基因富集分析HER2基因对胃癌免疫微环境的影响
An Analysis of the Effect of HER2 Gene on the Immune Microenvironment of Gastric Cancer by Gene Enrichment Analysis
DOI: 10.12677/ACM.2024.142419, PDF, HTML, XML, 下载: 53  浏览: 104 
作者: 赵佳宇, 荆瑶瑶:青岛大学医学院,山东 青岛;刘自民*:青岛大学附属医院消化肿瘤诊疗中心,山东 青岛
关键词: 人表皮生长因子受体2胃癌免疫微环境富集分析Human Epidermal Growth Factor Receptor-2 Gastric Cancer Immune Microenvironment Enrichment Analysis
摘要: 目的:运用基因富集分析探索HER2基因表达状态对胃癌生物学功能和代谢通路的影响,并进一步探讨其对胃癌免疫微环境的影响。方法:下载癌症基因组图谱(TCGA)数据库的胃癌转录组数据,根据HER2 mRNA表达水平分为高低表达组、应用R语言和GSEA软件进行富集分析。结果:GO富集分析表明,HER2基因高低表达组的差异基因主要参与骨化、细胞外基质组织、胶原纤维组织、结缔组织发育等过程;KEGG分析富集的信号通路主要为PI3K-AKT信号通路、黏着斑信号通路、刺激神经组织的配体–受体互作通路;GSEA软件分析HER2高表达组mTOR信号通路、Notch信号通路、磷酸戊糖途径信号通路、神经营养素信号通路等表达上调。结论:细胞外基质状态、PI3K-AKT信号通路、黏着斑信号通路、mTOR信号通路、Notch信号通路可能与HER2阳性胃癌侵袭性强、免疫治疗明显获益相关。
Abstract: Objective: To investigate the effect of HER2 gene expression on the biological function and metabol-ic pathways of gastric cancer by gene enrichment analysis, and further explore its effect on the im-mune microenvironment of gastric cancer. Methods: The transcriptome data of gastric cancer from The Cancer Genome Atlas (TCGA) database were downloaded and divided into high and low expres-sion groups according to the expression level of HER2 mRNA. Enrichment analysis was performed using R language and GSEA software. Results: GO enrichment analysis showed that the differentially expressed HER2 genes in high and low expression groups were mainly involved in ossification, and development of extracellular matrix tissue, collagen fiber tissue and connective tissue. KEGG analy-sis showed that the enriched signaling pathways were mainly PI3K-AKT signaling pathway, adhe-sion plaque signaling pathway and ligand-receptor interaction pathway that stimulated nerve tis-sue. GSEA software analysis showed that the expression of aminoacyl tRNA signaling pathway, mTOR signaling pathway, Notch signaling pathway, pentose phosphate signaling pathway and neu-rotrophic signaling pathway in HER2 high expression group was up-regulated. Conclusion: The ex-tracellular matrix status, PI3K-AKT signaling pathway, adhesion plaque signaling pathway, mTOR signaling pathway, Notch signaling pathway may be associated with strong invasiveness and signif-icant efficacy of immunotherapy in HER2-positive gastric cancer.
文章引用:赵佳宇, 荆瑶瑶, 刘自民. 基因富集分析HER2基因对胃癌免疫微环境的影响[J]. 临床医学进展, 2024, 14(2): 2959-2965. https://doi.org/10.12677/ACM.2024.142419

1. 引言

我国是胃癌高发国家,全球近一半的胃癌新发和死亡患者在中国 [1] 。HER2 (人表皮生长因子受体2,Human epidermal growth factor receptor 2)阳性胃癌约占全部胃癌的15%,HER2基因过表达在肿瘤细胞信号通路异常活化、肿瘤发生发展及侵袭转移中起着重要作用,此类患者往往预后较差,HER2基因也是胃癌为数不多的有效治疗靶点 [2] 。近年来,免疫检查点抑制剂的使用是HER2阳性晚期胃癌治疗的一项重大突破。KEYNOTE-811试验显示,PD-1 (程序性死亡受体-1,programmed cell death protein 1)单抗联合曲妥珠单抗联合化疗可以为HER2阳性晚期胃癌患者带来DOR及PFS获益 [3] ,这可能与HER2阳性胃癌免疫微环境有关。然而,HER2阳性胃癌的生物学功能及代谢特点对免疫微环境产生的影响尚未明确。本研究拟通过TCGA公共数据集,在分析HER2阳性胃癌生物学功能和代谢通路特点的基础上,进一步分析其与免疫微环境的关系,初步在代谢水平上探讨HER2阳性胃癌免疫治疗获益可能的机制。

