金属有机框架复合材料光催化研究进展
Research Progress on Photocatalysis of Metalorganic Framework Composites
DOI: 10.12677/AAC.2024.141003, PDF, 下载: 60  浏览: 131 
作者: 朱百慧, 冯 嫣, 职晓焱, 董方园, 宋敬璇, 傅仰河*:浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: 金属有机框架复合材料光催化应用Mental Organic Frameworks Composites Photocatalysis Applications
摘要: 金属有机框架(MOFs)材料已经成为光催化领域的研究热点。MOFs作为多孔材料,具有大的比表面积,有序的孔道结构,易于功能化等优势。然而,由于其较差的光捕获能力和稳定性,限制了其在光催化领域的应用。为了解决这个问题,研究人员开始将客体物质引入到MOF中,形成MOF复合材料。通过活性界面的构建和功能单元的引入,有针对性地优化了光吸收能力、电荷分离和反应活性,从而提高了整体光催化性能。此外,该复合材料具有多种活性位点,具有明确的配位构型,有利于光催化机理的研究。本文主要论述了MOF复合材料的类型,并介绍了它们在光催化分解水、CO2还原和有机反应中的最新应用。
Abstract: Metalorganic framework (MOFs) materials have become a research hotspot in the field of photoca-talysis. As a porous material, MOFs have the advantages of large specific surface area, ordered pore structure and easy functionalization. However, due to its poor light trapping ability and stability, its application in the field of photocatalysis is limited. To solve this problem, the researchers began to introduce guest matter into the MOF, forming MOF composites. Through the construction of active interface and the introduction of functional units, the light absorption capacity, charge separation and reactivity are optimized, and the overall photocatalytic performance is improved. In addition, the composite has a variety of active sites and a clear coordination configuration, which is beneficial to the study of photocatalysis mechanism. This work mainly discusses the types of MOF composites, and introduces their latest applications in photocatalytic water decomposition, CO2 reduction and organic reactions.
文章引用:朱百慧, 冯嫣, 职晓焱, 董方园, 宋敬璇, 傅仰河. 金属有机框架复合材料光催化研究进展[J]. 分析化学进展, 2024, 14(1): 21-28. https://doi.org/10.12677/AAC.2024.141003

参考文献

[1] Tee, S.Y., Win, K.Y., Teo, W.S., et al. (2017) Recent Progress in Energy-Driven Water Splitting. Advanced Science, 4, Article ID: 1600337.
https://doi.org/10.1002/advs.201600337
[2] Sun, K., Qian, Y. and Jiang, H.L. (2023) Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. Angewandte Chemie International Edition, 62, e202217565.
https://doi.org/10.1002/anie.202217565
[3] Greer, K., Zeller, D., Woroniak, J., et al. (2019) Global Trends in Carbon Dioxide (CO2) Emissions from Fuel Combustion in Marine Fisheries from 1950 to 2016. Marine Policy, 107, Article ID: 103382
https://doi.org/10.1016/j.marpol.2018.12.001
[4] Wang, S., Ai, Z., Niu, X., et al. (2023) Linker Engineering of Sand-wich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H2 Production. Advanced Materials, 35, Article ID: 2302512.
https://doi.org/10.21741/9781644902615-1
[5] Xiao, J.D., Li, R. and Jiang, H.L. (2022) Metal-Organic Frame-work-Based Photocatalysis for Solar Fuel Production. Small Methods, 7, Article ID: 2201258.
https://doi.org/10.1002/smtd.202201258
[6] Wu, Q., Luan, H. and Xiao, F.S. (2022) Theoretical Design for Zeolite Synthesis. Science China Chemistry, 65, 1683-1690.
https://doi.org/10.1007/s11426-022-1307-5
[7] Tian, Y. and Zhu, G. (2020) Porous Aromatic Frameworks (PAFs). Chemical Reviews, 120, 8934-8986.
https://doi.org/10.1021/acs.chemrev.9b00687
[8] Chen, J., Abazari, R., Adegoke, K.A., et al. (2023) Metal-Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Coordination Chem-istry Reviews, 469, Article ID: 214664.
https://doi.org/10.1016/j.ccr.2022.214664
[9] Yuan, S., Feng, L., Wang, K., et al. (2018) Stable Metal-Organic Frame-works: Design, Synthesis, and Applications. Advanced Materials, 30, Article ID: 1704303.
https://doi.org/10.1002/adma.201704303
[10] Kitao, T., Zhang, Y., Kitagawa, S., et al. (2017) Hybridization of MOFs and Polymers. Chemical Society Reviews, 46, 3108-3133.
https://doi.org/10.1039/C7CS00041C
[11] Li X., Yang X., Xue H., et al. (2020) Metal-Organic Frameworks as a Platform for Clean Energy Applications. EnergyChem, 2, Article ID: 100027.
https://doi.org/10.1016/j.enchem.2020.100027
[12] Alkhatib, I.I., Garlisi, C., Pagliaro, M., et al. (2020) Metal-Organic Frameworks for Photocatalytic CO2 Reduction under Visible Radiation: A Review of Strategies and Applications. Catalysis Today, 340, 209-224.
