白色脂肪棕色化的研究进展
Research Progress of the Browning of White Adipose Tissue
DOI: 10.12677/ACM.2024.142366, PDF, HTML, XML, 下载: 112  浏览: 248 
作者: 沈天娇, 杨刚毅*:重庆医科大学附属第二医院,重庆
关键词: 白色脂肪棕色化米色脂肪研究进展The Browning of White Adipose Tissue Beige Adipose Tissue Research Progress
摘要: 白色脂肪组织和棕色脂肪组织是哺乳动物体内两种主要的脂肪类型,它们在结构、分布和功能上存在显著差异,对体内能量平衡的调控有着重要的影响。米色脂肪细胞作为介于这两者之间的类型,具有独特的来源和生化特征。近年来,白色脂肪组织的棕色化成为了研究的热点,其在调控体内能量代谢和防治代谢性疾病方面潜在的作用引起了广泛的关注。棕化过程受多种因素的影响,包括运动和饮食、激素、细胞因子、基因调控、肠道微生物、MicroRNA等。激活白色脂肪棕化与代谢改善相关,为糖尿病、肥胖、脂肪肝等代谢相关疾病提供了新的治疗途径和靶点。然而,棕化过程也存在潜在的问题和风险,因为其可能导致脂质代谢紊乱、增加恶病质相关的能量消耗、影响免疫功能、引发炎症反应,甚至对心血管系统造成额外负担。未来的研究应集中在如何优化这一过程,确保转化过程的安全和高效。
Abstract: White adipose tissue (WAT) and brown adipose tissue (BAT) are the two main fat types in mam-mals. They differ significantly in structure, distribution, and function, affecting the energy balance within the human body. Beige (or Brite) adipose tissue, as an intermediate type, has its unique origin and biochemical characteristics. Recently, the browning of white adipose tissue has become a research focus. Its potential in regulating metabolism and preventing diseases has attracted wide-spread interest. This browning process is influenced by various factors, including exercise, diet, hormones, cytokines, genetic regulation, gut microbiota, and MicroRNA, etc. Activation of the browning process correlates with metabolic improvements, offering novel therapeutic strategies and targets for metabolic-related conditions such as diabetes, obesity, fatty liver. However, this process isn’t without risks. It can disrupt lipid metabolism, increase cachexia-related energy con-sumption, impact immunity, trigger inflammation, and potentially burden the cardiovascular sys-tem. Future research should focus on optimizing this process to ensure the safety and efficiency in clinical practice.
文章引用:沈天娇, 杨刚毅. 白色脂肪棕色化的研究进展[J]. 临床医学进展, 2024, 14(2): 2600-2612. https://doi.org/10.12677/ACM.2024.142366

1. 引言

白色脂肪组织(white adipose tissue, WAT)是最常见的脂肪组织类型,在包括人类的多数哺乳动物体内普遍分布。白色脂肪细胞充满了大量的脂滴,且由于脂滴的压迫,细胞核被推到了细胞边沿 [1] 。其主要功能是储存能量,维持热量平衡,以及作为内分泌器官参与调节身体的能量代谢 [2] 。棕色脂肪组织(brown adipose tissue, BAT)是一种能有产热功能的脂肪组织 [1] [3] ,在低温环境和新生儿体内其活跃度较高。其主要通过燃烧脂肪酸和葡萄糖来产生热量,以帮助维持体温的稳定 [3] [4] 。棕色脂肪细胞内部富含高密度的线粒体 [4] ,与白色脂肪细胞相比,棕色脂肪细胞里拥有许多小型的脂滴,可以观察到细胞核在细胞的中央位置。棕色脂肪组织通过一个被称为非颤抖性热产生的过程来产生热量。在这个过程中,存在于线粒体中的解偶联蛋白1 (uncoupling protein 1, UCP1)具有让脂肪酸氧化不再参与ATP生成,转而产生热能的功能 [3] 。近年来,研究者发现除了经典的棕色脂肪细胞,还存在一种介于白色和棕色脂肪细胞之间的细胞类型,称为“米色脂肪”(Beige or Brite fat) [5] 。这些细胞在功能上类似于BAT,但它们在遗传和细胞起源上可能与经典的BAT不同 [6] 。它们可以在白色脂肪组织内出现,作为对刺激或激素响应的产物。被激活后,能够上调UCP1至与BAT相似的水平,并具备将储存的能量转化为热量的能力。此外,米色脂肪细胞在抑制肥胖和胰岛素抵抗、影响全身能量稳态方面发挥着重要的作用,对整体代谢有着积极的影响 [7] 。

在特定的生理或环境刺激下,白色脂肪细胞可能转化为具有棕色脂肪特征的细胞,这种现象称为“棕化” [3] 。棕色脂肪含有大量线粒体,并且可以通过产生热量来燃烧脂肪,因此棕色脂肪细胞相比白色脂肪细胞具有更高的代谢活性,这种能量代谢的提高有助于防止能量过剩导致的肥胖问题。此外,棕色脂肪细胞的存在可以帮助维持体重和能量平衡。通过增加棕色脂肪细胞的数量或活性,人体可以更有效地处理摄入的能量,减少体内脂肪储存,从而预防肥胖和其相关疾病。也有研究表明,棕色脂肪细胞具有改善胰岛素敏感性和血糖稳定性的作用,增加棕色脂肪组织的转化可能有助于预防糖尿病和代谢综合征的发生 [5] [6] 。因此,了解和促进白色脂肪向棕色脂肪的转化,为开发肥胖和代谢性疾病的治疗方法提供了新的方向。

2. 白色脂肪组织与棕色脂肪组织的生物学差异

2.1. 细胞结构方面的差异

白色脂肪组织和棕色脂肪组织在细胞结构上存在显著的差异。在白色脂肪细胞中,大部分细胞内空间被脂滴占据,细胞核较小。而在棕色脂肪细胞中,线粒体的存在导致脂滴分布较少,细胞核相对较大。线粒体数量和活性也是两者之间最重要的结构差异之一。白色脂肪细胞几乎没有线粒体,而棕色脂肪细胞富含线粒体。这些线粒体在棕色脂肪中含有大量电子传递链和棕色脂肪的特性蛋白如UCP1等,这让棕色脂肪细胞具有产生热量和非颤抖性热效应的能力 [8] 。此外,白色脂肪组织通常血管丰富度较低,而棕色脂肪组织通常具有更多的血管,这有助于快速运输氧气和营养物质,以支持线粒体的高代谢活性 [9] 。Darcy等人通过小鼠模型发现,BAT与WAT存在不同的脂质谱,例如,棕色脂肪组织含有较高的心磷脂和降低的鞘脂浓度,这与BAT产热能力和胰岛素敏感性的增强有关 [10] 。Anantha等人研究发现人类白色脂肪前体细胞(human white preadipocytes, HWPs)和人类棕色脂肪前体细胞(human brown preadipocytes, HBPs)的分化过程具有动态差异。HBPs在脂肪积累方面比HWPs更快,并且具有较高的脂肪质量;相较于HWPs,HBPs具有更高的脂质不饱和度水平 [11] 。此外,近年来也有研究发现,脂肪组织的细胞组成随着生物体的衰老发生改变,包括炎症细胞浸润增加、血管减少、脂肪细胞数量和脂滴大小增加等 [12] 。了解这些结构的差异有助于深入研究脂肪组织的生理和代谢功能。

2.2. 分布上的差异

白色脂肪组织分布于全身,主要由皮下和腹腔内或内脏白色脂肪组成。传统上认为,棕色脂肪主要存在于婴儿中,成年人中的活跃棕色脂肪量很少。但近年来的研究通过正电子发射断层扫描(PET)技术显示,成年人的颈部、锁骨上、纵膈、棘旁和肾上等区域也存在活跃的棕色脂肪组织,尤其是在低温环境下,且瘦弱的人比超重或肥胖的人更容易检测到活跃的棕色脂肪 [9] 。

