磺酰氟合成研究进展
Progress in Synthesis of Sulfonyl Fluoride
DOI: 10.12677/JOCR.2023.114026, PDF, HTML, XML, 下载: 96  浏览: 245 
作者: 张国聪, 杜雷星:浙江师范大学,化学与生命科学学院,浙江 金华
关键词: 磺酰氟卤原子交换含硫衍生物Sulfonyl Fluoride Halogen Atom Exchange Sulfur-Containing Derivatives
摘要: 由于磺酰氟基团在有机合成、材料化学和材料科学相关的应用中起到重要作用,将磺酰氟基团选择性地引入到有机分子中已成为一个快速发展的领域,磺酰氟可进行六价硫氟交换反应以及可以利用磺酰基合成氨基酸的生物电子等排体,因此人们开发多种合成磺酰氟的方法,本文介绍了目前已知的合成磺酰氟的方法,包括亲核取代,卤原子交换,氧化,自由基偶联,自由基加成。
Abstract: Because sulfonyl fluorine groups play an important role in organic synthesis, material chemistry and material science, the selective introduction of sulfonyl fluorine groups into organic molecules has become a rapidly developing field. Sulfonyl fluorine can carry out hexavalent sulfur-fluorine exchange reactions and bioelectronic isobars of amino acids can be synthesized by the sulfonyl group. Therefore, a variety of methods for the synthesis of sulfonyl fluorine have been developed. In this paper, the known methods for the synthesis of sulfonyl fluorine are introduced, including nucleophilic substitution, halogen atom exchange, oxidation, free radical coupling and radical addition.
文章引用:张国聪, 杜雷星. 磺酰氟合成研究进展[J]. 有机化学研究, 2023, 11(4): 268-284. https://doi.org/10.12677/JOCR.2023.114026

1. 引言

在各种硫(VI)卤化物中,磺酰氟化物由于其独特的性质和广泛的应用,近年来引起了越来越多的研究关注。与类似的磺酰氯相比,磺酰氟化物非常稳定,与苛刻的反应条件相容,但在特定的活化环境中对O-和N-亲核试剂表现出优异的亲电反应性 [1] 。尽管有机硫氟化物的这种独特的反应稳定性平衡早在20世纪20年代就被认识到 [2] ,在有机合成中,磺酰氟化物长期以来被认为是合成含磺酰基化合物(包括磺酰胺、磺酸盐和砜)的通用前体,而不是磺酰氯 [3] [4] [5] 。此外,磺酰氟化物已被用作一类新的选择性氟化试剂,用于脱氧氟化 [6] [7] [8] 和18F放射性标记 [9] [10] 。最近,氟磺酰基叠氮化物(FSO2N3)已被证明是一种由伯胺合成叠氮化物的优良重氮转移试剂 [11] 。磺酰氟化物作为反应性探针在化学生物学和分子药理学中的研究兴趣迅速增长,该类化合物是医药化学中的有效中间体,它们的高选择性抑制活性的成功鉴定促进了研究兴趣,即开发基于磺酰氟的酶抑制剂或化学探针 [1] [12] - [26] ,例如肽型抑制剂 [1] [22] [23] [24] [25] (如图1所示)。在生物学中,磺酰氟已被用作化学生物学和药物发现中的特权共价探针和抑制剂 [1] [12] [27] [28] [29] ,为医药开发提供了大量研究素材。 [23] [24] [25] 它们已被广泛应用于许多领域,包括化学生物学 [11] [13] [16] [18] [19] [20] [28] [30] 、有机合成 [6] [31] - [37] 、聚合物制备 [38] [39] [40] 等。

