一类SIS模型病原体毒力进化动力学分析
Evolutionary Dynamics Analysis of Pathogen Virulence in a Class of SIS Model
DOI: 10.12677/AAM.2024.131043, PDF, 下载: 69  浏览: 132 
作者: 雷雅媛, 徐 捷:中国地质大学数学与物理学院,湖北 武汉
关键词: 毒力进化适应动力学进化分支进化动力学模型Virulence Evolution Adaptive Dynamics Branching of Evolution Evolutionary Dynamics Model
摘要: 本文利用适应性动力学等理论对病原体的毒力演化进行分析,讨论可能出现的进化效果,能够为疾病的治疗方案设计、防控策略的制订提供一定的理论依据。通过引入经典的传染病SIS模型,应用进化入侵分析方法来讨论病原体能否产生进化分支,结合进化动力学理论研究了进化稳定性与感染者的恢复率、出生率之间的关系. 研究结果表明,如果权衡函数在进化奇异策略处是凹的,则该策略是收敛稳定并且是进化稳定的,即该策略为连续稳定策略,病原体不会产生进化分支。
Abstract: In this paper, adaptive dynamics and other theories are used to analyze the virulence evolution of pathogens and discuss the possible evolutionary effects, which can provide a certain theoretical basis for the design of disease treatment and the formulation of prevention and control strategies. By introducing the classic infectious disease SIS model and applying evolutionary intrusion analysis methods, this paper discusses whether pathogens can generate evolutionary branches, and combines evolutionary dynamics theory to study the relationship between evolutionary stability and the recovery rate and birth rate of infected individuals. The results show that under this model, if the trade-off function is concave at the evolutionary singular strategy, then the strategy is convergence stable and evolutionarily stable, that is, the strategy is continuously stable and the pathogen does not have evolutionary branching.
文章引用:雷雅媛, 徐捷. 一类SIS模型病原体毒力进化动力学分析[J]. 应用数学进展, 2024, 13(1): 430-443. https://doi.org/10.12677/AAM.2024.131043

参考文献

[1] 孟新柱, 张文艳, 赵胜男. 种群模型在生物进化研究中的应用 [J]. 数学建模及其应用, 2014, 3(1): 13-21.
[2] Smith, J.M. and Price, G.R. (1973) The Logic of Animal Conflict. Nature, 246, 15-18.
https://doi.org/10.1038/246015a0
[3] Metz, J.A.J., Nisbet, R.M. and Geritz, S.A.H. (1992) How Should We Define ‘Fitness’ for General Ecological Scenarios? Trends in Ecology and Evolution, 7, 198-202.
https://doi.org/10.1016/0169-5347(92)90073-K
[4] Dieckmann, U. and Law, R. (1996) The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes. Journal of Mathematical Biology, 34, 579-612.
https://doi.org/10.1007/BF02409751
[5] Alizon, S., Hurford, A., Mideo, N., et al. (2009) Virulence Evolution and the Trade-Off Hy- pothesis: History, Current State of Affairs and the Future. Journal of Evolutionary Biology, 22, 245-259.
https://doi.org/10.1111/j.1420-9101.2008.01658.x
[6] Bowers, R.G., Hoyle, A., White, A., et al. (2005) The Geometric Theory of Adaptive Evolution: Trade-Off and Invasion Plots. Journal of Theoretical Biology, 233, 363-377.
https://doi.org/10.1016/j.jtbi.2004.10.017
[7] Best, A., White, A. and Boots, M. (2009) The Implications of Coevolutionary Dynamics to Host-Parasite Interactions. The American Naturalist, 173, 779-791.
https://doi.org/10.1086/598494
[8] Boldin, B. and Diekmann, O. (2008) Superinfections Can Induce Evolutionarily Stable Coex- istence of Pathogens. Journal of Mathematical Biology, 56, 635-672.
https://doi.org/10.1007/s00285-007-0135-1
[9] Zu, J., Fu, S., Li, M., et al. (2018) Evolutionary Branching of Host Resistance Induced by Density-Dependent Mortality. bioRxiv: 410589.
https://doi.org/10.1101/410589
[10] Zu, J., Li, M., Gu, Y., et al. (2020) Modelling the Evolutionary Dynamics of Host Resistance- Related Traits in a Susceptible-Infected Community with Density-Dependent Mortality. Dis- crete and Continuous Dynamical Systems-B, 25, 3049-3086.
https://doi.org/10.3934/dcdsb.2020051
[11] Yang, Y., Ma, C. and Zu, J. (2022) Coevolutionary Dynamics of Host-Pathogen Interaction with Density-Dependent Mortality. Journal of Mathematical Biology, 85, Article No. 15.
https://doi.org/10.1007/s00285-022-01782-8
[12] Best, A., Bowers, R. and White, A. (2015) Evolution, the Loss of Diversity and the Role of Trade-Offs. Mathematical Biosciences, 264, 86-93.
https://doi.org/10.1016/j.mbs.2015.03.011
[13] Restif, O. and Koella, J.C. (2003) Shared Control of Epidemiological Traits in a Coevolutionary Model of Host-Parasite Interactions. The American Naturalist, 161, 827-836.
https://doi.org/10.1086/375171
[14] Wang, M. and Jiang, W. (2023) Virulence Evolution of Toxoplasma gondii within a Multi-Host System. Evolutionary Applications, 16, 721-737.
https://doi.org/10.1111/eva.13530
[15] Jiang, W. Wang and M. (2023) Geographical Difference of the Virulence of Toxoplasma gondii. Applied Mathematical Modelling, 119, 433-446.
https://doi.org/10.1016/j.apm.2023.02.021