GSDMD在肿瘤中的研究进展
Research Progress of GSDMD in Tumors
DOI: 10.12677/ACM.2024.142408, PDF, HTML, XML, 下载: 70  浏览: 112 
作者: 白鹏伟, 白兆兆:宁夏医科大学临床医学院,宁夏 银川;张永斌:甘肃省人民医院肿瘤外科,甘肃 兰州;安心桥, 许 焱:甘肃中医药大学第一临床医学院,甘肃 兰州;达明绪*:宁夏医科大学临床医学院,宁夏 银川;甘肃省人民医院肿瘤外科,甘肃 兰州
关键词: GSDMD细胞焦亡肿瘤GSDMD Pyroptosis Tumor
摘要: GSDMD属于gasdermin家族,是细胞焦亡通路当中的关键因子,其与gasdermin家族其他的因子包括GSDMA、GSDMB、GSDMC、GSDME和DFNB59一样都具有相同的双域结构,这种结构诱导了细胞焦亡的发生。细胞焦亡与机体的防御、炎症、自身免疫性疾病和许多其他系统性疾病中均存在着千丝万缕的联系,而GSDMD又作为细胞焦亡的关键触发点与许多疾病的发生都存在联系。本文就GSDMD在肿瘤当中的研究进展作一综述。
Abstract: GSDMD is a member of the gasdermin family and plays a crucial role in the pyroptosis pathway. It has the same dual-domain structure as other members of the gasdermin family, such as GSDMA, GSDMB, GSDMC, GSDME, and DFNB59, which triggers pyroptosis. Pyroptosis is closely associated with the body’s defense, inflammation, autoimmune diseases, and many other systemic diseases. GSDMD, a critical trigger of pyroptosis, is associated with the development of numerous diseases. This article reviews the research progress on gasdermin D (GSDMD) in tumors.
文章引用:白鹏伟, 张永斌, 安心桥, 白兆兆, 许焱, 达明绪. GSDMD在肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(2): 2885-2891. https://doi.org/10.12677/ACM.2024.142408

1. 引言

肿瘤是全球范围内最常见的疾病之一,其发病率和死亡率均较高。传统的肿瘤治疗方法包括手术、放疗和化疗等,但这些方法往往存在副作用和耐药性问题。因此,寻找新的肿瘤治疗方法一直是医学领域的研究热点。近年来,随着对细胞死亡机制的深入研究,GSDMD作为一种重要的细胞死亡调节蛋白,在肿瘤治疗中发挥着重要作用。细胞焦亡是由炎症因子或外界损伤刺激下游gasdermin (GSDM)蛋白,导致GSDM蛋白分裂及非活性细胞因子的激活,进一步引发细胞死亡的一种细胞程序性死亡形式 [1] 。细胞焦亡被认为在癌症中存在双面性,一方面可以迅速导致肿瘤的消退,另一方面可以促进肿瘤微环境的发育 [2] 。GSDM家族被认为是细胞焦亡的关键执行家族,其包括GSDMA、GSDMB、GSDMC、GSDMD、GSDME和DFNB59,其中GSDMD的作用机制被广泛关注,有研究证明其在多种肿瘤细胞中表达,包括食管癌和胃癌、黑色素瘤、胰腺癌、前列腺癌和涎腺肿瘤等中,并且对这些癌肿当的诊断与治疗产生关键的影响 [3] [4] 。本文就GSDMD在肿瘤当中的作用机制及研究进展进行详细的综述。