2.3. 功能方面的差异

白色脂肪组织与棕色脂肪组织在多个生物学方面均有显著的功能差异。白色脂肪组织主要用于脂质储存,并在多种激素、酶和蛋白质的调节下以游离脂肪酸和甘油的形式释放;而棕色脂肪组织的主要功能为能量消耗和产热 [13] 。此外,棕色脂肪组织还表现出自分泌、旁分泌、内分泌功能 [14] ,与其他代谢组织进行通信,参与能量平衡和体温调节 [15] [16] 。WAT也被认为是一个重要的内分泌器官,其与BAT表达的脂肪因子存在差异。例如,所有脂肪组织库都表达瘦素、脂联素,而神经调节蛋白4 (Neuregulin 4, NRG4)、趋化因子配体14 (Recombinant Chemokine (C-X-C Motif) ligand 14, CXCL14)仅在棕色和米色脂肪细胞中高表达,棕榈油酸酯(Palmitoleate)仅在白色脂肪中表达 [17] 。棕色和白色脂肪分别具有其特殊功能,它们必须协调工作以调节全身代谢。例如,对抗有毒性肝脏脂质过载的机制包括在棕色脂肪组织中氧化多余的脂肪酸和在白色脂肪组织中将脂肪酸储存为甘油三酯来进行协调的补偿 [18] 。Xiang等人在一项回顾性研究中发现,脂类(尤其是长链脂肪酸),特别是白色脂肪组织脂解,在介导BAT的主要产热功能中起到了关键作用 [19] 。另一项研究发现,在没有食物或BAT脂解的情况下,WAT释放的脂肪酸对BAT产热是必不可少的。脂肪酸既可以作为BAT的产热燃料,也可以作为UCP1功能的刺激物 [3] [20] 。

2.4. 基因表达和调控方面的差异

研究指出,棕色脂肪组织在基因表达和调控方面具有独特的特性,如核受体辅助激活因子α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α)、碘甲腺原氨酸脱碘酶II (monoclonal antibody to deiodinase, iodothyronine, type II, DIO2)、细胞色素c、PR结构域蛋白16 (the positive regulatory domain containing 16, PRDM16)和β3肾上腺素受体的表达增强 [21] 。此外,棕色脂肪前体细胞表达许多骨骼肌特异性基因 [7] 。Ussar等人的研究表明,氨基酸转运蛋白Asc-1是一种白色脂肪细胞特异性的细胞表面蛋白,在棕色脂肪细胞中很少或不表达,而氨基酸转运蛋白PAT2和三磷酸腺苷受体P2RX5是小鼠经典棕色和米色脂肪细胞中表达的细胞表面标记物 [22] 。此外,米色脂肪细胞的基因表达方面也存在其独特性。K. Shinoda等人的研究表明,钾离子通道蛋白3 (potassium channel subfamily K member 3, KCNK3)和线粒体肿瘤抑制因子(mitochondrial tumor suppressor 1, MTUS1)是米色脂肪细胞分化和产热功能所必需的 [23] 。

2.5. 在能量调控方面的差异

在能量调控方面,WAT和BAT也有本质的不同。WAT主要是通过储存脂肪酸等能源物质来提供能量,而BAT则是通过氧化脂肪酸并产生热量来消耗能量。这种能量生产和消耗的对立性是WAT和BAT最重要的生理学差异之一。此外,Wang等人研究表明,线粒体丙酮酸的摄取和氧化在冷暴露激活的棕色脂肪和米色脂肪中作为重要的能量来源,这支持了葡萄糖氧化在棕色脂肪产热中的作用 [18] 。近年来,也有研究发现了白色和棕色脂肪不同的功能相关调控因子。Li等人通过生物信息学分析,发现雄激素依赖性TFPI调节蛋白(androgen-dependent TFPI-regulating protein, ADTRP)通过与S100钙结合蛋白B结合,进而通过交感神经系统促进β3-AR介导的热能生成,在成熟的棕色/米色脂肪细胞中显著高表达并发挥功能 [24] 。Basse等人研究表明,棕色脂肪组织需要烟酰胺磷酸核糖转移酶 (Nicotinamide Phosphoribosyl Transferase, NAMPT)来维持日常生物节律核心时钟的振幅,而白色脂肪组织的节律性仅适度依赖于烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide, NAD+)的生物合成 [25] 。

3. 米色脂肪细胞

近年来,研究者发现除了经典的棕色脂肪细胞,还存在一种介于白色和棕色脂肪细胞之间的细胞类型,称为“米色脂肪”。这些细胞在功能上类似于BAT,但它们在遗传和细胞起源上可能与经典的BAT不同 [13] [26] 。从来源方面看,米色脂肪细胞和棕色脂肪细胞都可以从白色脂肪组织中形成,通常在受到外部刺激(如冷暴露)时转化而来。棕色脂肪前体细胞表达类似肌肉的基因特征。大多数棕色脂肪细胞起源于胚胎中胚层的前体细胞,这些前体细胞短暂地表达Myf5和Pax7,这两个基因被认为在中胚层中选择性地标记骨骼肌细胞 [27] ,而米色脂肪细胞可以从腹股沟白色脂肪组织的Myf5-前体中获得。关于米色脂肪细胞是直接来自成熟的白色脂肪细胞,还是来自成脂前体细胞的新生分化,一直存在很多争论。米色脂肪形成细胞的起源与壁细胞和血管平滑肌细胞有关,成人的所有白色和米色脂肪细胞可能来源于血管平滑肌样前体 [7] 。一些米色脂肪细胞Myh11-阳性,Myh11-是平滑肌细胞的一种选择性标记物 [5] 。也有研究表明,一些米色脂肪细胞来源于表达血小板衍生生长因子受体α (Platelet-derived growth factor receptor α, PDGFR α)、CD34和脊髓小脑性共济失调1型蛋白的前体 [28] 。米色脂肪细胞与传统的棕色脂肪细胞都携有许多BAT的特异性或富集的基因如UCP1、PGC-1a、细胞死亡诱导DFFA样效应蛋白A (cell death-inducing DFFA-like effector a, CIDEA)和PRDM16 [29] 。从人体多个部位分离的人类BAT,包括锁骨上和腹膜后区域,大量表达米色细胞标记物,表明这些人类BAT亚群在分子上与米色细胞相似。然而,米色细胞也有其自己独特的标记物。比如,它们不会表达包含肌细胞蛋白的基因,如Zic1、Lhx8和Epstl1,但表达Cited1、Tmem26、CD137和Tbx1等基因 [28] 。

棕色和米色脂肪细胞具有许多相似的形态和生化特征:从细胞外观特征来看,米色脂肪细胞通常被描述为介于白色脂肪细胞和棕色脂肪细胞之间,其线粒体数量和大小表现一般偏少、偏小 [30] 。在非刺激条件下,棕色脂肪细胞有丰富的线粒体,表达相对较高水平的UCP1和其他产热成分,而米色脂肪细胞仅在刺激时——主要为温度降低刺激交感神经系统,表达产热成分 [5] 。棕色脂肪细胞和米色脂肪细胞之间的这种区别在体内和离体中都很明显 [7] 。米色细胞对多肽激素鸢尾素优先敏感,一旦受到其刺激,这些细胞UCP1的表达可激活到和典型的棕色脂肪细胞相似的水平。此外,也有报道表明,米色脂肪细胞的产热特征是可逆的,在冷暴露期间在WAT中获得的米色脂肪细胞失去UCP1的表达,并在小鼠移回温暖条件后保留下来 [3] 。因此,米色细胞具有在能量储存和能量耗散表型之间切换的能力。在生理适应方面,米色脂肪细胞的出现表明哺乳动物可以在必要时通过增加热量产生来适应环境的变化,尤其是在寒冷环境中。