2. 方法

2.1. 数据资料收集

从TCGA数据库官网(https://portal.gdc.cancer.gov/)下载443例胃癌患者的RNA-seq信息。

2.2. HER2基因差异分析

按照HER2 mRNA表达的中位值将下载数据分为高表达组和低表达组,使用R语言的“limma”包分析两组基因表达差异。

2.3. GO和KEGG分析

利用R语言的“ClusterProfiler”包对差异表达基因进行富集,完成GO分析和KEGG分析。GO分析包括细胞组成(CC, Cellular Component)、分子功能(MF, Molecular Function)和生物学过程(BP, Biological Process)。本研究中选择富集最为显著的前6个条目。

2.4. GO和KEGG分析

根据HER2 mRNA表达的中位值分为高低两组并制作表型标签。将表达数据库、表型标签加载到GSEA软件中,设置排列数目为1000个。MSigDB分别选择C2 CP KEGG v7.0 symbols gmt,运行5次GSEA java。

2.5. 统计学分析

GO分析和KEGG分析,取P < 0.05作为显著富集的阈值;GSEA富集分析取FDR q val < 25%且nom P val < 0.01的富集结果认为差异有统计学意义。

Figure 1. Heat map of HER2 high-low expression genes

图1. HER2高低表达组基因热图

Figure 2. HER2 high-low expression group GO function annotation circle

图2. HER2高低表达组GO功能注释圈

Figure 3. Concentration bubble map of KEGG pathway in HER2 high-low expression group

图3. HER2高低表达组KEGG通路富集气泡图

3. 结果

3.1. 利用R语言进行GO功能和KEGG通路富集分析

根据HER2基因表达量对下载数据进行分组,利用R语言“limma”包分析两组基因表达差异,受HER2高、低表达影响最明显的前100基因热图见图1。利用R语言的“ClusterProfiler”包对HER2高、低表达组差异表达基因进行GO功能注释和KEGG通路富集分析。图2展示了前6个具有显著意义的GO功能注释结果,图3展示了KEGG通路富集结果。结果表明差异表达基因BP主要与骨化过程、细胞外基质组织过程、胶原纤维组织过程、结缔组织发育过程等相关;CC定位于细胞外基质、胶原蛋白三聚物、内质网腔、基底膜等;MF主要为糖胺聚糖绑定、硫化合物结合、细胞外基质结构成分、肝素结合、胶原蛋白绑定等。KEGG信号通路显示,这些基因在PI3K-AKT信号通路、黏着斑信号通路、刺激神经组织的配体–受体互作通路等通路中显著富集。

3.2. GSEA软件分析

在HER2高表达表型中125/178基因集上调,FDR q val < 25%且nom P < 0.01的基因集有37个,包括mTOR信号通路、Notch信号通路、磷酸戊糖途径信号通路、神经营养素信号通路等基因集。在HER2 低表达表型中53/178基因集上调,FDR q val < 25%且nom P < 0.01的基因集有28个,包括造血细胞谱系、产生IgA的肠道免疫网络等基因集。高低表达组中部分上调的基因集见图4

Figure 4. GSEA gene set enrichment pathway analysis in HER2 high-low expression group

图4. HER2高低表达组GSEA基因集富集通路分析图

4. 讨论

胃癌是常见的癌症之一,根据2020年世界卫生组织的统计,每年全球新发的胃癌病例超过100万,中国的胃癌新发患者超过50万,是胃癌高发国家 [1] 。胃癌起病隐匿且进展迅速,HER2基因是胃癌预后相关的危险因素。基于KEYNOTE-811试验,PD-1单抗可以为HER2阳性胃癌患者带来获益,在临床指南中被推荐用于HER2阳性胃癌晚期一线治疗 [3] 。本研究基于TCGA数据库,通过基因富集分析,探讨HER2阳性胃癌生物学功能和代谢特点并进一步分析其对免疫微环境的影响。