2. GSDMD的分子结构与发生途径

GSDMD蛋白与其同家族的其他蛋白具有相似的结构,其长度大约为220~480个氨基酸 [5] 。全长的GSDMD蛋白具有两个特征性的结构域,分别为一个N-末端片段(NT)和一个c-末端片段(CT),两个结构域中间由一个活性环相连接,这个活性环即为GSDMD的激活位点 [6] [7] 。GSDMD介导的细胞焦亡发生机制的关键点即为炎症性因子caspase-1激活链接两个结构域的活性环。目前的研究发现GSDMD诱导的焦亡主要分为两条途径,分别为典型途径及非典型途径。在典型途径当中,外源性的病原体和内源性的损伤被黑素瘤2 (AIM2)中缺失的核苷酸结合寡聚域(NOD)样受体(NLRP1,NLRC4和NLRP3)和Pyrin蛋白等识别,然后这些信号可以进一步激活前体caspase-1。而在非典型途径中,细胞内脂多糖(LPS)可以直接激活caspase-4、caspase-5和caspase-11。之后两条途径中激活的caspase-1/4/5/11会进一步结合到链接GSDMD两个结构域的活性环,导致GSDMD分裂为NT和CT两个片段,其中功能性的NT片段被释放到细胞膜上形成膜孔,膜孔的形成最后引发了细胞的肿胀、细胞膜的破裂,除此以外还会引发细胞质内容物的释放。活化的caspases还裂解促炎细胞因子IL-1β和IL-18,导致IL-1β和IL-18的成熟。这些促炎细胞因子从细胞膜上的毛孔中释放出来,放大局部或全身的炎症效应 [5] [6] [7] [8] [9] 。除去这两条较为常见的途径以外,有研究还表明凋亡中的caspases也在GSDMD调控中发挥作用。还有研究发现在没有焦亡标志蛋白GSDMD的情况下,caspase-1激活caspase-3和-7并诱导细胞凋亡,这说明GSDMD是唯一诱导细胞焦亡的caspase-1底物。相反,在细胞凋亡过程中,caspase-3/7通过将GSDMD与使蛋白失活的炎症性caspases在不同的位点上切割,特异性地阻断细胞焦亡 [10] 。并且caspase-3/7的激活是在caspase-1驱动的GSDMD裂解和细胞焦亡发生后发生的,其可以负反馈的抑制细胞焦亡和炎症反应 [10] [11] 这些发现表明了细胞死亡途径之间同样存在着复杂的相互作用,凋亡可以通过这种机制激活细胞焦亡的发生,也同样可以预防或组织细胞焦亡的发生。

3. GSDMD对肿瘤的作用具有双面性

GSDMD通过诱导细胞焦亡的发生对肿瘤的进展产生作用和影响,但此过程与肿瘤的关系十分复杂。一方面,GSDMD可以通过诱导细胞焦亡抑制肿瘤的发生发展;另一方面,其可以作为一种促炎性死亡的一种形式,可以形成利于肿瘤生长的微环境,促进肿瘤的发展 [4] [7] 。在一项对肝细胞癌(HCC)的研究中显示,GSDMD在肝癌细胞中的表达显著上调,并且表达上调的GSDMD预示着更加不良的预后 [12] 。类似的情况也出现在膀胱癌 [13] 当中。相反的,一些研究中又表明GSDMD诱导的细胞焦亡对肿瘤的发生发展具有抑制作用,例如在卵巢癌 [14] 、结直肠癌 [15] 和胃癌 [16] 当中GSDMD的表达显著下调或抑制,对肿瘤的增殖和转移有着抑制作用。对于这种双面性有学者提出,不同类型的细胞发生细胞焦亡的机制也大不相同,免疫细胞细胞焦亡和肿瘤细胞细胞焦亡的进展过程中由于炎症的持续时间和释放的细胞内容物的不同,对抗肿瘤免疫和治疗产生的反应也截然不同 [17] 。由于这种差异的存在,我们依然需要更多的研究来阐明GSDMD对肿瘤发生发展及治疗的作用机制。我们总结了目前研究下GSDMD在各种肿瘤当中的表达情况及其对相应肿瘤的影响,见表1

Table 1. The expression of Gasdermin D (GSDMD) in various types of tumors and its impact on tumor development [18]

表1. 不同肿瘤类型中GSDMD的表达情况及其对肿瘤发展的影响 [18]