4. 白色脂肪组织向棕色脂肪组织转化的影响因素

4.1. 运动及饮食因素对转化的影响

近年来,白色脂肪组织向棕色脂肪组织的转化成为了一个备受关注的课题。研究表明,促进白色脂肪向棕色脂肪的转化可以预防糖尿病等代谢疾病的发展 [31] [32] [33] 。冷暴露 [34] [35] 或β3-肾上腺素受体激动剂 [36] 可刺激褐色脂肪细胞的分化,一系列刺激如运动、饮食也能导致白色脂肪细胞棕变,从而增加能量消耗和热量产生 [37] 。PGC-1α在白色脂肪细胞内的过表达,主要驱动了运动所引起的棕化过程 [38] 。然而,Martinez-Tellez等人在一项年轻成年人随机对照试验中,发现没有证据表明久坐不动的年轻成年人在24周的监督运动训练后棕色脂肪组织激活,这可能与PET/CT无法检测到小簇脂肪细胞褐变、运动方式的选择(阻力/耐力)和环境温度等因素相关 [39] 。饮食也与白色脂肪棕色化过程密切相关。已有研究表明,间歇性禁食可能促使由BAT活性增加和米色脂肪形成 [6] ;一些食物成分如辣椒素 [40] 、l-茶氨酸 [41] 、白藜芦醇 [42] 也可促进白色脂肪棕色化。此外,近年有研究发现,牛磺补充与运动结合可以改善肥胖女性的脂质代谢,表现出皮下白色脂肪组织的棕变效应 [43] 。

4.2. 激素和细胞因子对转化的影响

既往的研究表明,很多激素都对脂肪转化起到重要作用,如儿茶酚胺 [36] 、鸢尾素 [44] 、胰岛素 [45] 、甲状腺激素 [46] 、利钠肽 [4] 、前列腺素 [28] 、褪黑素 [47] 等均可以促使白色脂肪组织棕变。此外,还有很多细胞因子促进这一过程,如成纤维细胞生长因子(fibroblast growth factor 21, FGF21)可通过激活BAT和WAT褐变 [48] ,加速富甘油三酯脂蛋白的转化,从而降低动脉粥样硬化病变严重程度、改善高胆固醇血症 [49] 。骨形态发生蛋白(bone morphogenetic protein, BMPs)调节棕色脂肪的形成和产热活性 [50] ,BMP-7 [51] 、Bmp8bβ [4] 、BMP9 [52] 均有助于促进白色脂肪褐变;重组人含III型纤连蛋白域蛋白5 (Recombinant Human Fibronectin Type III Domain Containing 5, FNDC5)在运动反应中促使白色脂肪组织棕化 [53] 。

近年来,在激素影响脂肪转化过程的研究中也有一些新的发现。Santos等人研究发现,选择性激活脂肪细胞中的雌激素受体(estrogen receptor, ERα)可以促进脂肪细胞去退化形成“褐色脂肪”细胞、促进脂肪分解产生游离脂肪酸以激活脂肪细胞中的UCP1 [54] ,表明性别也可能是影响棕化过程的因素之一 [55] 。Xue L.等人的研究发现肠促胰素与白色脂肪棕化相关,实验中孕鼠母体肠道中肠促胰素的遗传缺失导致子代出现腹股沟白色脂肪组织的棕化减弱 [56] 。He等通过肺癌小鼠模型,发现血清甲状旁腺激素升高促进了WAT棕化程序,从而导致原发性甲状旁腺功能亢进小鼠体重减轻 [57] 。Whitehead等人通过代谢组学的方法,发现了3-甲基-2-酮戊二酸、5-酮戊二酸和β-羟基异丁酸这3种小分子代谢激素,诱导白色脂肪细胞向棕色脂肪细胞转化,同时还促进了肌肉线粒体氧化能量代谢 [58] 。此外也有研究发现,在冷暴露情况下,血清缓激肽水平升高能够诱导褐色脂肪组织的热生成和白色脂肪组织的棕化 [59] 。

也有越来越多的研究表明,一些细胞因子可以影响脂肪细胞的转化。Pydi等人通过小鼠模型研究发现,缺乏β-抑制蛋白2 (β-arrestin-2, barr2)的小鼠脂肪细胞β3肾上腺素受体的信号传导增强,白色脂肪组织棕化加强,代谢得到了显著改善 [60] 。另有一项研究发现,如果肝细胞中的间脑星形胶质细胞源性神经营养因子Manf过表达,可以直接通过p38 MAPK途径来诱导下腹部皮下脂肪棕色脂肪的生成 [61] 。此外,促血管生成因子也被证明可以诱导与人类米色脂肪细胞祖细胞的增殖相关 [36] 。Bunk等人的研究发现,卵泡刺激素结合蛋白(folliculin interacting protein 1, FNIP1)在维持白色脂肪组织正常状态中起着重要的作用,FNIP1的丧失与白色脂肪组织褐变相关 [62] 。在小鼠中,II型免疫反应被证明可促进BAT激活和WAT褐变 [3] 。IL-4、IL-13、IL-5、IL-5均与WAT褐变相关,II型免疫途径还涉及脂肪组织中的其他免疫群体,包括2组先天淋巴样细胞(ILC2s)和调节性T细胞(Tregs) [43] 。此外亦有研究证明,IL-1 [63] 、IL-10 [64] 与白色脂肪组织的褐变密切相关。Abdullahi等人的研究表明,烧伤引起的褐化与WAT中巨噬细胞浸润增加和2型巨噬细胞谱有关,IL-6是这一过程中必需的因子 [65] 。

4.3. 基因调控的影响

PRDM16 [66] 、PGC-1a、过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptor γ, PPARγ)、人CCAAT增强子结合蛋白a (C/EBPa) [67] 、常染色质组蛋白赖氨酸甲基转移酶1 (euchromatic histone-lysine N-methyltransferase 1, EHMT1)、组蛋白脱乙酰基酶1 (histone deacetylase 1, HDAC1) [5] 等关键调控因子对脂肪组织转化具有重要作用。PRDM16直接结合PGC-1α、PGC-1β、PPARα、PPARγ、p53和C/EBP家族的一些成员,导致其转录活性增强 [21] 。Wang等人的研究表明,PRDM16诱导脂肪细胞分泌β-羟基丁酸,可抑制前体细胞纤维化并促进米色脂肪产生 [67] 。Zhao等人研究发现,人类脂肪组织中存在PRDM16 mRNA表达的性别二态性,在女性个体中比男性表达量高,雄激素受体与PRDM16呈负相关 [68] 。此外,Zhongyi等人通过实验研究证实了蛋白精氨酸甲基转移酶4 (protein arginine methyltransferase 4, PRMT4)在腹股沟脂肪组织中的过表达加速了WAT褐变和产热,阐述了PRMT4/PPARγ/ PRDM16轴在WAT褐变的机制中的重要作用 [69] 。另一项研究表明,SRC家族蛋白在PGC1α活性中有调节作用。例如,SRC1增强了PGC1α对PPARγ转录活性的协同激活,而SRC2和SRC3抑制了PGC1α的活性 [21] 。近年来也有研究证明了其他基因及转录因子在褐变中的重要作用。Xu等人的研究表明,在肝特异性CReP基因敲除小鼠中,白色脂肪组织不断棕化,能量消耗增加,胰岛素敏感性提高,在这一过程依赖FGF21作用 [70] 。Fan等人研究发现,脂肪Klf9基因缺失会抑制β3受体激动剂介导的白色脂肪向棕色脂肪转化 [71] 。Ceddia等人发现小鼠携带的SNAP25突变引起小鼠的新陈代谢改善,表现为增强的胰岛素敏感性和白色脂肪棕色化 [72] 。Anduri等研究表明,缺乏高迁移率族核小体结合蛋白(High-mobility group nucleosome-binding proteins, HMGN)蛋白的白色前脂肪细胞和小鼠胚胎成纤维细胞显示转化为棕色脂肪细胞的速度增加 [73] 。另一项研究发现,KRAB结构域含锌指蛋白ZFP961是一种重要的的褐色脂肪选择性基因表达和线粒体呼吸抑制物,ZFP961敲除小鼠显示出强烈的腹股沟白色脂肪棕化现象 [74] 。Rabiee等人研究表明,Y框结合蛋白1 (Y box binding protein 1, YBX1)在间充质干细胞中的表达,使得棕色脂肪转化和热能标记物的表达增加、线粒体呼吸的增强 [75] 。此外,有研究发现人类脂肪细胞中血小板反应蛋白(thrombospondin 4, THBS4)、腱糖蛋白(tenascin C, TNC)、神经营养性酪氨酸受体激酶3 (neurotrophic tyrosine kinase, receptor, type 3, NTRK3)和SPARC样蛋白(SPARC-like 1, SPARCL1)的表达也可系统性抑制人脂肪组织褐变 [76] 。