Figure 1. Selected examples of aliphatic sulfonyl fluoride inhibitors

图1. 几种脂肪族磺酰氟抑制剂

源于磺酰基氟化物的独特性质,包括其特殊的稳定性–反应模式和对微环境敏感的质子介导反应性。磺酰基氟化物可以作为反应中间体,发生一系列的转化(如图2所示)。含溴和碘的芳烃磺酰基氟化物可以在溴或碘位点进行几种功能化,包括用Chen试剂进行三氟甲基化 [41] ,Heck和Suzuki交叉偶联反应,得到相应的产物3-5,SO2F官能团被完整保护。此外,芳烃磺酰基单元经常存在于许多药物和除草剂中,醇和胺的磺酰基化反应是药物研究中应用最广泛的五个反应之一 [42] 。通过这种转化获得的各种芳烃磺酰基氟化物可以作为良好的磺酰基试剂。芳烃磺酰氟与各种含氧或含氮亲核试剂的简单反应得到相应的磺酸酯6、磺酰酰胺7和磺酰叠氮化物8。用TMSCF3处理磺酰氟以良好产率得到所需产物9。值得注意的是,磺酰氟也可以用作亲电磺酰化试剂,用化学计量的AlCl3作为路易斯酸作用下生成砜 [43] 。

Figure 2. Derivatization reactions of the arenesulfonyl fluorides

图2. 磺酰氟的衍生化反应

2. 合成黄酰氟的常见方法

鉴于磺酰氟的广泛应用在各个领域中的广泛应用,开发获得磺酰氟的有效方法无疑是高需求的,并已成为有机化学中的热门话题。在这篇综述中,我们旨在及时总结磺酰氟化物的合成方法,本文根据亲核取代反应,F/Cl卤原子交换反应,含硫衍生物的氧化氟磺酰化,自由基的偶联,黄酰氟自由基对烯烃的加成等不同反应类型合成RSO2F的方法进行了概括。

2.1. 亲核取代反应

早在1979年,Hyatt课题组就研究了ESF与胺、硫醇以及活性亚甲基亲核试剂的Michael反应,以优异的产率得到广泛的脂肪族磺酰基氟化物 [44] 。2014年,Sharpless课题组顺利扩展了ESF与各种亲核试剂的Michael反应,这些亲核试剂包括活性胺、含胺两性离子、磺酰胺、醇和1,3-二羰基化合物 [45] (如图3所示)。2019年,Leung课题组报道了第一个Pd催化的β-芳基乙磺酰基氟化物的对映选择性加氢膦化反应 [46] 。以优异的产率获得了一系列手性磺酰氟衍生的膦,其ee值高达93%。同年,该小组实现了Rh催化的芳基硼酸与2-芳基乙烯磺酰基氟化物的不对称共轭加成 [47] 。获得了一系列具有手性偕二芳基甲烷部分的新型磺酰基氟化物,其对映选择性高达99.8%。2019年,Yan课题组在ESF中实现了3-氨基-2-氧吲哚的有机催化对映选择性Michael加成 [48] 。以3,3-二取代吲哚为骨架,制备了一系列手性磺酰氟化合物,产率高,对映选择性好。提出奎宁衍生的芳酰胺可以通过氢键相互作用同时激活两种底物。此外,在不损失光学纯度的情况下,产物顺利转化为手性螺环氧吲哚舒坦、磺酰胺和磺酸盐。

Figure 3. Conjugate addition of carbon, oxygen, and nitrogen nucleophiles to ESF

图3. 碳、氧和氮亲核试剂与ESF的共轭加成

2019年,Michael C. Willis课题组报道了一种氧化还原中性Ni(II)催化的易得芳基和杂芳基硼酸的硫化反应 [49] (如图4所示)。使用NiBr2.(glyme)和DABSO组合,硼酸可以有效地转化为相应的亚磺酸盐,通过使用N-氟苯磺酰亚胺(NFSI)作为亲电组分,能够以良好至适度的产率制备一系列磺酰氟化物。

Figure 4. Sulfonyl fluoride was prepared with NFSI as electrophilic reagent

图4. 以NFSI为亲电试剂制备磺酰氟化物

2019年,Sammis课题组报道了一锅法合成磺酰氟的新方法 [50] 。在环境温度下,将烷基、芳基或杂芳基格氏试剂加入磺酰氟溶液中,可获得中等产率的磺酰氟产物(如图5所示)。然而,底物范围相对有限,对强吸电子取代的苯基衍生物没有效果。