4. GSDMD诱导的细胞焦亡对肿瘤免疫微环境的影响

上面我们讲到GSDMD诱导的细胞焦亡的典型途径的始发因素为NLRP1,NLRC4、NLRP3和AIM2识别到了外源性的病原体和内源性的损伤。这些炎症小体的参与使得细胞焦亡的发生与肿瘤免疫微环境密不可分。研究表明,NLRP1炎症小体可被二肽激肽酶(DPP)激活,激活的NLRP1小体促进了促炎细胞因子的释放和Th1细胞的反应,可以进一步促进小鼠乳腺癌中CD45、MPO、F4/80、CD4、foxp3和MDSC的招募,最后增强肿瘤抗PD1抗体的效力并降低转移部位CD8+阳性细胞的数量 [19] 。同样的,NLRP炎症小体被认为是一种免疫信号预测因子,其与肿瘤浸润淋巴细胞和巨噬细胞相关 [20] 。抑制了NLRP3炎症之后可以进一步抑制肿瘤相关巨噬细胞的浸润和PD-L1在肿瘤当中的表达,从而增强抗PD-L1的疗效 [21] 。NLRC4是肿瘤相关巨噬细胞因子产生的关键,并且对于IFN-γ依赖性的CD4+、CD8+细胞的产生十分必要 [22] 。AIM2在肿瘤免疫微环境中的作用为抑制IFN-β的表达的同时增加IL-1/IL-18的表达,IL-1/IL-18促进体内Treg的积累和肿瘤的生长,Treg的积累又可以促进AIM2对肿瘤抑制的效应 [23] 。

在细胞焦亡途径中,IL-1/IL-18被活化的caspase-1/4/5/11所激活并通过GSDMD裂解所产的膜孔释放来放大局部或全身的炎症反应。有研究证明,抗IL-1抗体具有抗肿瘤作用并且增强抗PD-1抗体的效应 [24] 。在乳腺癌模型当中的研究显示,阻断IL-1抗体可以抑制肿瘤的生长和转移,并且还可以抑制骨髓细胞的积累 [25] 。相比于IL-1,IL-18的抗肿瘤作用稍弱一点。研究表明,重组IL-18的单一作用在转移性黑色素瘤患者中的作用很有限,但其与IL-2联合作用于皮下接种的小鼠肿瘤模型中可以显示出协同的抗肿瘤作用 [26] 。总之,通过炎症小体诱发的细胞焦亡程序可以引发肿瘤免疫微环境的改变,并增强抗肿瘤免疫作用。

5. GSDMD在肿瘤治疗中的作用

由于细胞焦亡对肿瘤细胞的侵袭、增殖和转移有深远的影响,因此对几种恶性肿瘤具有重要的治疗意义。一些研究已表明细胞焦亡相关抑制剂显示出了对结直肠癌 [27] 、肝癌 [28] 、肺腺癌 [29] 和膀胱癌 [30] 的抑制活性。FL188是一种喜树碱类似物可以通过caspase-1依赖的细胞焦亡抑制SW480和HT129细胞的增殖、侵袭和转移 [30] 。此外,lncrna与细胞焦亡调节相关。LncRNA RP1-85F18.6参与促进结直肠癌细胞增殖、侵袭和抑制细胞焦亡,敲低RP1-85F18.6可导致GSDMD裂解,引发细胞焦亡 [15] 。此外,另一项研究显示,GSDMD表达水平较低与CRC预后较差相关;此外,GSDMD表达增加可有效诱导细胞死亡 [31] 。在小鼠结肠癌细胞系 [32] 中,上调IFN-的细胞焦亡可抑制肿瘤细胞增殖,增强抗肿瘤免疫。一项关于非小细胞肺癌(NSCLC)的研究表明GSDMD表达水平的增加有机率增加肿瘤的直径、促进肿瘤淋巴结转移并影响远期生存。此外敲低GSDMD可通过线粒体凋亡通路显著抑制NSCLC细胞增殖,抑制EGFR/Akt信号通路 [33] 。