4.4. 肠道微生物的影响

近年来有研究表明,抗生素处理和无菌小鼠的腹股沟皮下和内脏的微生物群消耗,都可促进WAT的棕化过程。然而,肠道微生物群落对寒冷环境中的产热起到重要的调节作用,抗生素处理或无菌小鼠模型的UCP1依赖性产热作用均被损害,用丁酸盐灌胃可部分恢复这一作用 [77] 。另一项研究也表明,在小鼠使用活的产丁酸菌,部分减轻了通过饮食诱导的肥胖、脂肪质量增加、胰岛素抵抗、白色脂肪组织肥胖和炎症 [78] 。此外,Xu等人研究发现,通过应用黄精总皂苷(panax notoginseng saponins, PNS)改变小鼠肠道菌群组成,可以促进棕色脂肪组织和米色脂肪细胞的重构,提高能量消耗 [79] 。

4.5. MicroRNA的影响

经过众多研究证实,microRNA,即长度约在20至24个核苷酸的内源小RNA,具备控制脂肪细胞及脂肪前体细胞分化的功能。miR-196a和miR-30是棕色化过程发展所必需的,而miR-155、miR-133、miR27b、miR-34和miR-26是这一过程的负调控因子 [80] 。此外,一些miRNA具有调控PRDM16活性的能力,如miRNA-133 [81] 、miR-193b和miR-365 [82] 。有研究发现,n-3多不饱和脂肪酸通过调节miR-30b和miR-378促进棕色脂肪的形成,miR-378通过靶向降解磷酸二酯酶1b增加cAMP的产生,而miR-30b促进降解转录辅抑制因子Rip140 [83] 。

4.6. 药物的影响

研究已经证明如β3-ARs激动剂mirabegron [84] ,胰高血糖素样肽-1 (GLP-1)受体激动剂如利拉鲁肽,及西地那非 [79] 、维生素D [85] 等药物,都可诱导脂肪细胞的棕色化。近年来,Reilly等人研究了蛋白激酶IKKε/TBK1抑制剂amlexanox治疗导致的长期体重减轻,并将其归因于FGF21介导的白色脂肪组织的的褐化,能量消耗增加 [86] 。相反,Auger等人的研究发现,二甲双胍通过调节脂肪酸代谢相关的蛋白磷酸酶的活性,降低了褐色脂肪组织中的脂解作用,促使褐色脂肪转变为白色脂肪细胞 [87] 。Deng等人研究发现,地塞米松也可以引起褐色脂肪组织的变白现象。这一现象由地塞米松通过刺激自噬相关蛋白(autophagy related 7, ATG7)的表达,诱导自噬作用引起 [88] 。此外,中药也可能影响棕化过程。Cheng等人的研究表明,桑叶通过调节AMP激活的蛋白激酶信号通路激活2型糖尿病大鼠棕色脂肪组织,诱导腹股沟白色脂肪组织棕化 [89] 。

4.7. 其他影响因素

白色脂肪棕色化的影响因素并不局限于以上所述的这些方面。Seoane-Collazo等人研究发现,尼古丁通过中枢机制在侧丘区诱导WAT棕化,这种效应依赖于κ阿片受体(kappa opioid receptor, KOR) [90] 。近年来,也有研究表明,嗜酸性粒细胞 [91] 、葡萄糖中间代谢物乳酸 [3] 、乳腺癌细胞分泌的外泌体miR-204-5p [92] 等均可以促进白色脂肪细胞棕化。另有一项研究表明,亮氨酸缺乏可以诱导WAT褐变 [93] 。而Guardia等人的研究表明,PM2.5可以促使棕色细胞向白色表型转化,从而减少能量消耗。

5. 白色脂肪棕色化的临床应用和风险

5.1. 转化过程的生理意义和可能的临床应用

已有大量研究说明了BAT激活在代谢相关疾病中的治疗潜力。BAT是葡萄糖处理的主要器官,激活BAT可能与某些组织葡萄糖代谢的改善有关 [94] 。有实验表明,通过诱导人类产生米色和棕色脂肪,可以降低葡萄糖水平并增加胰岛素敏感性 [5] 。另一项研究表明,WAT激活可以抑制肿瘤中的糖酵解和脂肪代谢,从而抑制小鼠体内的异种移植肿瘤的生长 [95] 。Hwang等人在一项研究中发现,BAT可作为肝脏保护机制,对抗酒精性肝病(alcoholic liver disease, ALD)的发展,说明了调节BAT活性治疗ALD的治疗潜力 [96] 。此外,研究发现激活BAT是改善高脂血症和预防动脉粥样硬化 [97] 、冠状动脉疾病、充血性心力衰竭和高血压等心脏代谢相关疾病的有效治疗途径 [32] [98] 。因为人类皮下WAT是一个大而易于获取的组织库,所以增强WAT的棕色化、治疗性调控WAT棕色化过程以增加能量消耗和改善代谢的潜力,为代谢疾病研究和治疗开辟了一个令人兴奋的新领域。

5.2. 转化过程中可能出现的问题和风险

然而,白色脂肪组织棕色化的过程并非没有潜在的问题和风险。首先,激活WAT中的棕色脂肪细胞可能干扰正常的脂肪组织功能。过度或不适当的激活可能导致脂质代谢紊乱,这可能引起脂肪毒性,从而影响细胞稳态和器官功能。M. Petruzzelli等人的研究表明,从白色脂肪到棕色脂肪的转换增加了癌症相关恶病质的能量消耗,WAT褐变与UCP1的表达增加有关,UCP1使线粒体呼吸解偶联以产热而非ATP合成,导致恶病质小鼠脂质动员和能量消耗增加 [99] 。其次,虽然研究显示诱导WAT棕色化的药物和分子能够提高能量消耗,但它们也可能携带与药物干预相关的一般风险,例如药物的副作用和毒性。此外,BAT激活和WAT棕色化过程中的炎症反应也是一个潜在问题 [100] 。虽然低度炎症可能有助于促进脂肪组织重塑,但过度的炎症反应可能导致胰岛素抵抗和其他代谢并发症。因为脂肪组织不仅是能量的储存库,它也参与免疫调节。改变脂肪组织的性质可能会影响其免疫功能,这可能导致潜在的免疫系统紊乱。还需要关注的是,绝大多数激活棕色脂肪组织的激动剂通过β3肾上腺素能受体信号传导起作用。它们不可避免地会增加血管收缩和血压,可能会对心血管系统产生额外负担 [101] 。尤其在有心血管疾病史的患者中,这些变化需要谨慎监控。在分子水平上,棕色化过程涉及复杂的转录网络和信号通路。如果这些网络的调节失衡,可能导致细胞应激反应和程序性细胞死亡。而且,一些转录因子和激活剂在增加脂肪氧化的同时,也可能诱导DNA损伤响应,从而影响细胞的基因稳定性。

