PDA功能化MXene负载的PtCu双金属催化剂应用于甲醇的电催化性能
PDA-Functionalized MXenesupported PtCu Nanoparticles Catalyst for Their Electrocatalytic Performance on Methanol Oxidation
DOI: 10.12677/JOCR.2023.114033, PDF, 下载: 102  浏览: 327  国家自然科学基金支持
作者: 张荣洁, 杨贝贝*:南通大学化学化工学院,江苏 南通
关键词: 燃料电池催化剂PtCu双金属Mxene甲醇氧化Full Cell Catalyst PtCu Bimetallic Mxene Methanol Oxidation
摘要: 目前,燃料电池作为能量转换效率高、便携、绿色环保、能够产生可再生能源的设备,吸引了许多研发人员的注意,而当前燃料电池的发展受限于其阴阳两极催化剂材料的研究和发展。铂(Pt)作为燃料电池的主要阳极催化剂材料,然而成本和电催化活性是制约其进一步发展的重要因素之一。MXene作为一种具有高导电率和大比表面积的二维层状化合物,可以作为催化剂载体负载金属Pt纳米颗粒,增加纳米Pt颗粒分散性的同时减少贵金属Pt的使用。基于此,本研究以PDA功能化MXene作为载体,通过一锅法制备不同比例的PtCu双金属纳米催化剂,并对其形貌结构进行表征,发现PDA-MXene/PtCu的双金属催化剂呈现出空心球状结构。通过调节PtCu双金属和PDA功能化MXene之间的比例,发现PDA-MXene/Pt3Cu1催化剂相比于其他催化剂,在碱性条件下对甲醇的氧化具有更好的催化性能和稳定性能。
Abstract: At present, fuel cells as energy conversion efficiency, portable, green and renewable energy equipment, have attracted the attention of many researchers. Nevertheless, the current development of fuel cells is limited by the development of catalysts for anode and cathode reaction. Platinum (Pt) is the main anode catalyst material for fuel cells, but its cost and electrocatalytic activity are important factors restricting its further development. As a two-dimensional layered compound with high conductivity and large specific surface area, MXene can be used as catalyst carrier to support metal Pt nanoparticles, thereby increasing the dispersion of Pt nanoparticles and reducing the use of precious Pt. In this regard, PtCu bimetallic nanocatalysts with different proportions are prepared by one-pot method using PDA-functionalized MXene as the carrier, and their morphology and structure are characterized. It was found that PDA-MXene/PtCu bimetallic catalysts showed hollow spherical structure. By adjusting the ratio between PtCu bimetal and PDA-functionalized MXene, the PDA-MXene/Pt3Cu1 catalyst displayed the higher electrocatalytic performance and stability for methanol oxidation under alkaline as compared to other catalysts.
文章引用:张荣洁, 杨贝贝. PDA功能化MXene负载的PtCu双金属催化剂应用于甲醇的电催化性能[J]. 有机化学研究, 2023, 11(4): 356-364. https://doi.org/10.12677/JOCR.2023.114033

参考文献

[1] 王璋保. 对我国能源可持续发展战略问题的思考[J]. 工业加热, 2003, 1(2): 1-4.
[2] 郭仕权, 孙亚昕, 李从举. 直接甲醇燃料电池(DMFC)阳极过渡金属基催化剂的研究进展[J]. 工程科学学报, 2022, 44(4): 625-640.
[3] Bin, D., Ren, F.F., Wang, H.W., Zhang, K., Yang, B.B., Zhai, C.Y., Zhu, M.S., Yang, P. and Du, Y.K. (2014) Facile Synthesis of PVP-Assisted PtRu/RGO Nanocomposites with High Electrocatalytic Performance for Methanol Oxidation.RSC Advance, 4, 39612-39618.
https://doi.org/10.1039/C4RA07742C
[4] Liu, A., Yang, Y., Shi, D., Ren, X. and Ma, T. (2021) Theoretical Study of the Mechanism of Methanol Oxidation on PtNi Catalyst. Inorganic Chemistry Communications, 123, 108362.
https://doi.org/10.1016/j.inoche.2020.108362
[5] Zhang, B.W., Yang, H.L., Wang, Y.X., Dou, S.X. and Liu, H.K. (2018) A Comprehensive Review on Controlling Surface Composition of Pt-Based Bimetallic Electrocatalysts. Advanced Energy Materials, 8, 1703597.
https://doi.org/10.1002/aenm.201703597
[6] Ao, W., Ren, H., Cheng, C., Fan, Z., Yin, P., Qin, Q., Zhang, Q. and Dai, L. (2023) Mesoporous PtPb Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution and Ethanol Oxidation. Angewandte Chemie, 62, e202305158.
https://doi.org/10.1002/anie.202305158
[7] Li, X., Zhou, Y., Du, Y., Xu, J., Wang, W., Chen, Z. and Cao, J. (2019) PtCu Nanoframes as Ultra-High Performance Electrocatalysts for Methanol Oxidation. International Journal of Hydrogen Energy, 44, 18050-18057.