众所周知,目前对于肿瘤的治疗除去外科手术治疗外应用最为广泛的即为化学药物治疗以及免疫药物治疗两种方法。现阶段已有大量研究证实GSDMD诱导的细胞焦亡途径参与到了肿瘤的化疗和免疫治疗过程。一项关于三阴性乳腺癌的研究指出,GSDMD诱导的细胞焦亡可以被化疗药物顺铂(cisplatin, DDP)所激活并发挥出抑制肿瘤进展的作用 [34] 。同样的,在鼻咽癌中紫杉醇可以诱导肿瘤细胞发生细胞焦亡并且细胞焦亡的发生还可以减弱鼻咽癌的抗紫杉醇耐药性 [35] 。一种名为α-NETA的乙酰胆碱转移酶抑制剂同样也可以通过GSDMD诱导的细胞焦亡更有效的发挥抗卵巢上皮细胞癌的作用 [14] 。紫杉醇和多吡啶钌复合物联合使用同样可以通过GSDMD介导焦亡改善宫颈癌紫杉醇的耐药性 [36] 。免疫治疗近些年在临床当中的应用越来越广泛,但随着很多肿瘤对抗PD-L1抗体的耐药很多研究关注到了是否可以联合其他药物来避免抗PD-L1抗体的耐药性。在一些研究披露了GSDMD的表达与免疫检查点相关基因的表达有密切的联系 [12] 以后,对这方面的研究有了突破。一项研究表明GSDMD抑制剂与抗PD-L1抗体联合治疗肿瘤可以抑制GSDMD诱导的免疫细胞焦亡过程,大大的提高了肿瘤的免疫治疗疗效 [37] 。除去上述的研究外还有很多研究证实了GSDMD在肿瘤治疗当中的作用,我们将其总结到表2

6. 展望与总结

GSDMD是一种在多种细胞类型中表达的蛋白,其在肿瘤发生和发展过程中发挥着重要作用。近年来,关于GSDMD在肿瘤中的研究取得了显著的进展,为肿瘤的诊断和治疗提供了新的思路。GSDMD

Table 2. The role of GSDMD-induced pyroptosis in various tumor treatments

表2. GSDMD诱导的细胞焦亡在肿瘤不同治疗方法中起到的作用

在肿瘤细胞焦亡中的调控作用得到了深入的研究,在多种肿瘤细胞系中,通过激活GSDMD,可以诱导细胞焦亡的发生,从而抑制肿瘤的生长。此外,GSDMD还与多种凋亡和坏死相关的信号通路相互作用,如caspase和NLRP3炎症小体等,进一步提示了各种不同细胞死亡途径之间可能存在一定联系。这一发现为开发新的抗肿瘤药物提供了潜在的靶点。其次,关于GSDMD在肿瘤免疫中的作用,研究表明GSDMD可以影响肿瘤细胞的免疫应答。通过调节GSDMD的表达,可以影响肿瘤细胞的免疫逃逸,增强免疫治疗效果。例如,一些免疫检查点抑制剂如PD-1/PD-L1可以通过调节GSDMD的表达来增强免疫治疗效果。此外,GSDMD还可以与免疫细胞相互作用,影响免疫细胞的活化和功能,进一步揭示了其在肿瘤免疫中的作用机制。GSDMD在肿瘤中的研究取得了显著的进展,为肿瘤的诊断和治疗提供了新的思路。未来,随着对GSDMD的深入研究,有望开发出更加有效的抗肿瘤药物和治疗策略,提高肿瘤患者的生存率和生活质量。同时,对于GSDMD在肿瘤免疫和转移中的作用机制也需要进一步深入研究和探讨。