https://doi.org/10.1016/j.cattod.2018.09.032
[13] Dhakshinamoorthy, A., Asiri, A.M. and García, H. (2016) Met-al-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55, 5414-5445.
https://doi.org/10.1002/anie.201505581
[14] Yang, Q., Xu, Q., Jiang, H.L., et al. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chemical Society Reviews, 46, 4774-4808.
https://doi.org/10.1039/C6CS00724D
[15] Guo, J., Wan, Y., Zhu, Y., et al. (2020) Advanced Photocatalysts Based on Metal Nanoparticle/Metal-Organic Framework Composites. Nano Research, 14, 2037-2052.
https://doi.org/10.1007/s12274-020-3182-1
[16] Jiang, Y., Yu, Y., Zhang, X., et al. (2021) N-Heterocyclic Car-bene-Stabilized Ultrasmall Gold Nanoclusters in a Metal-Organic Framework for Photocatalytic CO2 Reduction. Angewandte Chemie International Edition, 60, 17388-17393.
https://doi.org/10.1002/anie.202105420
[17] Chen, Y.Z., Gu, B., Uchida, T., et al. (2019) Location Determination of Met-al Nanoparticles Relative to a Metal-Organic Framework. Nature Communications, 10, Article No. 3462.
https://doi.org/10.1038/s41467-019-11449-6
[18] Sun, Z.X., Sun, K., Gao, M.L., et al. (2022) Optimizing Pt Electronic States through Formation of a Schottky Junction on Non-Reducible Metal-Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie International Edition, 61, e202206108.
https://doi.org/10.1002/anie.202206108
[19] He, T., Kong, X.J., Zhou, J., et al. (2021) A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal-Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 143, 9901-9911.
https://doi.org/10.1021/jacs.1c04077
[20] Fu, Y., Sun, L., Yang, H., et al. (2016) Visible-Light-Induced Aerobic Photo-catalytic Oxidation of Aromatic Alcohols to Aldehydes over Ni-Doped NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 187, 212-217.
https://doi.org/10.1016/j.apcatb.2016.01.038
[21] Zhou, K., Shang, G., Hsu, H.H., et al. (2023) Emerging 2D Metal Ox-ides: From Synthesis to Device Integration. Advanced Materials, 35, Article ID: 2207774.
https://doi.org/10.1002/adma.202207774
[22] Da, P., Zheng, Y., Hu, Y., et al. (2023) Synthesis of Bandgap-Tunable Transition Metal Sulfides through Gas-Phase Cation Exchange-Induced Topological Transformation. Angewandte Chemie In-ternational Edition, 62, e202301802.
https://doi.org/10.1002/anie.202301802
[23] Li, A., Zhang, L., Wang, F., et al. (2022) Rational Design of Porous Ni-Co-Fe Ternary Metal Phosphides Nanobricks as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Applied Catalysis B: Environmental, 310, Article ID: 121353.
https://doi.org/10.1016/j.apcatb.2022.121353
[24] Aguilera-Sigalat, J. and Bradshaw, D. (2016) Synthesis and Applications of Metal-Organic Framework-Quantum Dot (QD@MOF) Composites. Coordination Chemistry Reviews, 307, 267-291.
https://doi.org/10.1016/j.ccr.2015.08.004
[25] Zhang, J., Bai, T., Huang, H., et al. (2020) Metal-Organic-Framework-Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting. Advanced Materials, 32, Article ID: 2004747.
https://doi.org/10.1002/adma.202004747
[26] Ghosh, A., Karmakar, S., Rahimi, F.A., et al. (2022) Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF Toward Photocatalytic Hydrogen Evolution. ACS Applied Mate-rials & Interfaces, 14, 25220-25231.
https://doi.org/10.1021/acsami.1c23458
[27] Jiang, Z., Xu, X., Ma, Y., et al. (2020) Filling Metal-Organic Framework Mesopores with TiO2 for CO2 Photoreduction. Nature, 586, 549-554.
https://doi.org/10.1038/s41586-020-2738-2
[28] Wen, Q., Li, D., Li, H., et al. (2023) Synergetic Effect of Photocatalysis and Peroxymonosulfate Activated by Co/Mn-MOF-74@G-C3N4 Z-Scheme Photocatalyst for Removal of Tetracycline Hydro-chloride. Separation and Purification Technology, 313, Article ID: 123518.
https://doi.org/10.1016/j.seppur.2023.123518
[29] Liu, L., Meng, H., Chai, Y., et al. (2023) Enhancing Built-In Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium-Based Metal-Organic Frameworks. Angewandte Chemie International Edition, 62, e202217897.
https://doi.org/10.1002/anie.202217897
[30] Samy, M., Ibrahim, M.G., Fujii, M., et al. (2021) CNTs/MOF-808 Painted Plates for Extended Treatment of Pharmaceutical and Agrochemical Wastewaters in a Novel Photocatalytic Reactor. Chemical Engineering Journal, 406, Article ID: 127152.