https://doi.org/10.1016/j.ijhydene.2019.05.072
[8] Chen, J.Y., Lim, S.C., Kuo, C.H. and Tuan, H.Y. (2019) Sub-1 NM PtSn Ultrathin Sheet as an Extraordinary Electrocatalyst for Methanol and Ethanol Oxidation Reactions. Journal of Colloid and Interface Science, 545, 54-62.
https://doi.org/10.1016/j.jcis.2019.02.082
[9] Fu, S., Zhu, C., Song, J., Engelhard, M.H., He, Y., Du, D., Wang, C. and Lin, Y. (2016) Three-Dimensional PtNi Hollow Nanochains as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction. Journal of Materials A, 114, 8755-8761.
https://doi.org/10.1039/C6TA01801G
[10] Mürtz, S.D., Musialek, F., Pfänder, N. and Palkovits, R. (2023) Bimetallic PtCu/C Catalysts for Glycerol Assisted Hydrogen Evolution in Acidic Media. ChemElectroChem, 10, e20221114.
https://doi.org/10.1002/celc.202300194
[11] 宋天山. PtCu双功能纳米催化材料的合成及其电催化性能研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2020.
[12] Lu, L., Chen, S., Thota, S., Wang, X., Wang, Y., Zou, S., Fan, J. and Zhao, J. (2017) Composition Controllable Synthesis of PtCunanodendrites with Efficient Electrocatalytic Activity for Methanol Oxidation Induced by High Index Surface and Electronic Interaction. The Journal of Physical Chemistry C, 121, 19796-19806.
https://doi.org/10.1021/acs.jpcc.7b05629
[13] Huang, W.C., Hu, L.P., Tang, Y.F., Xie, Z.J. and Zhang, H. (2020) Recent Advances in Functional 2D MXene-Based Nanostructures for Next-Generation Devices. Advanced Functional Materials, 30, 2005223.
https://doi.org/10.1002/adfm.202005223
[14] Nan, J., Guo, X., Xiao, J., Li, X., Chen, W., Wu, W., Liu, H., Wang, Y., Wu, M. and Wang, G. (2019) Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. Small, 17, 1902085.
https://doi.org/10.1002/smll.201902085
[15] Ma, K., Jiang, H., Hu, Y. and Li, C. (2018) 2D Nanospace Confined Synthesis of Pseudocapacitance Dominated MoS2-in-Ti3C2 Superstructure for Ultrafast and Stable Li/Na-ion Batteries. Advanced Functional Materials, 28, 1804306.
https://doi.org/10.1002/adfm.201804306
[16] Chen, Q., Jiang, W. and Fan, G. (2020) Pt Nanoparticles on Ti3C2Tx-Based MXenes as Efficient Catalysts for the Selective Hydro-Genation of Nitroaromatic Compounds to Amines. Dalton Transactions, 49, 14914.
https://doi.org/10.1039/D0DT02594A
[17] Zhang, X., Zhang, Z.H. and Zhou, Z. (2018) MXene-Based Materials for Electrochemical Energy Storage. Journal of Energy Chemistry, 27, 73-85.
https://doi.org/10.1016/j.jechem.2017.08.004
[18] Min, S.X., Xue, Y., Wang, F., Zhang, Z.G. and Zhu, H.T. (2019) Ti3C2TxMXene Nanosheet-Confined Pt Nanoparticles Efficiently Catalyze Dye-Sensitized Photocatalytic Hydrogen Evolution Reaction. Chemical Communication, 55, 10631-10634.
https://doi.org/10.1039/C9CC05489H
[19] Pi, M., Wang, X., Wang, Z. and Ran, R. (2021) Sustainable MXene/PDA Hydrogel with Core-Shell Structure Tailored for Highly Efficient Solar Evaporation and Long-Term Desalination. Polymer, 230, 124075.
https://doi.org/10.1016/j.polymer.2021.124075
[20] Li, B., Ye, R., Wang, Q., Liu, X., Fang, P. and Hu, J. (2021) Facile Synthesis of Coral-Like Pt Nanoparticles/MXene (Ti3C2Tx) with Efficient Hydrogen Evolution Reaction Activity. Ionics, 27, 1221-1231.
https://doi.org/10.1007/s11581-020-03884-z
[21] Bin, D., Ren, F., Wang, Y., Zhai, C., Wang, C., Guo, J., Yang, P. and Du, Y. (2015) Pd-Nanoparticle-Supported, PDDA-Functionalized Graphene as a Promising Catalyst for Alcohol Oxidation. Chemistry: An Asian Journal, 10, 667-673.
https://doi.org/10.1002/asia.201403142
[22] Shervedani, P.K. and Amini, A. (2014) Novel Graphene-Gold Hybrid Nanostructures Constructed via Sulfur Modified Graphene: Preparation and Characterization by Surface and Electrochemical Techniques. Electrochimica Acta, 121, 376-385.
https://doi.org/10.1016/j.electacta.2013.12.044
[23] Maiyalagan, T. and Scott, K. (2010) Performance of Carbon Nanofiber Supported Pd-Ni Catalysts for Electro-Oxida- tion of Ethanol in Alkaline Medium. Journal of Power Sources, 195, 5246-5251.
https://doi.org/10.1016/j.jpowsour.2010.03.022