NOTES

*通讯作者。

参考文献

[1] Fang, Y., Tian, S., Pan, Y., et al. (2020) Pyroptosis: A New Frontier in Cancer. Biomedicine & Pharmacotherapy, 121, Article ID: 109595.
https://doi.org/10.1016/j.biopha.2019.109595
[2] Loveless, R., Bloomquist, R. and Teng, Y. (2021) Pyroptosis at the Forefront of Anticancer Immunity. Journal of Experimental & Clinical Cancer Research, 40, Article No. 264.
https://doi.org/10.1186/s13046-021-02065-8
[3] Du, T., Gao, J., Li, P., et al. (2021) Pyroptosis, Metabolism, and Tumor Immune Microenvironment. Clinical and Translational Medicine, 11, e492.
https://doi.org/10.1002/ctm2.492
[4] Xia, X., Wang, X., Cheng, Z., et al. (2019) The Role of Pyroptosis in Cancer: Pro-Cancer or Pro-“Host”? Cell Death & Disease, 10, Article No. 650.
https://doi.org/10.1038/s41419-019-1883-8
[5] Zou, J., Zheng, Y., Huang, Y., et al. (2021) The Versatile Gasdermin Family: Their Function and Roles in Diseases. Frontiers in Immunology, 12, Article 751533.
https://doi.org/10.3389/fimmu.2021.751533
[6] Xia, S., Zhang, Z., Magupalli, V.G., et al. (2021) Gasdermin D Pore Structure Reveals Preferential Release of Mature Interleukin-1. Nature, 593, 607-611.
https://doi.org/10.1038/s41586-021-03478-3
[7] Dai, Z., Liu, W.C., Chen, X.Y., et al. (2023) Gasdermin D-Mediated Pyroptosis: Mechanisms, Diseases, and Inhibitors. Frontiers in Immunology, 14, Article 1178662.
https://doi.org/10.3389/fimmu.2023.1178662
[8] Hsu, S.K., Li, C.Y., Lin, I.L., et al. (2021) Inflammation-Related Pyroptosis, a Novel Programmed Cell Death Pathway, and Its Crosstalk with Immune Therapy in Cancer Treatment. Theranostics, 11, 8813-8835.
https://doi.org/10.7150/thno.62521
[9] Wu, J., Wang, L. and Xu, J. (2022) The Role of Pyroptosis in Modulating the Tumor Immune Microenvironment. Biomarker Research, 10, Article No. 45.
https://doi.org/10.1186/s40364-022-00391-3
[10] Taabazuing, C.Y., Okondo, M.C. and Bachovchin, D.A. (2017) Pyroptosis and Apoptosis Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages. Cell Chemical Biology, 24, 507-514.E4.
https://doi.org/10.1016/j.chembiol.2017.03.009
[11] He, W.T., Wan, H., Hu, L., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298.
https://doi.org/10.1038/cr.2015.139
[12] Lv, T., Xiong, X., Yan, W., et al. (2022) Targeting of GSDMD Sensitizes HCC to Anti-PD-1 by Activating cGAS Pathway and Downregulating PD-L1 Expression. Journal for ImmunoTherapy of Cancer, 10, e004763.
https://doi.org/10.1136/jitc-2022-004763
[13] Peng, J., Jiang, H., Guo, J., et al. (2020) CD147 Expression Is As-sociated with Tumor Proliferation in Bladder Cancer via GSDMD. BioMed Research International, 2020, Article ID: 7638975.
https://doi.org/10.1155/2020/7638975
[14] Qiao, L., Wu, X., Zhang, J., et al. (2019) α-NETA Induces Pyroptosis of Epithelial Ovarian Cancer Cells through the GSDMD/Caspase-4 Pathway. The FASEB Journal, 33, 12760-12767.
https://doi.org/10.1096/fj.201900483RR
[15] Ma, Y., Chen, Y., Lin, C. and Hu, G. (2018) Biologi-cal Functions and Clinical Significance of the Newly Identified Long Non-Coding RNA RP1‑85F18.6 in Colorectal Cancer. Oncology Reports, 40, 2648-2658.
https://doi.org/10.3892/or.2018.6694
[16] Wang, W., Chen, D., Jiang, M., et al. (2018) Downregulation of GSDMD Promotes Gastric Cancer Proliferation by Regulating Cell Cycle-Related Proteins. Journal of Digestive Dis-eases, 19, 74-83.
https://doi.org/10.1111/1751-2980.12576
[17] Hou, J., Hsu, J.M. and Hung, M.C. (2021) Molecular Mechanisms and Functions of Pyroptosis in Inflammation and Antitumor Immunity. Molecular Cell, 81, 4579-4590.
