HER-2阳性乳腺癌靶向治疗的心脏毒性综述
Cardiotoxicity of Targeted Therapy for HER-2 Positive Breast Cancer
DOI: 10.12677/ACM.2024.142614, PDF, HTML, XML, 下载: 28  浏览: 63 
作者: 石明强*:青海大学研究生院,青海 西宁;赵久达#:青海大学附属医院,青海 西宁
关键词: HER-2阳性乳腺癌靶向治疗心脏毒性HER-2 Positive Breast Cancer Targeted Therapy Cardiotoxicity
摘要: 癌症是一种威胁人类健康的重大疾病,是世界上导致人类死亡的第一或第二的常见因素。预计未来50年内,癌症患者的人数仍将上升。其中,乳腺癌高死亡率和高发病率而成为女性最主要的健康问题。HER2阳性乳腺癌是乳腺癌亚型的一种,因人表皮生长因子受体2 (human epidermal growth factor receptor-2, HER-2)高表达见于25%~30%的乳腺癌患者,且其与乳腺癌的不良预后相关。自曲妥珠单抗(trastuzumab)批准用于治疗转移性及早期乳腺癌以来,抗HER-2治疗已成为指南推荐的HER-2阳性早、晚期乳腺癌的标准治疗方案。美国食品与药品管理局(FDA)批准的乳腺癌临床使用的抗HER-2药物包括曲妥珠单抗、帕妥珠单抗、拉帕替尼、T-DM1、DS-8201等,其相关的心脏毒性值得关注,本文对批准用于乳腺癌抗HER-2治疗药物的治疗方法,发生心脏毒性的机制、临床表现、管理及其预防等方面进行综述分析。
Abstract: Cancer is a major disease that threatens human health and is the first or second most common cause of human death in the world. It is expected that the number of cancer patients will continue to rise in the next 50 years. Among them, breast cancer has become the most important health problem for women due to its high mortality and incidence rate. HER2 positive breast cancer is a subtype of breast cancer. High expression of human epidermal growth factor receptor-2 (HER-2) is found in 25% to 30% of breast cancer patients, and it is related to the poor prognosis of breast can-cer. Since trastuzumab was approved for the treatment of metastatic and early breast cancer, anti HER-2 treatment has become the standard treatment scheme recommended by the guidelines for HER-2 positive early and late breast cancer. The anti HER-2 drugs approved by the US Food and Drug Administration (FDA) for clinical use of breast cancer include trastuzumab, patuzumab, lapa-tinib, T-DM1, DS-8201 and other drugs. At the same time, their related cardiac toxicity also de-serves attention. This article reviews and analyzes the treatment methods, mechanisms of cardiac toxicity, clinical manifestations, management and prevention of anti-HER-2 drugs approved for breast cancer.
文章引用:石明强, 赵久达. HER-2阳性乳腺癌靶向治疗的心脏毒性综述[J]. 临床医学进展, 2024, 14(2): 4428-4434. https://doi.org/10.12677/ACM.2024.142614

1. 引言

癌症是一种威胁人类健康的重大疾病,是世界上导致人类死亡的第一或第二的常见因素。预计未来50年内,癌症患者的人数仍将上升 [1] 。其中,乳腺癌高死亡率和高发病率而成为女性最主要的健康问题。HER2阳性乳腺癌是乳腺癌亚型的一种,因人表皮生长因子受体2 (human epidermal growth factor receptor- 2, HER-2)高表达见于25%~30%的乳腺癌患者,且其与乳腺癌的不良预后相关。研究显示,靶向治疗提高了病理完全缓解率,延长了HER2阳性乳腺癌的生存期,从而改善了预后 [2] [3] 。因此,自曲妥珠单抗(trastuzumab)批准用于治疗转移性及早期乳腺癌以来,抗HER-2治疗已成为指南推荐为HER-2阳性早、晚期乳腺癌的标准治疗方案 [4] [5] [6] 。于此同时,研究显示接受靶向治疗的患者发生了相关的不良事件,引起的心脏毒性是主要的影响治疗的副反应之一 [7] 。因此,对于心脏毒性的监测与管理是极其必要的。目前,美国食品与药品管理局(FDA)批准乳腺癌临床使用的抗HER-2药物包括曲妥珠单抗、帕妥珠单抗(Pertzumab)、拉帕替尼、恩美曲妥珠单抗(T-DM1)、德曲妥珠单抗(DS-8201)等,这些靶向药物改善了患者生存的同时,其可能发生的心脏毒性也不可忽视。本文对批准用于乳腺癌抗HER-2治疗药物的治疗方法,发生心脏毒性的机制、临床表现、管理及其预防等方面进行综述分析。