Figure 5. Sulfonyl fluoride was obtained by one-pot method

图5. 一锅法制备磺酰氟

2021年,Tang课题组 [51] 报道了用铜催化三组分反应。将喹啉、异喹啉和吡啶转化为一类独特的含中氮茚的烷基磺酰基氟化物(如图6所示)。该方法具有底物范围广、官能团兼容性强、原子经济性,反应条件温和等特点。重氮盐与铜催化剂反应形成铜卡宾物质A,同时释放N2。随后,中间体A受到喹啉分子的亲核攻击,形成喹啉叶立德中间体B,该中间体B进一步转化为前体1,3-偶极子C;随后1,3-偶极子C与ESF的1,3-双极环加成生成环化脂肪族磺酰氟D。中间体D在喹啉的协助下去质子化,得到E,其与另一分子ESF进行典型的Michael加成产生中间体F。随后磺酰氟基团水解得到G,最后,通过消除SO3和在铜/O2下的氧化过程得到预期产物。

Figure 6. To construct an aliphatic sulfonyl fluoride containing indene and mechanism

图6. 构建含氮茚的脂肪族磺酰氟化物和反应机理

2.2. F/Cl卤原子交换反应

鉴于磺酰氟的高价值和广泛应用,包括硫醇与KF的电化学偶联 [52] [53] 、二硫化物与磺酰基氟化物的氧化 [54] 、磺酰肼的氟化 [55] 、芳基二氮鎓盐的氟磺酰化 [56] [57] [58] [59] ,芳基卤化物 [60] [61] 和硼酸 [62] [63] 催化氟化。SO2F2与格氏试剂 [64] 和芳基重氮盐 [65] 反应表现出良好的产率。此外,包括BESF [66] [67] [68] 、SASF [69] 和MDF [70] 在内的几种SO2F共催化合成子的有效环加成反应也被认为是构建各种杂环磺酰氟的替代方法。然而,尽管目前有大量生成磺酰氟分子的方案,但使用不同氟源和磺酰氯进行F/Cl交换反应仍然占主导地位,并且易于操作。最传统的F/Cl交换反应通常用磺酰氯与有毒的钾盐组合进行,Davies和Dick于1931年报道芳香族或脂肪族磺酰氯与氟化钾水溶液的混合物煮沸,可以容易地制备相应的磺酰氟化物 [70] 。1977年,Cate课题组开发了一种有效的“裸氟”方法(在干燥乙腈中使用KF和18-冠-6)来制备磺酰氟化物 [71] (如图7所示)。然而,在这种条件下发生的副反应和烷基磺酰基氟

Figure 7. Synthesis of sulfonyl fluorides via F/Cl exchange

图7. 通过F/Cl交换合成黄酰氟

Figure 8. Sulfonyl fluoride was synthesized from sulfonate or sulfonic acid in one pot

图8. 由磺酸盐或磺酸一锅法简便合成磺酰氟

Figure 9. F/Cl exchange of SO2F2 alternative fluorine source

图9. SO2F2替代氟源的F/Cl交换

Figure 10. Sulfonimide and aminosulfonyl fluorides were prepared from chlorides

图10. 由氯化物制备磺酰亚胺基和氨磺酰基氟化物

Figure 11. Oxidation of disulfide with electrophilic halogenated reagent and mechanism

图11. 亲电卤化试剂氧化二硫化物和反应机理

化物的水解可能会掩盖这种方法的优势 [72] [73] 。为了应对这一挑战,2014年,Sharpless及其同事开发了一种使用二氟化钾作为替代氟化物来源的改进方法 [74] 。用这种方法,烷基和芳基磺酰氯可以在温和的条件下高效地转化为相应的磺酰氟化物,而不会水解磺酰氟化物产物。溶剂和氢键在水/有机界面上对提高氟离子对氟氯交换的亲核性起着重要作用。