https://doi.org/10.1016/j.molcel.2021.09.003
[18] Qiu, S., Hu, Y. and Dong, S. (2021) Pan-Cancer Analysis Re-veals the Expression, Genetic Alteration and Prognosis of Pyroptosis Key Gene GSDMD. International Immunophar-macology, 101, Article ID: 108270.
https://doi.org/10.1016/j.intimp.2021.108270
[19] Li, R., Zeng, X., Yang, M., et al. (2021) Antidiabetic DPP-4 In-hibitors Reprogram Tumor Microenvironment That Facilitates Murine Breast Cancer Metastasis through Interaction with Cancer Cells via a ROS-NF-Small ka, CyrillicB-NLRP3 Axis. Frontiers in Oncology, 11, Article ID: 728047.
https://doi.org/10.3389/fonc.2021.728047
[20] Ju, M., Bi, J., Wei, Q., et al. (2021) Pan-Cancer Analysis of NLRP3 Inflammasome with Potential Implications in Prognosis and Immunotherapy in Human Cancer. Briefings in Bio-informatics, 22, bbaa345.
https://doi.org/10.1093/bib/bbaa345
[21] Liang, Q., Wu, J., Zhao, X., et al. (2021) Establishment of Tumor In-flammasome Clusters with Distinct Immunogenomic Landscape Aids Immunotherapy. Theranostics, 11, 9884-9903.
https://doi.org/10.7150/thno.63202
[22] Janowski, A.M., Colegio, O.R., Hornick, E.E., et al. (2016) NLRC4 Sup-presses Melanoma Tumor Progression Independently of Inflammasome Activation. Journal of Clinical Investigation, 126, 3917-28.
https://doi.org/10.1172/JCI86953
[23] Fukuda, K., Okamura, K., Riding, R.L., et al. (2021) AIM2 Regulates An-ti-Tumor Immunity and Is a Viable Therapeutic Target for Melanoma. Journal of Experimental Medicine, 218, e20200962.
https://doi.org/10.1084/jem.20200962
[24] Kaplanov, I., Carmi, Y., Kornetsky, R., et al. (2019) Blocking IL-1β Reverses the Immunosuppression in Mouse Breast Cancer and Synergizes with Anti-PD-1 for Tumor Abrogation. Pro-ceedings of the National Academy of Sciences of the United States of America, 116, 1361-1369.
https://doi.org/10.1073/pnas.1812266115
[25] Guo, B., Fu, S., Zhang, J., et al. (2016) Targeting inflam-masome/IL-1 Pathways for Cancer Immunotherapy. Scientific Reports, 6, Article No. 36107.
https://doi.org/10.1038/srep36107
[26] Son, Y.I., Dallal, R.M. and Lotze, M.T. (2003) Combined Treatment with Interleukin-18 and Low-DoseInterleukin-2 Induced Regression of a Murine Sarcoma and Memory Response. Journal of Immunotherapy, 26, 234-240.
https://doi.org/10.1097/00002371-200305000-00007
[27] Derangere, V., Chevriaux, A., Courtaut, F., et al. (2014) Liver X Receptor β Activation Induces Pyroptosis of Human and Murine Colon Cancer Cells. Cell Death & Differentia-tion, 21, 1914-1924.
https://doi.org/10.1038/cdd.2014.117
[28] Degterev, A., Hitomi, J., Germscheid, M., et al. (2008) Identification of RIP1 Kinase as a Specific Cellular Target of Necrostatins. Nature Chemical Biology, 4, 313-321.
https://doi.org/10.1038/nchembio.83
[29] Lin, W., Chen, Y., Wu, B., et al. (2021) Identification of the Pyropto-sis-Related Prognostic Gene Signature and the Associated Regulation Axis in Lung Adenocarcinoma. Cell Death Dis-covery, 7, Article No. 161.
https://doi.org/10.1038/s41420-021-00557-2
[30] Zhang, Q., Tan, Y., Zhang, J., et al. (2022) Pyroptosis-Related Signature Predicts Prognosis and Immunotherapy Efficacy in Muscle-Invasive Bladder Cancer. Frontiers in Immunology, 13, Article 782982.
https://doi.org/10.3389/fimmu.2022.782982
[31] Wu, L.S., Liu, Y., Wang, X.W., et al. (2020) LPS Enhances the Chemosensitivity of Oxaliplatin in HT29 Cells via GSDMD-Mediated Pyroptosis. Cancer Management and Research, 12, 10397-10409.
https://doi.org/10.2147/CMAR.S244374