2. HER2阳性乳腺癌的靶向治疗方法

抗HER2治疗是HER2阳性乳腺癌的标准治疗。在HER2阳性乳腺癌治疗的新辅助阶段,曲妥珠单抗联合或不联合帕妥珠单抗结合化疗于2014年批准用于临床;EXTENTEIII期试验确定了来那替尼在标准曲妥珠单抗治疗后的辅助治疗阶段的治疗方案 [8] ;对于新辅助治疗后存在残留病灶的人群,T-DM1是标准的治疗手段。晚期her2阳性乳腺癌的治疗阶段,曲妥珠单抗联合帕妥珠单抗结合化疗是标准的晚期一线治疗;二线治疗中,三项研究的可观结果使T-DM1成为了二线治疗的标准;二线以上治疗的选择较为多样;吡咯替尼联合卡培他滨,T-Dxd,来那替你联合化疗,图卡替尼联合曲妥珠单抗联合化疗,马吉妥昔单抗联合化疗相继成为了标准治疗之一 [9] 。

3. 靶向治疗与心脏毒性之间的关系

在HER2阳型乳腺癌的治疗中,HER2靶向治疗显著提高了生存率 [10] 。心脏毒性是抗HER2靶向治疗中较为明显的不良反应。美国心脏评估委员会(Cardiac Review and Evaluation Committee, CREC)将抗肿瘤药的心脏毒性定义如下。(1) 表现为整体功能或室间隔运动明显降低的心肌病,左心室射血分数(left ventricular injectionfraction, LVEF)降低;(2) 充血性心力衰竭(congestive heart failure, CHF)相关症状;(3) 第3心音奔马律、心动过速等CHF相关体征;(4) LVEF较基线降低≥5%且绝对值<55%,伴CHF症状或体征;或LVEF降低≥10%且绝对值<55%,无症状或体征,以上满足1项即可诊断。研究表明,在临床试验中,接受曲妥珠单药治疗的患者中有3%至7%出现某种形式的心脏功能障碍 [11] ;T-DM1发生心脏相关时间的比率为3.37%。其他药物的心脏毒性发生率也不尽相同。明确不同药物的心脏毒性发生率,发生机制及其特点,是我们的关注要点。

3.1. 曲妥珠单抗

曲妥珠单抗适用于HER2阳性乳腺癌的新辅助,辅助及晚期一线治疗阶段。由曲妥珠单抗引起心脏毒性的机制尚无定论,目前认为,HER2参与细胞的存活、增殖和分化,是一种具有酪氨酸蛋白激酶活性的跨膜糖蛋白,曲妥珠单抗通过与肿瘤细胞上的HER2蛋白结合,对细胞生长信号传递存在抑制作用,进而发挥抑制肿瘤细胞增殖的作用。LVEF下降发生率在4%~19%,通常,LVEF下降在中断曲妥珠单抗治疗,于1~3个月内得到恢复,但也有一部分证据表明曲妥珠单抗的心脏毒性可能在治疗结束后持续多年;约0.8%~4%的患者出现CHF或心源性死亡;另外,不良事件的发生可能与使用时间有关 [12] [13] [14] [15] 。不同研究显示的心脏毒性发生率有所不同,一项研究显示接受联合蒽环类化疗药物的患者较不接受的患者心脏毒性发生率高 [16] ;因此,心脏毒性的发生可能与同时联合的化疗药物相关。综上,曲妥珠单抗作为重要的抗HER2治疗手段,其毒性相对可控,疗效确切 [17] 。