2019年,Qin课题组 [75] 开发了一种新的不含过渡金属催化的一锅法,在温和的反应条件下,由丰富而廉价的磺酸盐(或磺酸)直接转化为高价值的磺酰氟化物(如图8所示)。这一新方案的特点是使用易于获得和操作的试剂在温和的反应条件下进行。制备了一套不同的磺酰氟化物,促进了磺酰氟化物库的富集。

2022年,Tang课题组 [76] 报道了在合适的碱的促进,以SO2F2为氟源,由芳基磺酰氯合成芳基磺酰氟化物的高效方案(如图9所示)。该方法条件温和、效率高、适用范围广、官能团相容性好,在有机合成等相关学科中有很大的应用潜力。

氮上具有吸电子取代基的磺酰亚胺酰氯和氨磺酰氯 [77] [78] [79] [80] 与磺酰氯的反应性非常相似 [81] [82] ,并且可以通过用饱和KHF2水溶液处理转化为相应的氟化物(如图10A,B所示)。当氮上存在给电子基团时,氟化二反应性不足,在标准条件下产率低。在这些情况下,氟化银在乙腈条件下用于制备克级规模的磺酰氟(如图10C,D所示) [83] 。

2.3. 含硫衍生物的氧化氟磺酰化

鉴于磺酰氯的高灵敏度反应性和低可及性,通过使用一种稳定廉价的起始原料合成磺酰氟化物极为重要。芳香硫化合物,如硫醇 [52] 、二硫化物 [53] 、磺酸 [56] 、磺酸钠 [57] ,亚磺酸盐 [58] 、磺酰肼 [55] 和磺酰胺 [59] 已被证明是相应磺酰氟化物的替代合成前体。

2006年,Wright和Hallstrom开发了一种由硫醇合成杂环磺酰基氟化物的有效方法 [84] 。该方法包括氧化氯化步骤,使用次氯酸钠水溶液原位氧化后提供磺酰氯中间体,然后进行氟氯交换形成磺酰氟化物。该反应使用容易获得的试剂,并避免使用氯气。然而,在该方法中仅证明了杂芳硫醇可以合成磺酰氟。

2011年,Kirihara课题组将二硫化物转化为磺酰氟化物,Selectfluor既是氧化剂又是氟源 [85] [86] [87] 。在该体系中,芳香族和烷基二硫化物可以以良好的产率转化为相应的磺酰基氟化物。对照实验表明,在该过程中产生了硫代硫酸盐中间体a,Selectfluor的负载是关键。尽管确切的机制尚不清楚,但作者提出,硫代硫酸盐A的硫原子亲电氟化形成氟化锍盐B,然后加水得到二硫代亚磺酸盐C,随后进行自由基或亲电氟化得到最终产物磺酰氟(如图11所示)。

为了使反应条件更加绿色温和,2019年,Noël及其同事报道了一种有效的电化学氧化方法,用KF作为廉价的氟源,从广泛可用的硫醇和二硫化物中制备磺酰氟化物 [88] 。该方法不需要额外的氧化剂或催化剂,并且显示出广泛的底物范围,包括芳基、杂芳基、苄基和烷基硫醇或二硫化物(如图12所示)。

Figure 12. Synthesis of sulfonyl fluorides via electrochemical oxidative of thiols

图12. 硫醇或二硫化物电化学氧化合成磺酰氟

2.4. 自由基的偶联

2016年,Wang课题组使用磺酰肼的无催化剂氟化,用Selectfluor作为氟源合成磺酰氟化物 [89] 。这种方法显示出广泛的底物范围,并且不需要任何金属催化剂和其他添加剂(如图13所示)。所有这些转化在温和的条件下进行,磺酰肼可以在水存在下通过释放氮气与Selectfluor反应形成氟自由基和磺酰基自由基,然后磺酰基自由基可快速捕获氟生成磺酰氟。在值得注意的是,在相同条件下,苯亚磺酸钠也可以与Selectfluor顺利反应生成苯磺酰氟,甚至不受自由基抑制剂TEMPO的影响。在这种条件下实现几种芳基亚硫酸钠有效合成苯磺酰氟。

Figure 13. Sulfonyl fluoride is synthesized from sulfonyl hydrazine or sodium benzenesulfonate in water