https://doi.org/10.1016/j.cej.2020.127152
[31] Thi, Q.V., Tamboli, M.S., Thanh Hoai, T.Q., et al. (2020) A Nanostructured MOF/Reduced Graphene Oxide Hybrid for Enhanced Photocatalytic Effi-ciency under Solar Light. Materials Science and Engineering: B, 261, Article ID: 114678.
https://doi.org/10.1016/j.mseb.2020.114678
[32] Li, L., Wang, X.S., Liu, T.F., et al. (2020) Titanium-Based MOF Mate-rials: from Crystal Engineering to Photocatalysis. Small Methods, 4, Article ID: 2000486.
https://doi.org/10.1002/smtd.202000486
[33] Zhang, Y., Liu, H., Gao, F., et al. (2022) Application of MOFs and COFs for Photocatalysis in CO2 Reduction, H2 Generation, and Environmental Treatment. EnergyChem, 4, Article ID: 100078.
https://doi.org/10.1016/j.enchem.2022.100078
[34] Han, W., Shao, L.H., Sun, X.J., et al. (2022) Constructing Cu Ion Sites in MOF/COF Heterostructure for Noble-Metal-Free Photoredox Catalysis. Applied Catalysis B-Environmental, 317, 121710-121718.
https://doi.org/10.1016/j.apcatb.2022.121710
[35] Huang, H.B., Fang, Z.B., Wang, R., et al. (2022) Engineering Hierar-chical Architecture of Metal-Organic Frameworks for Highly Efficient Overall CO2 Photoreduction. Small, 18, Article ID: 2200407.
https://doi.org/10.1002/smll.202200407
[36] Peng, Y., Zhao, M., Chen, B., et al. (2017) Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core-Shell Hybrid Materials. Advanced Materials, 30, Article ID: 1705454.
https://doi.org/10.1002/adma.201705454
[37] Yuan, G., Tan, L., Wang, P., et al. (2019) MOF-COF Composite Photo-catalysts: Design, Synthesis, and Mechanism. Crystal Growth & Design, 22, 893-908.
https://doi.org/10.1021/acs.cgd.1c01071
[38] Jin, X., Fan, X., Tian, J., et al. (2019) MoS2 Quantum Dot Decorated G-C3N4 Composite Photocatalyst with Enhanced Hydrogen Evolution Performance. RSC Advances, 6, 52611-52619.
https://doi.org/10.1039/C6RA07060D
[39] Shi, Y. and Zhang, B. (2019) Correction: Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chemical Society Reviews, 45, 1781-1781.
https://doi.org/10.1039/C6CS90013E
[40] Chaubey, R., Sahu, S., James, O.O., et al. (2013) A Review on Development of Industrial Processes and Emerging Techniques for Production of Hydrogen from Renewable and Sustainable Sources. Re-newable and Sustainable Energy Reviews, 23, 443-462.
https://doi.org/10.1016/j.rser.2013.02.019
[41] Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 38, 253-278.
https://doi.org/10.1039/B800489G
[42] Xiao, J.D., Shang, Q., Xiong, Y., et al. (2016) Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie International Edition, 55, 9389-9393.
https://doi.org/10.1002/anie.201603990
[43] Guo, F., Wei, Y.P., Wang, S.Q., et al. (2013) Pt Nanoparticles Embedded in Flowerlike NH2-UiO-68 for Enhanced Photocatalytic Carbon Dioxide Reduc-tion. Journal of Materials Chemistry A, 7, 26490-26495.
https://doi.org/10.1039/C9TA10575A
[44] Du, Y.D., Wang, S., Du, H.W., et al. (2013) Organophotocatalysed Synthesis of 2-Piperidinones in One Step via [1 + 2 + 3] Strategy. Nature Communications, 14, Article No. 5339.
https://doi.org/10.1038/s41467-023-40197-x
[45] Emmanuel, M.A., Bender, S.G., Bilodeau, C., et al. (2013) Photobio-catalytic Strategies for Organic Synthesis. Chemical Reviews, 123, 5459-5520.
https://doi.org/10.1021/acs.chemrev.2c00767
[46] Liu, K., Meng, J. and Jiang, X. (2023) Gram-Scale Synthesis of Sul-foxides via Oxygen Enabled by Fe(NO3)3·9H2O. Organic Process Research & Development, 27, 1198-1202.
https://doi.org/10.1021/acs.oprd.2c00390
[47] Skolia, E., Gkizis, P.L., Kokotos, C.G., et al. (2022) Aerobic Photocataly-sis: Oxidation of Sulfides to Sulfoxides. Journal of Chemistry, 87, e202200008.
https://doi.org/10.1002/cplu.202200008
[48] Zheng, D.Y., Chen, E.X., Ye, C.R., et al. (2023) High-Efficiency Pho-to-Oxidation of Thioethers over C60@PCN-222 under Air. Journal of Materials Chemistry A, 7, 22084-22091.
https://doi.org/10.1039/C9TA07965C
[49] Li, P., Yan, X., Gao, S., et al. (2021) Boosting Photocatalytic Hydrogen Pro-duction Coupled with Benzyl Alcohol Oxidation over CdS/Metal-Organic Framework Composites. Chemical Engineering Journal, 421, Article ID: 129870.
https://doi.org/10.1016/j.cej.2021.129870