3.2. 帕妥珠单抗

帕妥珠单抗联合曲妥珠单抗用于HER2阳性乳腺癌的新辅助,辅助级及晚期治疗。帕妥珠单抗(pertuzumab)的作用机制是阻断HER2二聚化和介导ADCC效应,与曲妥珠单抗联用有协同作用 [18] 。目前曲妥珠单抗在心脏毒性的方便被认为是安全的,没有出现LVEF降低等心脏风险的增加 [19] 。一项研究显示,单独使用帕妥珠单抗较联合使用曲妥珠单抗,左心室功能不全的发生率及LVEF明显下降的发生率更低,且LVEF下降的恢复率更高 [20] 。另外,值得注意的是,有相关文献汇报了使用曲妥珠单抗和帕妥珠单抗后诱发Tako-Tsubo心肌病的案例 [21] 。

3.3. 马吉妥昔单抗

马吉妥昔单抗联合化疗适用于二线以上HER2阳性乳腺癌。马吉妥昔单抗与曲妥珠单抗较为相似,通过增强CD16A (FcγRⅢa)与IgG之间的亲和性,从而诱发ADCC效应,达到抗肿瘤效果 [22] 。有相关的研究显示,马吉妥昔单抗具有甚至优于曲妥珠单抗的疗效 [23] 。在心脏毒性方面,马吉妥昔单抗引起的心脏毒性率较低,出现了无症状的LVEF下降且均出现了逆转 [24] 。因此,马吉妥昔单抗在心脏不良事件方面较为安全。

3.4. 来那替尼

来那替尼适用于曲妥珠单抗辅助治疗后,以及联合化疗用于二线之后的治疗中。来那替尼是一种口服的,不可逆的泛HER (HER1、HER2和HER4)抑制剂,从而表现出抗肿瘤活性 [25] 。ExteNET研究等提示,来那替尼仅观察到无症状LVEF下降,未出现明显的心力衰竭等情况 [8] 。

3.5. 吡咯替尼

吡咯替尼批准用HER2阳性乳腺癌对曲妥珠单抗耐药的晚期阶段。是不可逆的泛HER型口服TKI类抑制剂。研究显示,吡咯替尼引起了无症状的LVEF下降,但并未降低至50%以下,另外,在一项目吡咯替尼联合卡陪他滨的II期试验显示,出现了QT间期延长,因此,不排除其对QT间期的影响,使用过程中,需要规律行心电图 [26] [27] 。

3.6. 图卡替尼

图卡替尼批准用晚期HER2阳性乳腺癌,是口服TKI类药物,对HER2具有高度选择性 [28] 。研究显示,在含有图卡替尼的治疗组中,观察到了天门冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)的升高,其他的心脏毒性并不明确,因此,其心脏方面的毒性还需要进一步的研究证实 [29] 。

3.7. T-DM1

T-DM1批准用于新辅助治疗后存在残留病灶以及晚期的HER2阳性乳腺癌。T-DM1由曲妥珠单抗和美坦新的偶联物组成。通过曲妥珠单抗部分与肿瘤细胞靶向结合,携带和释放细胞毒性药物美坦新(emtansine, DM1),损伤瘤细胞的微管结构 [30] 。T-DM1在心脏毒性方面较为安全,毒性的总体发生率为3.37% [31] 。

3.8. DS-8201

DS-8201批准用于HER2阳性乳腺癌的晚期阶段。T-DXd是一种抗体–药物偶联物(ADC),由具有与曲妥珠单抗相同氨基酸序列的人源化抗HER2-IgG1单克隆抗体(MAAL-9001)组成,通过诱导DNA断裂和细胞凋亡产生抗肿瘤作用 [32] 。一项研究结果显示,DS-8201在HER2晚期乳腺癌的治疗中,出现了1.9%的LVEF降低发生率以及7.7%的QTi延长发生率 [33] ,综合来看,DS-8201在心脏毒性方面较为可控。