图13. 磺酰肼或苯亚磺酸钠在水中合成磺酰氟化物

2019年,Willis课题组 [90] 用烯基三氟甲磺酸酯为原料,高效地合成了一系列低分子量、结构紧凑的多官能团环状烯基磺酰氟。使用DABSO作为磺酰基源的替代试剂,在钯催化下二氧化硫插入生成亚磺酸盐,然后被亲电试剂捕获,生成磺酰氟,该体系具有广泛的官能团兼容性(如图14所示)。

Figure 14. Synthesis of cycloenyl sulfonyl fluoride catalyzed by palladium

图14. 钯催化合成环烯基磺酰基氟化物

Figure 15. Synthesis of sulfonyl fluoride by copper-free Sandmeyer type fluorosulfonylation

图15. 无铜Sandmeyer型氟磺酰化合成磺酰氟

2020年,liu课题组 [91] 报道了一种温和有效的无铜Sandmeyer型氟磺酰化反应,用K2S2O5作为还原剂和实用的磺酰源,与N-氟苯磺酰亚胺作为有效的氟源相结合,制备有价值的芳烃磺酰氟化物(如图15所示)。考虑到整体的实用性和范围,该方法为制备各种重要的芳烃磺酰氟化物提供了一条有吸引力的途径。

2022年,Weng课题组 [92] 报道了一种催化脱羧氟磺酰化方法,将丰富的脂肪族羧酸转化为相应的磺酰氟化物(如图16所示)。这种转化是通过醛肟酯的简单预活化和能量转移介导的光催化实现的。这种操作简单的方法在温和和氧化还原中性条件下具有高官能团耐受性。

Figure 16. Photocatalytic mediated Energy transfer fluorosulfonylation of decarboxylation

图16. 能量转移介导的光催化脱羧氟磺酰化反应

2.5. 黄酰氟自由基对烯烃的加成

与芳香族磺酰基氟化物相比,脂肪族、烯基和炔基磺酰基氟化物的合成方法相对较少。通过使用自由基对烯烃磺酰氟化合物的加成可以得到脂肪族磺酰氟化合物,将有助于扩大这些磺酰氟的应用。2016年,Sharpless课题组 [93] 报道合成β-芳基乙烯磺酰氟化合物的Heck-Matsuda法(如图17所示)。乙烯磺酰氟(即,乙烯基磺酰氟或ESF)在催化剂乙酸钯(II)存在下与稳定且容易制备的芳烃重氮四氟硼酸盐进行芳基化,得到肉桂酰氟的异构体磺酰类似物。但是由于芳烃重氮盐在光催化生成自由基过程中会产生氮气,不利于安全生产,另外容易吸水,不利于长期保存,因此该反应在工业生产中具有一定的限制性。

Figure 17. Synthesis of ß-arylvinyl sulfonyl fluoride by Heck-Matsuda method

图17. Heck-Matsuda法合成ß-芳基乙烯磺酰氟化物

羧酸在自然界中普遍存在,广泛存在于天然产物、药物和材料中。羧酸的稳定性、低毒性和商业可用性等优点使其成为有机合成中理想的构建块类型 [27] 。2019年,Liao课题组 [94] 报道了一种通过可见光介导的脱羧氟磺酰基乙烯基化合成脂肪族磺酰基氟化物(如图18所示)。利用一种快速、无金属的方法来构建具有多样性的磺酰氟化合物库。还证明了含有SO2F的产物进一步转化,可以获得一系列药学上的重要基序,如舒坦、磺酸盐和磺酰胺。

Figure 18. Synthesis of aliphatic sulfonyl fluoride by decarboxylation of carboxylic acid

