MFI型沸石分离CO2-N2混合物的热力学研究
Thermodynamics for the Separation of CO2-N2 Mixturesby Zeolite MFI
DOI: 10.12677/HJCET.2012.23011, PDF, HTML,  被引量 下载: 3,448  浏览: 10,611  国家自然科学基金支持
作者: 卢利健, 吴湘铖, 付 东*:华北电力大学环境科学与工程学院
关键词: CO2-N2混合物MFI型沸石吸附Monte Carlo模拟PC-SAFTCO2-N2 Mixture; Zeolite MFI; Adsorption Isotherms; Monte Carlo Simulation; PC-SAFT
摘要: Monte Carlo模拟方法,模拟了二氧化碳(CO2)-氮气(N2)混合烟气在MFI型沸石中的吸附等温线,分析了温度、压力及烟气组成等条件对吸附量的影响,以及MFI型沸石对模拟烟气中CO2的吸附选择性.用微扰链统计缔合流体理论(PC-SAFT)研究了不同温度下CO2-N2二元体系的p-x相图,阐明了从脱吸气体中液化分离CO2所需的温度范围
Abstract: The adsorption isotherms of flue gas containing carbon dioxide (CO2) and nitrogen (N2) confined in zeolite MFI were investigated by using the Monte Carlo simulation technology. The temperature, pressure and composition dependence of the adsorption capacity of simulated flue gas was analyzed, and the selectivity of CO2 was determined. The p-x diagrams for CO2-N2 binary mixture at different temperatures were calculated by using PC-SAFT, and the temperatures under which CO2 can be liquefied from the flue gas were illustrated.
文章引用:卢利健, 吴湘铖, 付东. MFI型沸石分离CO2-N2混合物的热力学研究[J]. 化学工程与技术, 2012, 2(3): 61-66. http://dx.doi.org/10.12677/HJCET.2012.23011

参考文献

[1] Z. Yong, V. Mata. Adsorption of carbon dioxide at high tem- perature: A review. Separation and Purification Technology, 2002, 26: 195-205.
[2] R. Humayun, D. Tomasko. High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon. AIChE Jour- nal, 2000, 46(10): 2065-2075.
[3] V. A. Bakaev, W. A. Steele. Adsorption of CO2 and Ar on glass surfaces. Computer simulation and experimental study. Journal of Chemical Physics, 1999, 111(21): 9813-9822.
[4] W. B. Gao, D. L. Tomasko. High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. Langmuir, 2004, 20(19): 8083-8089.
[5] O. D. Giovanni, W. Dörfler. Adsorption of supercritical carbon dioxide on silica. Langmuir, 2001, 17(14): 4316-4321.
[6] H. Grajek. Regeneration of adsorbents by the use of liquid, sub- critical and supercritical carbon dioxide. Adsorption Science & Technology, 2000, 18: 347-371.
[7] T. Hocker, A. Rajen-dran. Measuring and modeling supercritical adsorption in porous solids. Carbon dioxide on 13X zeolite and on silica gel. Langmuir, 2003, 19(4): 1254-1267.
[8] S. W. Rutherford, D. D. Do. Adsorption dy-namics of carbon di- oxide on a carbon molecular sieve 5A. Carbon, 2000, 38: 1339- 1350.
[9] J. Zhou, W. C. Wang. Adsorption and diffusion of supercritical carbon dioxide in slit pores. Langmuir, 2000, 16(21): 8063- 8070.
[10] E. Pantatosaki, D. Psomadopoulos. Micro-pore size distributions from CO2 using grand canonical Monte Carlo at ambient tem- peratures: Cylindrical versus slit pore geometries. Col-loids and Surfaces A, Physicochemical & Engineering Aspects, 2004, 241 (1-3): 127-135.
[11] S. Samios, A. K. Stubos. The structure of adsorbed CO2 in slit- like micropores at low and high temperature and the resulting micropore size distribution based on GCMC simulations. Jour- nal of Colloid and Interface Science, 2000, 224(2): 272-290.
[12] X. Peng, X. Cheng and D. P. Cao. Computer simulation for adsorption and separation of CO2/CH4/H2/N2 pure and mixtures by UMCM-1 and UMCM-2 metal organic frameworks. Journal of Materi-als Chemistry, 2011, 21(30): 11259-11270.
[13] X. Peng, D. P. Cao and W. C. Wang. Computational study on purification of CO2 from natural gas by C60 intercalated graphite. Industrial & Engineering Chemistry Research, 2010, 49(18): 8787-8796.
[14] Q. Xu, D. H. Liu and Q. Y. Yang. Li-modified metal-organic frameworks for CO2/CH4 separation: A route to achieving high adsorption selectivity. Journal of Materials Chemistry, 2010, 20 (4): 706-714.
[15] Q. Y. Yang, Q. Xu and C. L. Zhong. Molecular simulation of separation of CO2 from flue gases in CU-BTC metal-organic framework. AIChE Journal, 2007, 53(11): 2832-2840.
[16] Z. Yang, X. N. Yang and Z. J. Xu. Molecular simulations of structures and solvation free energies of passivated gold nano- particles in supercritical CO2. Journal of Chemical Physics, 2010, 133(9): Article ID: 094702.
[17] J. Gross, G. Sadowski. Perturbed-chain SAFT:  An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244-1260.
[18] D. Fu, L. L. Liang and X.-S Li. Investigation of va-por-liquid equilibria for supercritical carbon dioxide and hydrocarbon mix- tures by perturbed-chain statistical associating fluid theory. In- dustrial & Engineering Chemistry Research, 2006, 45(12): 4364- 4370.
[19] G. T. Kokotailo, S. L. Lawton, D. H. Olson and W. M. Meier. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272: 437- 438.
[20] H. Li, J. Yan. Evaluating cubic equations of state for calcu-lation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Applied Energy, 2009, 86(6): 826-836.
[21] M. Rzepka, P. Lamp and M. A. De La Casa-Lillo. Phy-sisorption of hydrogen on microporous carbon and carbon nanotubes. The Journal of Physical Chemistry B, 1998, 102(52): 10894-10898.