还有一个问题是如何确保WAT的棕色化是长期和持续的,因为某些诱导棕色化的治疗可能只有短期效果。长期疗法可能需要连续的药物治疗或生活方式的改变,而这些都有可能导致依从性问题。另外,尽管在动物模型中观察到WAT的棕色化对于代谢健康有益,但人类研究的结果不那么一致。这可能是由于动物研究中可以进行更为严格的条件控制和遗传背景的单一化,而人类研究则需要考虑更广泛的遗传和环境因素。

总之,虽然白色脂肪向棕色脂肪的转化有潜在的代谢益处,但必须谨慎考虑到可能的问题和风险,未来的研究应集中在如何优化这一过程,确保转化过程的安全和高效。

6. 未来研究的方向和挑战

首先,了解白色脂肪向棕色脂肪的转化机制,以及不同细胞类型中的脂肪转化机制之间的差异至关重要。这包括研究脂肪细胞、肝细胞和肌肉细胞等不同类型的细胞中的转化机制。未来的研究应该致力于深入探究这些机制,包括转录调控、信号通路和代谢途径,这可以有助于更好地理解不同组织之间的相互作用,开发药物和治疗方法来促进这种有益的转化。此外,遗传因素对于个体对白色脂肪向棕色脂肪的转化的敏感性可能起着重要作用,未来的研究可以探索这些遗传变异如何影响脂肪转化,并为个体化的治疗方法提供基础。基于对白色脂肪向棕色脂肪转化机制的深入了解,研究人员可以开发新的药物、营养干预和生活方式策略,以促进健康的脂肪转化。这些策略可以在肥胖和代谢性疾病的治疗和预防中发挥关键作用。

7. 结论

白色脂肪组织负责储存并通过内分泌功能来控制能量的新陈代谢,而棕色脂肪组织主要功能是产生热量,通过消耗能量来维持体温。白色脂肪组织向棕色脂肪组织的转化不仅仅是对体内能量代谢的理论性挑战,也为治疗和预防肥胖、糖尿病等代谢性疾病提供了新的可能性。通过深入研究这一领域,我们可以期待未来在生物医学领域取得更为突破性的进展,为人类健康带来福祉。