4. 心脏毒性的临床表现和评估

4.1. 心脏毒性的临床表现

心脏毒性通常表现为左心功能不全如LVEF降低,心电图变化(QT间期延长)、心肌病变、高血压等,严重时可发生充血性心力衰竭(congestive heart failure, CHF)甚至心脏性死亡。

4.2. 心脏毒性的评估

LVEF是常用的监测心脏功能的指标,LVEF被ESMO临床指南推荐为乳腺癌靶向治疗的常规检测预防手段,曲妥珠单抗治疗期间及治疗结束后心脏监测的时间点分别为基线、治疗中每3个月复查LVEF;治疗后2年内每6个月复测LVEF。治疗过程中出现LVEF下降至在40%~50%之间,且LVEF较基线下降<10%,可继续行曲妥珠单抗治疗;40%~50%之间,且较基线下降>10%,提示患者心力衰竭风险增加,则应停用曲妥珠单抗参考 [34] 。

B型钠尿肽目前最有价值的心衰诊断标志物,相对于超声心动图,可以更早检测到心肌损害。目前认为BNP > 400 pg/mL时,应警惕心脏毒性的发生。

心电图是常用的点生理检查,靶向治疗可引起心律失常,QT间期延长等变化。

心肌肌钙蛋白T (cardiac troponin T, cTnT)和心肌肌钙蛋白I (cardiac troponin I, cTnI)是心脏特有的结构蛋白,是心肌损伤的特异性生物标志物。出现心肌损伤,心肌炎,心肌梗死时,出现cTnT/cTnI升高,因其无特异性,需要鉴别分析 [35] 。

心肌损伤时,AST和ALT指标升高,对心肌损伤具有提示意义,需要进行鉴别诊断。

5. 管理和预防心脏毒性

5.1. 剂量管理

根据患者的心功能评估和心脏毒性风险因素,个体化调整药物的剂量。

监测患者的心脏功能和心肌损伤标志物,如左室射血分数(LVEF)和肌钙蛋白等,及时调整剂量。

5.2. 脏保护药物

ACE抑制剂和ARB (血管紧张素转换酶抑制剂和血管紧张素受体拮抗剂):这些药物可以降低心脏负荷,维持血压稳定,减轻心脏负担。

受体阻断剂:可以减慢心率、降低心肌氧耗,保护心脏心脏保护剂:如乙酷半胱氨酸、辅酶Q10等,具有一定的心脏保护作用。

5.3. 心脏保护策略

在开始HER-2靶向治疗之前,对患者进行心脏评估和监测,包括心脏超声、心电图和血液检测等,以评估心脏功能和心脏毒性风险。

针对高风险患者,考虑选择其他治疗方案或限制使用HER-2靶向药物。

定期监测心脏功能和心肌损伤标志物,以便及早发现心脏毒性的迹象。

5.4. 监测的重要性

定期进行心脏超声、心电图和心脏磁共振等检查,以评估心脏功能和心肌的结构与功能。

监测血液中的心肌损伤标志物,如肌钙蛋白等,以及时发现可能的心脏损害。

6. 临床实践和未来发展

HER2阳性乳腺癌靶向治疗过程中,应根据患者的心脏功能评估和心脏毒性风险因素,定期监测心脏功能和心肌损伤标志物,及时调整剂量或选择其他治疗方案;另外,在治疗过程中,密切合作的多学科团队包括心脏科医生、乳腺肿瘤科医生和临床药剂师等组织召开专门的会诊,予以患者最佳的治疗效果的同时减少心脏风险。在未来的发展方向方面,针对不同患者的特征和心脏毒性风险,进一步优化个体化治疗策略;制定更准确的预测模型和评估指标,以辅助临床决策和个体化治疗选择。寻找更安全有效的HER-2靶向药物,能够减少心脏毒性的发生将更多创新的药物、抗体药物联合应用,提高治疗效果,减少心脏副作用。

