pro-motes T Cell Acute Lymphoblastic Leukemia Migration and Invasion via the IL-17A Pathway. Journal of Cellular Bio-chemistry, 120, 5936-5948.
https://doi.org/10.1002/jcb.27882
[10] Vincent, F.B., Northcott, M., et al. (2013) Clinical Associations of Serum Interleukin-17 in Systemic Lupus Erythematosus. Arthritis Research & Therapy, 15, Article No. R97.
https://doi.org/10.1186/ar4277
[11] Mok, M.Y., Wu, H.J., Lo, Y. and Lau, C.S. (2010) The Relation of Interleukin 17 (IL-17) and IL-23 to Th1/Th2 Cytokines and Disease Activity in Systemic Lupus Erythematosus. The Journal of Rheumatology, 37, 2046-2052.
https://doi.org/10.3899/jrheum.100293
[12] Ebrahimi Chaharom, F., Asghar Ebrahimi, A., et al. (2023) Associa-tion of IL-17 Serum Levels with Clinical Findings and Systemic Lupus Erythematosus Disease Activity Index. Immuno-logical Medicine, 46, 175-181.
https://doi.org/10.1080/25785826.2023.2202050
[13] Kwan, B.C., Tam, L.-S., et al. (2009) The Gene Expression of Type 17 T-Helper Cell-Related Cytokines in the Urinary Sediment of Patients with Systemic Lupus Erythematosus. Rheumatology, 48, 1491-1497.
https://doi.org/10.1093/rheumatology/kep255
[14] Sippl, N., Faustini, F., et al. (2021) Arthritis in Systemic Lupus Erythematosus is Characterized by Local IL-17A and IL-6 Expression in Synovial Fluid. Clinical and Experimental Im-munology, 205, 44-52.
https://doi.org/10.1111/cei.13585
[15] Lubberts, E. (2015) The IL-23-IL-17 Axis in Inflammatory Arthritis. Nature Reviews Rheumatology, 11, 415-429.
https://doi.org/10.1038/nrrheum.2015.53
[16] Chen, X., Jiang, X., Doddareddy, R., et al. (2018) Development and Translational Application of a Minimal Physiologically Based Pharmacokinetic Model for a Monoclonal Antibody against Interleukin 23 (IL-23) in IL-23-Induced Psoriasis-Like Mice. Journal of Pharmacology and Experimental Therapeutics, 365, 140-155.
https://doi.org/10.1124/jpet.117.244855
[17] Bridgewood, C., Newton, D., Bragazzi, N., et al. (2021) Unexpected Connections of the IL-23/IL-17 and IL-4/IL-13 Cytokine Axes in Inflammatory Arthritis and Enthesitis. Seminars in Immunology, 58, Article 101520.
https://doi.org/10.1016/j.smim.2021.101520
[18] Kyttaris, V.C., Kampagianni, O. and Tsokos, G.C. (2013) Treat-ment with Anti-Interleukin 23 Antibody Ameliorates Disease in Lupus-Prone Mice. BioMed Research International, 2013, Article ID: 861028.
https://doi.org/10.1155/2013/861028
[19] Griffiths, C.E., Reich, K., et al. (2015) Comparison of Ixekizumab with Etanercept or Placebo in Moderate-to-Severe Psoriasis (UNCOVER-2 and UNCOVER-3): Results from Two Phase 3 Randomised Trials. The Lancet, 386, 541-551.
https://doi.org/10.1016/S0140-6736(15)60125-8
[20] McInnes, I.B., Mease, P.J., et al. (2015) Secukinumab, a Human Anti-Interleukin-17A Monoclonal Antibody, in Patients with Psoriatic Arthritis (FUTURE 2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 386, 1137-1146.
https://doi.org/10.1016/S0140-6736(15)61134-5
[21] Pavelka, K., Kivitz, A., et al. (2017) Efficacy, Safety, and Tolerability of Secukinumab in Patients with Active Ankylosing Spondylitis: A Randomized, Double-Blind Phase 3 Study, MEASURE 3. Arthritis Research & Therapy, 19, Article No. 285.
https://doi.org/10.1186/s13075-017-1490-y
[22] Satoh, Y., Nakano, K., Yoshinari, H., et al. (2018) A Case of Re-fractory Lupus Nephritis Complicated by Psoriasis Vulgaris That Was Controlled with Secukinumab. Lupus, 27, 1202-1206.
https://doi.org/10.1177/0961203318762598
[23] De Souza, A., Ali-Shaw, T., Strober, B.E., Franks, A.G. et al. (2011) Successful Treatment of Subacute Lupus Erythematosus with Ustekinumab. Archives of Dermatology, 147, 896-898.
https://doi.org/10.1001/archdermatol.2011.185
[24] Leonardi, C.L., Kimball, A.B., et al. (2008) Ef-ficacy and Safety of Ustekinumab, a Human Interleukin-12/23 Monoclonal Antibody, in Patients with Psoriasis: 76-Week Results from a Randomised, Double-Blind, Placebo-Controlled Trial (PHOENIX 1). The Lancet, 371, 1665-1674.
https://doi.org/10.1016/S0140-6736(08)60725-4
[25] McInnes, I.B., Kavanaugh, A., et al. (2013) Ef-ficacy and Safety of Ustekinumab in Patients with Active Psoriatic Arthritis: 1 Year Results of the Phase 3, Multicentre, Double-Blind, Placebo-Controlled PSUMMIT 1 Trial. The Lancet, 382, 780-789.
https://doi.org/10.1016/S0140-6736(13)60594-2
[26] Van Vollenhoven, R.F., Hahn, B.H., et al. (2018) Efficacy and Safety of Ustekinumab, an IL-12 and IL-23 Inhibitor, in Patients with Active Systemic Lupus Erythematosus: Re-sults of a Multicentre, Double-Blind, Phase 2, Randomised, Controlled Study. The Lancet, 392, 1330-1339.
https://doi.org/10.1016/S0140-6736(18)32167-6