NOTES

*通讯作者。

参考文献

[1] Horino, M., Ikeda, K. and Yamada, T. (2022) The Role of Thermogenic Fat Tissue in Energy Consumption. Current Issues in Molecu-lar Biology, 44, 3166-3179.
https://doi.org/10.3390/cimb44070219
[2] Santillana, N., Astudillo-Guerrero, C., D’Espessailles, A., et al. (2023) White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients, 15, Article No. 1722.
https://doi.org/10.3390/nu15071722
[3] Shamsi, F., Wang, C.H. and Tseng, Y.H. (2021) The Evolving View of Thermogenic Adipocytes—Ontogeny, Niche and Function. Nature Reviews Endocrinology, 17, 726-744.
https://doi.org/10.1038/s41574-021-00562-6
[4] Harms, M. and Seale, P. (2013) Brown and Beige Fat: Development, Function and Therapeutic Potential. Nature Medicine, 19, 1252-1263.
https://doi.org/10.1038/nm.3361
[5] Lizcano, F. and Vargas, D. (2016) Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. Internet Journal of Endocrinology, 2016, Article ID: 9542061.
https://doi.org/10.1155/2016/9542061
[6] Klepac, K., Georgiadi, A., Tschop, M., et al. (2019) The Role of Brown and Beige Adipose Tissue in Glycaemic Control. Molecular Aspects of Medicine, 68, 90-100.
https://doi.org/10.1016/j.mam.2019.07.001
[7] Wang, W. and Seale, P. (2016) Control of Brown and Beige Fat Development. Nature Reviews Molecular Cell Biology, 17, 691-702.
https://doi.org/10.1038/nrm.2016.96
[8] Yook, J.S. and Kajimura, S. (2022) Is Thermogenesis Really Needed for Brown Adipose Tissue-Mediated Metabolic Benefit? Journal of Clinical Investigation, 132, e159296.
https://doi.org/10.1172/JCI159296
[9] Tran, T.T. and Kahn, C.R. (2010) Transplantation of Adipose Tissue and Stem Cells: Role in Metabolism and Disease. Nature Reviews Endocrinology, 6, 195-213.
https://doi.org/10.1038/nrendo.2010.20
[10] Darcy, J., Fang, Y., McFadden, S., et al. (2020) Integrated Metabolomics Reveals Altered Lipid Metabolism in Adipose Tissue in a Model of Extreme Longevity. GeroScience, 42, 1527-1546.
https://doi.org/10.1007/s11357-020-00221-0
[11] Anantha, P., Liu, Z., Raj, P., et al. (2023) Optical Diffraction Tomography and Raman Spectroscopy Reveal Distinct Cellular Phenotypes during White and Brown Adipocyte Differentiation. Biosensors & Bioelec-tronics, 235, Article ID: 115388.
https://doi.org/10.1016/j.bios.2023.115388
[12] Sheng, Y., Xia, F., Chen, L., et al. (2021) Differential Responses of White Adipose Tissue and Brown Adipose Tissue to Calorie Restriction during Aging. Journals of Geron-tology, Series A: Biological Sciences and Medical Sciences, 76, 393-399.
https://doi.org/10.1093/gerona/glaa070
[13] Var-gas-Castillo, A., Torres, N. and Tovar, A.R. (2021) Endocrine Regulation of Brown and Beige Adipose Tissue. In: Ulloa-Aguirre, A. and Tao, Y.-X., Eds., Cellular Endocrinology in Health and Disease, Elsevier, Amsterdam, 247-259.
https://doi.org/10.1016/b978-0-12-819801-8.00012-0
[14] Gavalda-Navarro, A., Villarroya, J., Cereijo, R., et al. (2022) The Endocrine Role of Brown Adipose Tissue: An Update on Actors and Actions. Reviews in Endocrine & Metabolic Disorders, 23, 31-41.
https://doi.org/10.1007/s11154-021-09640-6
[15] Ahmad, B., Vohra, M.S., Saleemi, M.A., et al. (2021) Brown/Beige Adipose Tissues and the Emerging Role of Their Secretory Factors in Improving Metabolic Health: The Batokines. Biochimie, 184, 26-39.
https://doi.org/10.1016/j.biochi.2021.01.015
[16] Ziqubu, K., Dludla, P.V., Mabhida, S.E., et al. (2024) Brown Adipose Tis-sue-Derived Metabolites and Their Role in Regulating Metabolism. Metabolism, 150, Article ID: 155709.
https://doi.org/10.1016/j.metabol.2023.155709
[17] Scheja, L. and Heeren, J. (2019) The Endocrine Function of Adipose Tissues in Health and Cardiometabolic Disease. Nature Reviews Endocrinology, 15, 507-524.
https://doi.org/10.1038/s41574-019-0230-6
[18] Lee, E., Korf, H. and Vidal-Puig, A. (2023) An Adipocentric Perspective on the Development and Progression of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 78, 1048-1062.
https://doi.org/10.1016/j.jhep.2023.01.024
[19] Xiang, A.S., Meikle, P.J., Carey, A.L., et al. (2018) Brown Adipose Tissue and Lipid Metabolism: New Strategies for Identification of Activators and Biomarkers with Clinical Potential. Pharmacology & Therapeu-tics, 192, 141-149.
https://doi.org/10.1016/j.pharmthera.2018.07.002
[20] Wang, Z., Wang, Q.A., Liu, Y., et al. (2021) Energy Metabolism in Brown Adipose Tissue. FEBS Journal, 288, 3647- 3662.
https://doi.org/10.1111/febs.16015
[21] Ravussin, E. and Galgani, J.E. (2011) The Implication of Brown Adipose Tissue for Humans. Annual Review of Nutrition, 31, 33-47.
https://doi.org/10.1146/annurev-nutr-072610-145209
[22] Ussar, S., Lee, K.Y., Dankel, S.N., et al. (2014) ASC-1, PAT2, and P2RX5 Are Cell Surface Markers for White, Beige, and Brown Adipocytes. Science Translational Medicine, 6, 247ra103.
https://doi.org/10.1126/scitranslmed.3008490
[23] Shinoda, K., Luijten, I.H., Hasegawa, Y., et al. (2015) Genetic and Functional Characterization of Clonally Derived Adult Human Brown Adipocytes. Nature Medicine, 21, 389-394.
https://doi.org/10.1038/nm.3819
[24] Li, P., Song, R., Du, Y., et al. (2022) Adtrp Regulates Thermogenic Activity of Adipose Tissue via Mediating the Secretion of S100b. Cellular and Molecular Life Sciences, 79, Article No. 407.
https://doi.org/10.1007/s00018-022-04441-9
[25] Basse, A.L., Nielsen, K.N., Karavaeva, I., et al. (2023) NAMPT-Dependent NAD(+) Biosynthesis Controls Circadian Metabolism in a Tissue-Specific Manner. Proceedings of the National Academy of Sciences of the United States of America, 120, e2220102120.
https://doi.org/10.1073/pnas.2220102120
[26] Kotenkova, E., Fedulova, L. and Chernukha, I. (2022) White, Beige and Brown Adipose Tissue: Structure, Function, Specific Features and Possibility Formation and Divergence in Pigs. Foods and Raw Materials, 10, 10-18.
https://doi.org/10.21603/2308-4057-2022-1-10-18
[27] Shinde, A.B., Song, A. and Wang, Q.A. (2021) Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Frontiers in Endocrinology, 12, Article ID: 651763.
https://doi.org/10.3389/fendo.2021.651763
[28] Kajimura, S. and Saito, M. (2014) A New Era in Brown Adipose Tissue Biolo-gy: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 76, 225-249.
https://doi.org/10.1146/annurev-physiol-021113-170252
[29] Altinova, A.E. (2022) Beige Adipocyte as the Flame of White Adipose Tissue: Regulation of Browning and Impact of Obesity. Journal of Clinical Endocrinology & Metabolism, 107, e1778-e1788.
https://doi.org/10.1210/clinem/dgab921
[30] Daquinag, A.C., Gao, Z., Yu, Y., et al. (2022) Endothelial TrkA Coordinates Vas-cularization and Innervation in Thermogenic Adipose Tissue and Can Be Targeted to Control Metabolism. Molecular Metabolism, 63, Article ID: 101544.
https://doi.org/10.1016/j.molmet.2022.101544
[31] Singh, R., Barrios, A., Dirakvand, G., et al. (2021) Hu-man Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells, 10, Article No. 3030.
https://doi.org/10.3390/cells10113030
[32] Becher, T., Palanisamy, S., Kramer, D.J., et al. (2021) Brown Adipose Tissue Is Associated with Cardiometabolic Health. Nature Medicine, 27, 58-65.
https://doi.org/10.1038/s41591-020-1126-7
[33] Carpen-tier, A.C., Blondin, D.P., Haman, F., et al. (2023) Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 44, 143-192.
https://doi.org/10.1210/endrev/bnac015
[34] Xu, Z., You, W., Zhou, Y., et al. (2019) Cold-Induced Lipid Dynamics and Transcriptional Programs in White Adipose Tissue. BMC Biology, 17, Article No. 74.
https://doi.org/10.1186/s12915-019-0693-x