肿瘤相关细胞外基质(ECM, Extra Cellular Matrix)是肿瘤微环境的核心成员。ECM由胶原蛋白、蛋白多糖、弹性蛋白、纤维连接蛋白、层粘连蛋白和其他几种糖蛋白组成,可分为基底膜和间质基质 [4] [5] 。肿瘤ECM的重塑会调节免疫系统 [6] ,ECM促进了免疫抑制网络的发展,其中癌细胞与成纤维细胞、免疫细胞、内皮细胞和其他种类的基质细胞交织在一起形成网络,在新形成的网络中,细胞因子和趋化因子可导致肿瘤的免疫逃逸 [7] 。肿瘤相关ECM参与肿瘤细胞的生长、侵袭、转移和血管生成过程,并且抵抗细胞死亡 [4] [8] 。纤维胶原在ECM中广泛沉积导致肿瘤基质硬化,纤维密度的增加可以增强癌细胞的侵袭 [9] 。我们通过GO分析发现HER2高表达组中ECM、ECM相关的胶原纤维、胶原蛋白三聚物、基底膜及结缔组织发育过程增加,HER2阳性胃癌组织ECM及ECM硬度增加。有研究发现,ECM硬度增加与肝癌进展相关,ECM的硬化促进肿瘤外泌体的释放,AKT信号通路及Notch信号通路的激活促进外泌体分离,外泌体促进肿瘤细胞侵袭 [10] 。其中,PI3K-FAK磷酸化在硬化ECM的PI3K-Akt信号通路激活中起着关键作用。通过KEGG分析发现PI3K-Akt信号通路、黏着斑信号通路相关基因上调。因此HER2阳性胃癌侵袭性强、肿瘤进展更快可能与其细胞外基质组织增多、硬度增加相关,硬化ECM外泌体分泌增加,进而导致肿瘤微环境的变化,促进肿瘤生长。

另外有研究发现,EGFR和HER2表达较高的胃癌细胞系中PD-L1的表达高。抑制EGFR/HER2信号通路,特别是下游PI3K活性,可抑制PD-L1和细胞因子的释放 [11] [12] 。经PI3K选择性抑制剂及阿法替尼和拉帕替尼(EGFR和HER2的双激酶抑制剂)处理的HER2扩增的PD-L1高表达细胞系中PD-L1表达被抑制 [11] 。PI3K/Akt/mTOR信号通路是调节PD-L1表达的重要途径,这可能是通过PI3K的催化亚基α即PIK3CA突变或PD-L1的负调节因子PTEN的失功能突变实现的 [13] [14] [15] 。另外,PI3K抑制剂可以降低对BRAF抑制剂的耐药性,诱导PD-1下调,这也提示PD-1与PI3K呈正相关 [14] 。我们在GSEA和KEGG富集分析中观察到HER2 mRNA高表达组中mTOR信号通路、PI3K-Akt信号通路相关基因表达上调,这提示HER2阳性胃癌PD-L1表达高可能是由PI3K-AKT-mTOR信号通路介导。

本研究通过GSEA KEGG富集分析发现HER2基因高表达组中磷酸戊糖途径相关基因、神经营养素信号通路相关基因表达升高。CD8+效应T细胞的细胞增殖和细胞因子产生依赖于增强的葡萄糖代谢,然而,循环T细胞会不断适应体内葡萄糖波动 [16] 。相关研究显示,CD8+效应T细胞经历瞬时葡萄糖限制(TGR)代谢效应后,葡萄糖再暴露时,葡萄糖摄取增强且增加磷酸戊糖途径的碳分配 [17] [18] 。在HER2 mRNA高表达组患者中与磷酸戊糖途径信号通路相关基因表达增多,可能与TGR代谢效应增强相关,这有利于CD8+效应T细胞的增殖。另外,在胃癌中,升高的神经营养蛋白信号与抗肿瘤免疫信号(包括CD8+ T细胞、干扰素反应、自然杀伤细胞、toll样受体和nod样受体信号通路)呈显著正相关,且与先天免疫反应信号(包括NK细胞、TLR信号通路和NLR信号通路)呈正相关 [19] 。