7. 结论

抗HER2的靶向治疗是有效的治疗手段,这些药物通常联合化疗药物使用于临床,治疗过程中引起的心脏毒性的证据充足,预防和管理心脏不良事件是改善生存的必要。因此,接受治疗前对基线进行评估,按期监测LVEF,BNP,行心电图等措施非常必要。对已发生心脏毒性的患者及时调整方案及剂量,应用保护药物也非常必要。在未来的治疗中,我们仍然对新的监测技术以及毒性更低的药物有需求。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Soerjomataram, I. and Bray, F. (2021) Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020-2070. Nature Reviews Clinical Oncology, 18, 663-672.
https://doi.org/10.1038/s41571-021-00514-z
[2] Hurvitz, S.A., Martin, M., Symmans, W.F., Jung, K.H., Huang, C.-S., Thompson, A.M., et al. (2018) Neoadjuvant Trastuzumab, Pertuzumab, and Chemotherapy versus Trastuzumab Emtansine plus Pertuzumab in Patients with HER2-Positive Breast Cancer (KRISTINE): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet Oncology, 19, 115-126.
https://doi.org/10.1016/S1470-2045(17)30716-7
[3] Von Minckwitz, G., Procter, M., De Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., et al. (2017) Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. The New England Journal of Medicine, 377, 122-131.
https://doi.org/10.1056/NEJMoa1703643
[4] Pernas, S. and Tolaney, S.M. (2022) Clinical Trial Data and Emerg-ing Strategies: HER2-Positive Breast Cancer. Breast Cancer Research and Treatment, 193, 281-291.
https://doi.org/10.1007/s10549-022-06575-7
[5] Najjar, M.K., Manore, S.G., Regua, A.T. and Lo, H.-W. (2022) Antibody-Drug Conjugates for the Treatment of HER2- Positive Breast Cancer. Genes, 13, Article No. 2065.
https://doi.org/10.3390/genes13112065
[6] Lopez-Tarruella, S., Echavarria, I., Jerez, Y., Herrero, B., Gamez, S. and Martin, M. (2022) How We Treat HR-Positive, HER2-Negative Early Breast Cancer. Future Oncology, 18, 1003-1022.
https://doi.org/10.2217/fon-2021-0668
[7] Jerusalem, G., Lancellotti, P. and Kim, S.-B. (2019) HER2+ Breast Cancer Treatment and Cardiotoxicity: Monitoring and Management. Breast Cancer Research and Treat-ment, 177, 237-250.
https://doi.org/10.1007/s10549-019-05303-y
[8] Chan, A., Moy, B., Mansi, J., Ejlertsen, B., Holmes, F.A., Chia, S., et al. (2021) Final Efficacy Results of Neratinib in HER2-Positive Hormone Receptor-Positive Early-Stage Breast Cancer from the Phase III ExteNET Trial. Clinical Breast Cancer, 21, 80-91.E7.
https://doi.org/10.1016/j.clbc.2020.09.014
[9] Swain, S.M., Shastry, M. and Hamilton, E. (2023) Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nature Reviews Drug Discovery, 22, 101-126.
https://doi.org/10.1038/s41573-022-00579-0
[10] Nader-Marta, G., Martins-Branco, D. and De Azambuja, E. (2022) How We Treat Patients with Metastatic HER2- Positive Breast Cancer. ESMO Open, 7, Article ID: 100343.
https://doi.org/10.1016/j.esmoop.2021.100343
[11] Seidman, A., Hudis, C., Pierri, M.K., Shak, S., Paton, V., Ashby, M., et al. (2002) Cardiac Dysfunction in the Trastuzumab Clinical Trials Experience. Journal of Clinical Oncolo-gy, 20, 1215-1221.