[35] Levy, S.B. and Leonard, W.R. (2022) The Evolutionary Significance of Human Brown Adipose Tissue: Integrating the Timescales of Adaptation. Evolutionary Anthropology, 31, 75-91.
https://doi.org/10.1002/evan.21930
[36] Scheele, C. and Nielsen, S. (2017) Metabolic Regulation and the Anti-Obesity Perspec-tives of Human Brown Fat. Redox Biology, 12, 770-775.
https://doi.org/10.1016/j.redox.2017.04.011
[37] Pilkington, A.C., Paz, H.A. and Wankhade, U.D. (2021) Beige Adipose Tissue Identification and Marker Specificity—Overview. Frontiers in Endocrinology, 12, Article ID: 599134.
https://doi.org/10.3389/fendo.2021.599134
[38] Hondares, E., Rosell, M., Diaz-Delfin, J., et al. (2011) Peroxisome Proliferator-Activated Receptor Alpha (PPARalpha) Induces PPARgamma Coactivator 1alpha (PGC-1alpha) Gene Ex-pression and Contributes to Thermogenic Activation of Brown Fat: Involvement of PRDM16. Journal of Biological Chemistry, 286, 43112-43122.
https://doi.org/10.1074/jbc.M111.252775
[39] Martinez-Tellez, B., Sanchez-Delgado, G., Acosta, F.M., et al. (2022) No Evi-dence of Brown Adipose Tissue Activation after 24 Weeks of Supervised Exercise Training in Young Sedentary Adults in the ACTIBATE Randomized Controlled Trial. Nature Communications, 13, Article No. 5259.
https://doi.org/10.1038/s41467-022-32502-x
[40] Harb, E., Kheder, O., Poopalasingam, G., et al. (2023) Brown Adipose Tissue and Regulation of Human Body Weight. Diabetes/Metabolism Research and Reviews, 39, e3594.
https://doi.org/10.1002/dmrr.3594
[41] Peng, W.Q., Xiao, G., Li, B.Y., et al. (2021) l-Theanine Activates the Browning of White Adipose Tissue through the AMPK/alpha-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-Induced Obesity in Mice. Diabetes, 70, 1458-1472.
https://doi.org/10.2337/db20-1210
[42] Osuna-Prieto, F.J., Martinez-Tellez, B., Segura-Carretero, A., et al. (2021) Activation of Brown Adipose Tissue and Promotion of White Adipose Tissue Browning by Plant-Based Dietary Components in Rodents: A Sys-tematic Review. Advances in Nutrition, 12, 2147-2156.
https://doi.org/10.1093/advances/nmab084
[43] De Carvalho, F.G., Brandao, C.F.C., Batitucci, G., et al. (2021) Taurine Supplementation Associated with Exercise Increases Mitochondrial Activity and Fatty Acid Oxidation Gene Expression in the Subcutaneous White Adipose Tissue of Obese Women. Clinical Nutrition, 40, 2180-2187.
https://doi.org/10.1016/j.clnu.2020.09.044
[44] Bao, J.F., She, Q.Y., Hu, P.P., et al. (2022) Irisin, a Fascinating Field in Our Times. Trends in Endocrinology and Metabolism, 33, 601-613.
https://doi.org/10.1016/j.tem.2022.06.003
[45] Homan, E.P., Brandao, B.B., Softic, S., et al. (2021) Differential Roles of FOXO Transcription Factors on Insulin Action in Brown and White Adi-pose Tissue. Journal of Clinical Investigation, 131, e143328.
https://doi.org/10.1172/JCI143328
[46] Johann, K., Cremer, A.L., Fischer, A.W., et al. (2019) Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Reports, 27, 3385-3400e3.
https://doi.org/10.1016/j.celrep.2019.05.054
[47] Xu, Z., You, W., Liu, J., et al. (2020) Elucidating the Regulatory Role of Mel-atonin in Brown, White, and Beige Adipocytes. Advances in Nutrition, 11, 447-460.
https://doi.org/10.1093/advances/nmz070
[48] Abu-Odeh, M., Zhang, Y., Reilly, S.M., et al. (2021) FGF21 Promotes Thermo-genic Gene Expression as an Autocrine Factor in Adipocytes. Cell Reports, 35, Article ID: 109331.
https://doi.org/10.1016/j.celrep.2021.109331
[49] Liu, C., Schonke, M., Zhou, E., et al. (2022) Pharmacological Treatment with FGF21 Strongly Improves Plasma Cholesterol Metabolism to Reduce Atherosclerosis. Cardiovascular Research, 118, 489-502.
https://doi.org/10.1093/cvr/cvab076
[50] Choi, Y. and Yu, L. (2021) Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharmaceutical Research, 38, 549-567.
https://doi.org/10.1007/s11095-021-03027-7
[51] Darcy, J. and Tseng, Y.H. (2019) ComBATing Aging-Does Increased Brown Adipose Tissue Activity Confer Longevity? GeroScience, 41, 285-296.
https://doi.org/10.1007/s11357-019-00076-0
[52] Um, J.H., Park, S.Y., Hur, J.H., et al. (2022) Bone Morphogenic Protein 9 Is a Novel Thermogenic Hepatokine Secreted in Response to Cold Exposure. Metabolism, Clinical and Experimental, 129, Article ID: 155139.
https://doi.org/10.1016/j.metabol.2022.155139
[53] Maak, S., Norheim, F., Drevon, C.A., et al. (2021) Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews, 42, 436-456.
https://doi.org/10.1210/endrev/bnab003
[54] Santos, R.S., Frank, A.P., Fatima, L.A., et al. (2018) Activation of Estrogen Receptor Alpha Induces Beiging of Adipocytes. Molecular Metabolism, 18, 51-59.
https://doi.org/10.1016/j.molmet.2018.09.002
[55] Kaikaew, K., Grefhorst, A. and Visser, J.A. (2021) Sex Differ-ences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Frontiers in Endocrinology, 12, Arti-cle ID: 652444.
https://doi.org/10.3389/fendo.2021.652444
[56] Xue, L., Sun, J., Liu, J., et al. (2022) Maternal Secretin Ameliorates Obesity by Promoting White Adipose Tissue Browning in Offspring. EMBO Reports, 23, e54132.
https://doi.org/10.15252/embr.202154132
[57] He, Y., Liu, R.X., Zhu, M.T., et al. (2019) The Browning of White Adipose Tis-sue and Body Weight Loss in Primary Hyperparathyroidism. EBioMedicine, 40, 56-66.
https://doi.org/10.1016/j.ebiom.2018.11.057
[58] Whitehead, A., Krause, F.N., Moran, A., et al. (2021) Brown and Beige Adi-pose Tissue Regulate Systemic Metabolism through a Metabolite Interorgan Signaling Axis. Nature Communications, 12, Article No. 1905.
https://doi.org/10.1038/s41467-021-22272-3
[59] Xiao, F., Jiang, H., Li, Z., et al. (2023) Reduced Hepatic Bradykinin Degrada-tion Accounts for Cold-Induced BAT Thermogenesis and WAT Browning in Male Mice. Nature Communications, 14, Article No. 2523.
https://doi.org/10.1038/s41467-023-38141-0
[60] Pydi, S.P., Jain, S., Tung, W., et al. (2019) Adipocyte Beta-Arrestin-2 Is Es-sential for Maintaining Whole Body Glucose and Energy Homeostasis. Nature Communications, 10, Article No. 2936.
https://doi.org/10.1038/s41467-019-11003-4
[61] Wu, T., Liu, Q., Li, Y., et al. (2021) Feeding-Induced Hepatokine, Manf, Ameliorates Diet-Induced Obesity by Promoting Adipose Browning via p38 MAPK Pathway. Journal of Experimental Medicine, 218, e20201203.
https://doi.org/10.1084/jem.20201203
[62] Bunk, J. and Kazak, L. (2022) Calcium Burns Beige. Journal of Experimental Medi-cine, 219, e20220382.
https://doi.org/10.1084/jem.20220382
[63] Cheung, W.W., Hao, S., Zheng, R., et al. (2021) Targeting Interleukin-1 for Revers-ing Fat Browning and Muscle Wasting in Infantile Nephropathic Cystinosis. Journal of Cachexia, Sarcopenia and Muscle, 12, 1296-1311.
https://doi.org/10.1002/jcsm.12744
[64] Beppu, L.Y., Mooli, R.G.R., Qu, X., et al. (2021) Tregs Facilitate Obesity and Insulin Resistance via a Blimp-1/IL-10 Axis. JCI Insight, 6, e140644.
https://doi.org/10.1172/jci.insight.140644
[65] Abdullahi, A., Auger, C., Stanojcic, M., et al. (2019) Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns. An-nals of Surgery, 269, 554-563.
https://doi.org/10.1097/SLA.0000000000002465
[66] Wang, Q., Li, H., Tajima, K., et al. (2022) Post-Translational Control of Beige Fat Biogenesis by PRDM16 Stabilization. Nature, 609, 151-158.
https://doi.org/10.1038/s41586-022-05067-4
[67] Wang, W., Ishibashi, J., Trefely, S., et al. (2019) A PRDM16-Driven Meta-bolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metabolism, 30, 174-189 e5.
https://doi.org/10.1016/j.cmet.2019.05.005
[68] Zhao, S., Nie, T., Li, L., et al. (2023) Androgen Receptor Is a Negative Regula-tor of PRDM16 in Beige Adipocyte. Advanced Science, 10, e2300070.