5. 结论

综上所述,本文利用TCGA公共数据库,通过富集分析对HER2基因高表达与低表达胃癌患者的生物学功能及代谢通路差异进行分析,进一步探讨相关生物学功能、代谢通路对胃癌免疫微环境的影响。我们发现HER2基因高表达组胃癌细胞外基质、胶原纤维、结缔组织增加,PI3K-Akt信号通路、mTOR信号通路、黏着斑信号通路、磷酸戊糖途径相关基因、神经营养素信号通路相关基因表达上调,这可能与HER2阳性胃癌侵袭性强,PD-1单抗治疗能够获益相关。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Van Cutsem, E., Bang, Y.J., Feng-Yi, F., et al. (2015) HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer, 18, 476-484.
https://doi.org/10.1007/s10120-014-0402-y
[3] Janjigian, Y.Y., Kawazoe, A., Bai, Y., et al. (2023) Pembroli-zumab Plus Trastuzumab and Chemotherapy for HER2- Positive Gastric or Gastro-Oesophageal Junction Adenocarci-noma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. The Lancet, 402, 2197-2208.
https://doi.org/10.1016/S0140-6736(23)02033-0
[4] He, Y., Liu, T., Dai, S., et al. (2021) Tu-mor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-Tumor Immunotherapy? Frontiers in Cell and Developmental Biology, 9, Article ID: 739161.
https://doi.org/10.3389/fcell.2021.739161
[5] Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., et al. (2020) Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nature Communications, 11, 5120.
https://doi.org/10.1038/s41467-020-18794-x
[6] Mohan, V., Das, A. and Sagi, I. (2020) Emerging Roles of ECM Remodeling Processes in Cancer. Seminars in Cancer Biology, 62, 192-200.
https://doi.org/10.1016/j.semcancer.2019.09.004
[7] Gao, S., Yang, D., Fang, Y., et al. (2019) Engineering Na-noparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics, 9, 126-151.
https://doi.org/10.7150/thno.29431
[8] Sutherland, T.E., Dyer, D.P. and Allen, J.E. (2023) The Ex-tracellular Matrix and the Immune System: A Mutually Dependent Relationship. Science, 379, abp8964.
https://doi.org/10.1126/science.abp8964
[9] Jurmeister, P., Von Laffert, M. and Johrens, K. (2020) Dissecting the Spatial Heterogeneity of Different Immune Cell Subsets in Non-Small Cell Lung Cancer. Pathology - Research and Practice, 216, Article ID: 152904.
https://doi.org/10.1016/j.prp.2020.152904
[10] Wu, B., Liu, D.A., Guan, L., et al. (2023) Stiff Matrix Induces Exosome Secretion to Promote Tumour Growth. Nature Cell Biology, 25, 415-424.
https://doi.org/10.1038/s41556-023-01092-1
[11] Suh, K.J., Sung, J.H., Kim, J.W., et al. (2017) EGFR or HER2 Inhibition Modulates the Tumor Microenvironment by Suppression of PD-L1 and Cytokines Release. Oncotarget, 8, 63901-63910.
https://doi.org/10.18632/oncotarget.19194
[12] Lei, Z.N., Teng, Q.X., Tian, Q., et al. (2022) Sig-naling pathways and Therapeutic Interventions in Gastric Cancer. Signal Transduction and Targeted Therapy, 7, 358.
https://doi.org/10.1038/s41392-022-01190-w
[13] Fiedler, M., Schulz, D., Piendl, G., et al. (2020) Buparlisib Modulates PD-L1 Expression in Head and Neck Squamous Cell Carcinoma Cell Lines. Experimental Cell Research, 396, Article ID: 112259.
https://doi.org/10.1016/j.yexcr.2020.112259
[14] Ni, J.M. and Ni, A.P. (2018) Landscape of PD-1/PD-L1 Regu-lation and Targeted Immunotherapy. Chinese Medical Sciences Journal, 33, 174-182.
[15] Zerdes, I., Matikas, A., Bergh, J., et al. (2018) Genetic, Transcriptional and Post-Translational Regulation of the Programmed Death Protein Ligand 1 in Cancer: Biology and Clinical Correlations. Oncogene, 37, 4639-4661.
https://doi.org/10.1038/s41388-018-0303-3
[16] Sukumar, M., Liu, J., Ji, Y., et al. (2013) Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function. Journal of Clinical Investigation, 123, 4479-4488.
https://doi.org/10.1172/JCI69589
[17] Daneshmandi, S., Cassel, T., Lin, P., et al. (2021) Blockade of 6-Phosphogluconate Dehydrogenase Generates CD8(+) Effector T Cells with Enhanced Anti-Tumor Function. Cell Re-ports, 34, Article ID: 108831.
https://doi.org/10.1016/j.celrep.2021.108831
[18] Klein Geltink, R.I., Edwards-Hicks, J., Apostolova, P., et al. (2020) Metabolic Conditioning of CD8(+) Effector T Cells for Adoptive Cell Therapy. Nature Metabolism, 2, 703-716.
https://doi.org/10.1038/s42255-020-0256-z
[19] Feng, Q., Song, D. and Wang, X. (2021) Pan-Cancer Analysis Reveals that Neurotrophin Signaling Correlates Positively with Anti-Tumor Immunity, Clinical Outcomes, and Response to Targeted Therapies and Immunotherapies in Cancer. Life Sciences, 282, Article ID: 119848.
https://doi.org/10.1016/j.lfs.2021.119848