图18. 羧酸脱羧合成脂肪族磺酰氟

2020年,Qin课题组报道了一种可见光诱导的烷基碘化物与ESF的还原加成反应,使用Hantzsch酯作为氢源 [95] 。广泛烷基碘化物被有效地转化为相应的脂肪族磺酰基氟化物,包括酶抑制剂、天然产物和药物的衍生物。所得脂肪族磺酰氟化物的进一步衍生也通过氟化硫交换(SuFEx)反应实现,以获得磺酸盐和磺酰胺药物结构中间体。在光照射下,Mn2(CO)10被激发发生均裂,形成[Mn(CO)5]自由基。随后,[Mn(CO)5]自由基与烷基碘(1)反应生成亲核烷基自由基A和Mn(CO)5I。随后,A自由基加成到乙烯基磺酰氟(2)中以形成中间体B,B从Hantzsch酯中捕获氢自由基以形成不同的烷基磺酰基氟化物(3),最后在Mn(CO)5I存在下,二烯基自由基C通过芳构化得到吡啶盐D,伴随着[Mn(CO)5]自由基的再生以启动下一个催化循环(如图19所示)。

Figure 19. Sulfonyl fluoride is synthesized by reductive addition of alkyl iodine

图19. 烷基碘通过还原加成合成黄酰氟

2022年,Liao课题组 [96] 报道了一种新的氟磺酰基自由基试剂——1-氟磺酰基,2-芳基苯并咪唑鎓三氟酸盐(FABI),它能够在光氧化还原条件下使烯烃氟磺酰基化。与已知的自由基前体气态FSO2Cl相比,FABI盐是更稳定的,易于处理,在之前具有挑战性的底物烯烃的氟磺酰基化中实现更高产率(如图20所示)。在光照下,光催化剂(IrIII)被激发,然后通过单电子转移(SET)到氧化还原活性自由基前体,在得到一个电子后,发生N-S键的均裂,产生FSO2自由基,随后FSO2自由基加成到苯乙烯中生成自由基中间体Int-1,通过IrIV氧化Int-1得到阳离子中间体Int-2,其发生去质子化得到3aa,而用醇(ROH)捕获Int-2可以得到双官能化产物(如图21所示)。

Figure 20. Photoredox fluorsulfonation catalyzed by fluorosulfonyl radical precursors

图20. 氟磺酰基自由基前驱体催化的光氧化还原氟磺化反应

Figure 21. Photoredox fluorsulfonation catalyzed by fluorosulfonyl radical precursors

图21. 氟磺酰基自由基前驱体催化的光氧化还原氟磺化反应

3. 总结

磺酰氟化物由于其独特的反应稳定性平衡,在一系列领域得到了广泛的应用。特别是为Sharpless的开创性报告许多研究工作奠定了基础,进一步证明了氟硫酸盐的实用性。虽然已经取得了一些进展,但利用新的合成策略,如直接的C-H功能化、后期转化和自由基反应,在类药物分子中区域选择性地安装SO2F基序仍然有限。毫无疑问,磺酰氟的合成方法和应用在不久的将来将得到进一步发展。我们希望这篇简短的综述能引起人们对磺酰氟化学的浓厚研究兴趣,并帮助化学家将所开发的方法应用于相关领域。