https://doi.org/10.1002/advs.202300070
[69] Zhong, Y., Wang, Y., Li, X., et al. (2023) PRMT4 Facilitates White Adipose Tissue Browning and Thermogenesis by Methylating PPARgamma. Diabetes, 72, 1095-1111.
https://doi.org/10.2337/db22-1016
[70] Xu, X., Krumm, C., So, J.S., et al. (2018) Preemptive Activa-tion of the Integrated Stress Response Protects Mice from Diet-Induced Obesity and Insulin Resistance by Fibroblast Growth Factor 21 Induction. Hepatology, 68, 2167-2181.
https://doi.org/10.1002/hep.30060
[71] Fan, H., Zhang, Y., Zhang, J., et al. (2020) Cold-Inducible Klf9 Regulates Thermogene-sis of Brown and Beige Fat. Diabetes, 69, 2603-2618.
https://doi.org/10.2337/db19-1153
[72] Ceddia, R.P., Zurawski, Z., Thompson Gray, A., et al. (2023) Gbetagamma-SNAP25 Exocytotic Brake Removal Enhances Insulin Action, Promotes Adipocyte Browning, and Protects against Diet-Induced Obesity. Journal of Clinical Investigation, 133, e160617.
https://doi.org/10.1172/JCI160617
[73] Nanduri, R., Furusawa, T., Lobanov, A., et al. (2022) Epigenetic Regulation of White Adipose Tissue Plasticity and Energy Metabolism by Nucleosome Binding HMGN Proteins. Nature Communications, 13, Article No. 7303.
https://doi.org/10.1038/s41467-022-34964-5
[74] Huang, L., Liu, P., Yang, Q., et al. (2022) The KRAB Domain-Containing Protein ZFP961 Represses Adipose Thermogenesis and Energy Expenditure through Interaction with PPARalpha. Advanced Science, 9, e2102949.
https://doi.org/10.1002/advs.202102949
[75] Rabiee, A., Plucinska, K., Isidor, M.S., et al. (2021) White Adipose Remodeling during Browning in Mice Involves YBX1 to Drive Thermogenic Commitment. Molecular Metabolism, 44, Article ID: 101137.
https://doi.org/10.1016/j.molmet.2020.101137
[76] Solivan-Rivera, J., Yang Loureiro, Z., DeSouza, T., et al. (2022) A Neuro-genic Signature Involving Monoamine Oxidase—A Controls Human Thermogenic Adipose Tissue Development. Elife, 11, e78945.
https://doi.org/10.7554/eLife.78945
[77] Li, B., Li, L., Li, M., et al. (2019) Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Reports, 26, 2720-2737e5.
https://doi.org/10.1016/j.celrep.2019.02.015
[78] Le Roy, T., Moens de Hase, E., Van Hul, M., et al. (2022) Dysosmobacter Welbionis Is a Newly Isolated Human Commensal Bacterium Preventing Diet-Induced Obesity and Metabolic Disorders in Mice. Gut, 71, 534-543.
https://doi.org/10.1136/gutjnl-2020-323778
[79] Xu, Y., Wang, N., Tan, H.Y., et al. (2020) Panax Notoginseng Saponins Mod-ulate the Gut Microbiota to Promote Thermogenesis and Beige Adipocyte Reconstruction via Leptin-Mediated AMPKalpha/STAT3 Signaling in Diet-Induced Obesity. Theranostics, 10, 11302-11323.
https://doi.org/10.7150/thno.47746
[80] Arias, N., Aguirre, L., Fernández-Quintela, A., et al. (2015) MicroRNAs Involved in the Browning Process of Adipocytes. Journal of Physiology and Biochemistry, 72, 509-521.
https://doi.org/10.1007/s13105-015-0459-z
[81] Yin, H., Pasut, A., Soleimani, V.D., et al. (2013) MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16. Cell Metabolism, 17, 210-224.
https://doi.org/10.1016/j.cmet.2013.01.004
[82] Sun, L., Xie, H., Mori, M.A., et al. (2011) Mir193b-365 Is Essential for Brown Fat Differentiation. Nature Cell Biology, 13, 958-965.
https://doi.org/10.1038/ncb2286
[83] Kim, J., Okla, M., Erick-son, A., et al. (2016) Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-Dependent Up-Regulation of miR-30b and miR-378. Journal of Biological Chemistry, 291, 20551-20562.
https://doi.org/10.1074/jbc.M116.721480
[84] Pan, R. and Chen, Y. (2022) Latest Advancements on Combating Obesity by Targeting Human Brown/Beige Adipose Tissues. Frontiers in Endocrinology, 13, Article ID: 884944.
https://doi.org/10.3389/fendo.2022.884944
[85] Cheung, W.W., Hao, S., Wang, Z., et al. (2020) Vitamin D Repletion Amelio-rates Adipose Tissue Browning and Muscle Wasting in Infantile Nephropathic Cystinosis-Associated Cachexia. Journal of Cachexia, Sarcopenia and Muscle, 11, 120-134.
https://doi.org/10.1002/jcsm.12497
[86] Reilly, S.M., Abu-Odeh, M., Ameka, M., et al. (2021) FGF21 Is Required for the Metabolic Benefits of IKKepsilon/TBK1 Inhibition. Journal of Clinical Investigation, 131, e145546.
https://doi.org/10.1172/JCI145546
[87] Auger, C., Knuth, C.M., Abdullahi, A., et al. (2019) Metformin Prevents the Pathologi-cal Browning of Subcutaneous White Adipose Tissue. Molecular Metabolism, 29, 12-23.
https://doi.org/10.1016/j.molmet.2019.08.011
[88] Deng, J., Guo, Y., Yuan, F., et al. (2020) Autophagy Inhibition Prevents Glucocorticoid-Increased Adiposity via Suppressing BAT Whitening. Autophagy, 16, 451-465.
https://doi.org/10.1080/15548627.2019.1628537
[89] Cheng, L., Wang, J., An, Y., et al. (2022) Mulberry Leaf Activates Brown Adipose Tissue and Induces Browning of Inguinal White Adipose Tissue in Type 2 Diabetic Rats through Regulating AMP-Activated Protein Kinase Signalling Pathway. British Journal of Nutrition, 127, 810-822.
https://doi.org/10.1017/S0007114521001537
[90] Seoane-Collazo, P., Linares-Pose, L., Rial-Pensado, E., et al. (2019) Central Nicotine Induces Browning through Hypothalamic Kappa Opioid Receptor. Nature Communications, 10, Article No. 4037.
https://doi.org/10.1038/s41467-019-12004-z
[91] Knights, A.J., Vohralik, E.J., Houweling, P.J., et al. (2020) Eosinophil Func-tion in Adipose Tissue Is Regulated by Kruppel-Like Factor 3 (KLF3). Nature Communications, 11, Article No. 2922.
https://doi.org/10.1038/s41467-020-16758-9
[92] Hu, Y., Liu, L., Chen, Y., et al. (2023) Cancer-Cell-Secreted miR-204-5p Induces Leptin Signalling Pathway in White Adipose Tissue to Promote Cancer-Associated Cachexia. Nature Communications, 14, Article No. 5179.
https://doi.org/10.1038/s41467-023-40571-9
[93] Yuan, F., Jiang, H., Yin, H., et al. (2020) Activation of GCN2/ATF4 Signals in Amygdalar PKC-Delta Neurons Promotes WAT Browning under Leucine Deprivation. Nature Communications, 11, Article No. 2847.
https://doi.org/10.1038/s41467-020-16662-2
[94] Maliszewska, K. and Kretowski, A. (2021) Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. International Journal of Molecular Sciences, 22, Article No. 1530.
https://doi.org/10.3390/ijms22041530
[95] Tseng, Y.H. (2023) Adipose Tissue in Communication: Within and without. Nature Reviews Endocrinology, 19, 70-71.
https://doi.org/10.1038/s41574-022-00789-x
[96] Hwang, S. and Gao, B. (2019) How Does Your Fat Affect Your Liver When You Drink? Journal of Clinical Investigation, 129, 2181-2183.
https://doi.org/10.1172/JCI128984
[97] Roth, C.L., Molica, F. and Kwak, B.R. (2021) Browning of White Adipose Tissue as a Therapeutic Tool in the Fight against Atherosclerosis. Metabolites, 11, Article No. 319.
https://doi.org/10.3390/metabo11050319
[98] Doukbi, E., Soghomonian, A., Sengenes, C., et al. (2022) Browning Epicardial Adipose Tissue: Friend or Foe? Cells, 11, Article No. 991.
https://doi.org/10.3390/cells11060991
[99] Petruzzelli, M., Schweiger, M., Schreiber, R., et al. (2014) A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metabolism, 20, 433-447.
https://doi.org/10.1016/j.cmet.2014.06.011
[100] Anderson, L.J., Lee, J., Anderson, B., et al. (2022) Whole-Body and Adipose Tissue Metabolic Phenotype in Cancer Patients. Journal of Cachexia, Sarcopenia and Muscle, 13, 1124-1133.
https://doi.org/10.1002/jcsm.12918
[101] Gaspar, R.C., Pauli, J.R., Shulman, G.I., et al. (2021) An Update on Brown Adipose Tissue Biology: A Discussion of Recent Findings. American Journal of Physiology: Endocrinology and Metabolism, 320, E488-E495.
https://doi.org/10.1152/ajpendo.00310.2020