[32] Zhou, Z., He, H., Wang, K., et al. (2020) Granzyme A from Cyto-toxic Lymphocytes Cleaves GSDMB to Trigger Pyroptosis in Target Cells. Science, 368, eaaz7548.
https://doi.org/10.1126/science.aaz7548
[33] Gao, J., Qiu, X., Xi, G., et al. (2018) Downregulation of GSDMD Attenuates Tumor Proliferation via the Intrinsic Mitochondrial Apoptotic Pathway and Inhibition of EGFR/Akt Signaling and Predicts a Good Prognosis in Non-Small Cell Lung Cancer. Oncology Reports, 40, 1971-1984.
https://doi.org/10.3892/or.2018.6634
[34] Yan, H., Luo, B., Wu, X., et al. (2021) Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/Caspase-1/ GSDMD Pathway in Triple-Negative Breast Cancer. International Journal of Biological Sciences, 17, 2606-2621.
https://doi.org/10.7150/ijbs.60292
[35] Wang, X., Li, H., Li, W., et al. (2020) The Role of Caspa-se-1/GSDMD-Mediated Pyroptosis in Taxol-Induced cEll Death and a Taxol-Resistant Phenotype in Nasopharyngeal Carcinoma Regulated by Autophagy. Cell Biology and Toxicology, 36, 437-457.
https://doi.org/10.1007/s10565-020-09514-8
[36] Chen, D., Guo, S., Tang, X., et al. (2022) Combination of Ru-thenium (II) Polypyridyl Complex Delta-Ru1 and Taxol Enhances the Anti-Cancer Effect on Taxol-Resistant Cancer Cells through Caspase-1/GSDMD-Mediated Pyroptosis. Journal of Inorganic Biochemistry, 230, Article ID: 111749.
https://doi.org/10.1016/j.jinorgbio.2022.111749
[37] Jiang, Y., Yang, Y., Hu, Y., et al. (2022) Gasdermin D Re-stricts Anti-Tumor Immunity during PD-L1 Checkpoint Blockade. Cell Reports, 41, Article ID: 111553.
https://doi.org/10.1016/j.celrep.2022.111553
[38] Magna, M. and Pisetsky, D.S. (2014) The Role of HMGB1 in the Pathogenesis of Inflammatory and Autoimmune Diseases. Molecular Medicine, 20, 138-146.
https://doi.org/10.2119/molmed.2013.00164
[39] Zhang, R., Chen, J., Mao, L., et al. (2020) Nobiletin Triggers Reactive Oxygen Species-Mediated Pyroptosis through Regulating Autophagy in Ovarian Cancer Cells. Journal of Ag-ricultural and Food Chemistry, 68, 1326-1336.
https://doi.org/10.1021/acs.jafc.9b07908
[40] Pizato, N., Luzete, B.C., Kiffer, L., et al. (2018) Omega-3 Do-cosahexaenoic Acid Induces Pyroptosis Cell Death in Triple-Negative Breast Cancer Cells. Scientific Reports, 8, Article No. 1952.
https://doi.org/10.1038/s41598-018-20422-0
[41] Wang, L., Li, K., Lin, X., et al. (2019) Metformin Induces Hu-man Esophageal Carcinoma Cell Pyroptosis by Targeting the miR-497/PELP1 Axis. Cancer Letters, 450, 22-31.
https://doi.org/10.1016/j.canlet.2019.02.014
[42] Liao, P., Huang, W.H., Cao, L., et al. (2022) Low Expression of FOXP2 Predicts Poor Survival and Targets Caspase-1 to Inhibit Cell Pyroptosis in Colorectal Cancer. Journal of Cancer, 13, 1181-1192.
https://doi.org/10.7150/jca.62433
[43] Chen, T., Wang, Z., Zhong, J., et al. (2022) Secoisolar-iciresinol Diglucoside Induces Pyroptosis by Activating Caspase-1 to Cleave GSDMD in Colorectal Cancer Cells. Drug Development Research, 83, 1152-1166.
https://doi.org/10.1002/ddr.21939
[44] Cheng, Z., Li, Z., Gu, L., et al. (2022) Ophiopogonin B Alleviates Cisplatin Resistance of Lung Cancer Cells by Inducing Caspase-1/GSDMD Dependent Pyroptosis. Journal of Cancer, 13, 715-727.
https://doi.org/10.7150/jca.66432
[45] Zhao, Q., Feng, H., Yang, Z., et al. (2022) The Central Role of a Two-Way Positive Feedback Pathway in Molecular Targeted Therapies-Mediated Pyroptosis in Anaplastic Thyroid Can-cer. Clinical and Translational Medicine, 12, e727.
https://doi.org/10.1002/ctm2.727