[12] De Azambuja, E., Procter, M.J., Van Veldhuisen, D.J., Agbor-Tarh, D., Metzger-Filho, O., Steinseifer, J., et al. (2014) Trastuzumab-Associated Cardiac Events at 8 Years of Median Follow-Up in the Herceptin Adjuvant Trial (BIG 1-01). JCO, 32, 2159-2165.
https://doi.org/10.1200/JCO.2013.53.9288
[13] Advani, P.P., Ballman, K.V., Dockter, T.J., Colon-Otero, G. and Perez, E.A. (2016) Long-Term Cardiac Safety Analysis of NCCTG N9831 (Alliance) Adjuvant Trastuzumab Trial. JCO, 34, 581-587.
https://doi.org/10.1200/JCO.2015.61.8413
[14] Romond, E.H., Jeong, J.-H., Rastogi, P., Swain, S.M., Geyer, C.E., Ewer, M.S., et al. (2012) Seven-Year Follow-Up Assessment of Cardiac Function in NSABP B-31, a Randomized Trial Comparing Doxorubicin and Cyclophosphamide Followed by Paclitaxel (ACP) with ACP plus Trastuzumab as Adjuvant Therapy for Patients with Node-Positive, Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. JCO, 30, 3792-3799.
https://doi.org/10.1200/JCO.2011.40.0010
[15] Fiúza, M. (2009) Cardiotoxicity Associated with Trastuzumab Treatment of HER2+ Breast Cancer. Advances in Therapy, 26, 9-17.
https://doi.org/10.1007/s12325-009-0048-z
[16] Bowles, E.J.A., Wellman, R., Feigelson, H.S., Onitilo, A.A., Freedman, A.N., Delate, T., et al. (2012) Risk of Heart Failure in Breast Cancer Patients after Anthracycline and Trastuzumab Treatment: A Retrospective Cohort Study. JNCI Journal of the National Cancer Institute, 104, 1293-1305.
https://doi.org/10.1093/jnci/djs317
[17] Addetia, K. and DeCara, J.M. (2016) Cardiac Complications of HER2-Targeted Therapies in Breast Cancer. Current Treatment Options in Cardiovascular Medicine, 18, Article No. 36.
https://doi.org/10.1007/s11936-016-0458-6
[18] Ishii, K., Morii, N. and Yamashiro, H. (2019) Pertuzumab in the Treatment of HER2-Positive Breast Cancer: An Evidence-Based Review of Its Safety, Efficacy, and Place in Therapy. Core Evidence, 14, 51-70.
https://doi.org/10.2147/CE.S217848
[19] Sendur, M.A., Aksoy, S. and Altundag, K. (2015) Pertuzumab-Induced Cardiotoxicity: Safety Compared with Trastuzumab. Future Oncology, 11, 13-15.
https://doi.org/10.2217/fon.14.184
[20] Swain, S.M., Baselga, J., Kim, S.-B., Ro, J., Semiglazov, V., Campone, M., et al. (2015) Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. The New England Journal of Medicine, 372, 724-734.
https://doi.org/10.1056/NEJMoa1413513
[21] Lees, C., Yazdan-Ashoori, P., Jerzak, K.J. and Gandhi, S. (2019) Takotsubo Cardiomyopathy during Anti-HER2 Therapy for Metastatic Breast Cancer. The Oncologist, 24, E80-E82.
https://doi.org/10.1634/theoncologist.2018-0285
[22] Rugo, H.S., Im, S.-A., Cardoso, F., Cortés, J., Curigliano, G., Musolino, A., et al. (2021) Efficacy of Margetuximab vs Trastuzumab in Patients with Pretreated ERBB2-Positive Ad-vanced Breast Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncology, 7, 573-584.
https://doi.org/10.1001/jamaoncol.2020.7932
[23] Markham, A. (2021) Margetuximab: First Approval. Drugs, 81, 599-604.
https://doi.org/10.1007/s40265-021-01485-2
[24] Gradishar, W.J., O’Regan, R., Rimawi, M.F., Nordstrom, J.L., Rosales, M.K. and Rugo, H.S. (2023) Margetuximab in HER2-Positive Metastatic Breast Cancer. Fu-ture Oncology, 19, 1099-1112.
https://doi.org/10.2217/fon-2022-1040
[25] Deeks, E.D. (2017) Neratinib: First Global Approval. Drugs, 77, 1695-1704.
https://doi.org/10.1007/s40265-017-0811-4
[26] Xuhong, J.-C., Qi, X-W., Zhang, Y. and Jiang, J. (2019) Mecha-nism, Safety and Efficacy of Three Tyrosine Kinase Inhibitors Lapatinib, Neratinib and Pyrotinib in HER2-Positive Breast Cancer. American Journal of Cancer Research, 9, 2103-2119.
[27] Ma, F., Ouyang, Q., Li, W., Jiang, Z., Tong, Z., Liu, Y., et al. (2019) Pyrotinib or Lapatinib Combined with Capecitabine in HER2-Positive Metastatic Breast Cancer with Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. JCO, 37, 2610-2619.
https://doi.org/10.1200/JCO.19.00108
[28] Lee, A. (2020) Tucatinib: First Approval. Drugs, 80, 1033-1038.
https://doi.org/10.1007/s40265-020-01340-w
[29] Murthy, R.K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S.A., et al. (2020) Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. The New England Journal of Medicine, 382, 597-609.
https://doi.org/10.1056/NEJMoa1914609
[30] Hunter, F.W., Barker, H.R., Lipert, B., Rothé, F., Gebhart, G., Pic-cart-Gebhart, M.J., et al. (2020) Mechanisms of Resistance to Trastuzumab Emtansine (T-DM1) in HER2-Positive Breast Cancer. British Journal of Cancer, 122, 603- 612.
https://doi.org/10.1038/s41416-019-0635-y
[31] Pondé, N., Ameye, L., Lambertini, M., Paesmans, M., Piccart, M. and De Azambuja, E. (2020) Trastuzumab Emtansine (T-DM1)-Associated Cardiotoxicity: Pooled Analysis in Advanced HER2-Positive Breast Cancer. European Journal of Cancer, 126, 65-73.
https://doi.org/10.1016/j.ejca.2019.11.023
[32] Narayan, P., Osgood, C.L., Singh, H., Chiu, H.-J., Ricks, T.K., Chiu, Y., Chow, E., et al. (2021) FDA Approval Summary: Fam-Trastuzumab Deruxtecan-Nxki for the Treatment of Unresectable or Metastatic HER2-Positive Breast Cancer. Clinical Cancer Research, 27, 4478-4485.
https://doi.org/10.1158/1078-0432.CCR-20-4557
[33] Soares, L.R., Vilbert, M., Rosa, V.D.L., Oliveira, J.L., Deus, M.M. and Freitas-Junior, R. (2023) Incidence of Interstitial Lung Disease and Cardiotoxicity with Trastuzumab Derux-tecan in Breast Cancer Patients: A Systematic Review and Single-Arm Meta-Analysis. ESMO Open, 8, Article ID: 101613.
https://doi.org/10.1016/j.esmoop.2023.101613
[34] Curigliano, G., Cardinale, D., Suter, T., Plataniotis, G., De Azambuja, E., Sandri, M.T., et al. (2012) Cardiovascular Toxicity Induced by Chemotherapy, Targeted Agents and Radiotherapy: ESMO Clinical Practice Guidelines. Annals of Oncology, 23, Vii155-Vii166.
https://doi.org/10.1093/annonc/mds293
[35] Thygesen, K., Alpert, J.S., Jaffe, A.S., Chaitman, B.R., Bax, J.J., Morrow, D.A., et al. (2018) Fourth Universal Definition of Myocardial Infarction (2018). Circulation, 138, e618-e651.
https://doi.org/10.1161/CIR.0000000000000617