参考文献

参考文献

[1] Narayanan, A. and Jones, L.H. (2015) Sulfonyl Fluorides as Privileged Warheads in Chemical Biology. Chemical Science, 6, 2650-2659.
https://doi.org/10.1039/C5SC00408J
[2] Steinkopf, W. (1927) Über Aromatische Sulfofluoride. Journal für Praktische Chemie, 117, 1-82.
https://doi.org/10.1002/prac.19271170101
[3] Mukherjee, P., Woroch, C.P., Cleary, L., et al. (2018) Sulfonamide Synthesis via Calcium Triflimide Activation of Sulfonyl Fluorides. Organic Letters, 20, 3943-3947.
https://doi.org/10.1021/acs.orglett.8b01520
[4] Mukherjee, H., Debreczeni, J., Breed, J., et al. (2017) A Study of the Reactivity of SVI-F Containing Warheads with Nucleophilic Amino-Acid Side Chains under Physiological Conditions. Organic & Biomolecular Chemistry, 15, 9685-9695.
https://doi.org/10.1039/C7OB02028G
[5] Berg, S., Bergh, M., Hellberg, S., et al. (2012) Discovery of Novel Potent and Highly Selective Glycogen Synthase Kinase-3β(GSK3β) Inhibitors for Alzheimer’s Disease: Design, Synthesis, and Characterization of Pyrazines. Journal of Medicinal Chemistry, 55, 9107-9119.
https://doi.org/10.1021/jm201724m
[6] Nielsen, M.K., Ugaz, C.R., Li, W. and Doyle, A.G. (2015) PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent. Journal of the American Chemical Society, 137, 9571-9574.
https://doi.org/10.1021/jacs.5b06307
[7] Yin, J., Zarkowsky, D.S., Thomas, D.W., Zhao, M.M. and Huffman, M.A. (2004) Direct and Convenient Conversion of Alcohols to Fluorides. Organic Letters, 6, 1465-1468.
https://doi.org/10.1021/ol049672a
[8] Nielsen, M.K., Ahneman, D.T., Riera, O. and Doyle, A.G. (2018) Deoxyfluorination with Sulfonyl Fluorides: Navigating Reaction Space with Machine Learning. Journal of the American Chemical Society, 140, 5004-5008.
https://doi.org/10.1021/jacs.8b01523
[9] Inkster, J.A.H., Liu, K., Ait-Mohand, S., et al. (2012) Sulfonyl Fluoride-Based Prosthetic Compounds as Potential 18F Labelling Agents. Chemistry—A European Journal, 18, 11079-11087.
https://doi.org/10.1002/chem.201103450
[10] Matesic, L., Wyatt, N.A., Fraser, B.H., et al. (2013) Ascertaining the Suitability of Aryl Sulfonyl Fluorides for [18F] Radiochemistry Applications: A Systematic Investigation Using Microfluidics. The Journal of Organic Chemistry, 78, 11262-11270.
https://doi.org/10.1021/jo401759z
[11] Meng, G., Guo, T., Ma, T., et al. (2019) Modular Click Chemistry Libraries for Functional Screens Using a Diazotizing Reagent. Nature, 574, 86-89.
https://doi.org/10.1038/s41586-019-1589-1
[12] Hashimoto, M., et al. (2023) Proximity Labeling and Identification of Endogenous Client Proteins Recruited to Y15-Based Artificial Granules Tethering a Bait Protein. Journal of Peptide Science, e3536.
https://doi.org/10.1002/psc.3536
[13] Martín-Gago, P. and Olsen, C.A. (2019) Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal. Angewandte Chemie International Edition, 58, 957-966.
https://doi.org/10.1002/anie.201806037
[14] Chen, W., et al. (2016) Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue. Journal of the American Chemical Society, 138, 7353-7364.
https://doi.org/10.1021/jacs.6b02960
[15] Zhao, Q., et al. (2017) Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. Journal of the American Chemical Society, 139, 680-685.
https://doi.org/10.1021/jacs.6b08536
[16] Wang, N., et al. (2018) Genetically Encoding Fluorosulfate-L-Tyrosine to React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in vivo. Journal of the American Chemical Society, 140, 4995-4999.
https://doi.org/10.1021/jacs.8b01087
[17] Uematsu, S., Tabuchi, Y., Ito, Y. and Taki, M. (2018) Combinatorially Screened Peptide as Targeted Covalent Binder: Alteration of Bait-Conjugated Peptide to Reactive Modifier. Bioconjugate Chemistry, 29, 1866-1871.
https://doi.org/10.1021/acs.bioconjchem.8b00301
[18] Liu, Z., et al. (2018) SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. Journal of the American Chemical Society, 140, 2919-2925.
https://doi.org/10.1021/jacs.7b12788
[19] Yang, X., et al. (2018) An Affinity-Based Probe for the Human Adenosine A2A Receptor. Journal of Medicinal Chemistry, 61, 7892-7901.
https://doi.org/10.1021/acs.jmedchem.8b00860
[20] Mortenson, D.E., et al. (2018) “Inverse Drug Discovery” Strategy to Identify Proteins That Are Targeted by Latent Electrophiles as Exemplified by Aryl Fluorosulfates. Journal of the American Chemical Society, 140, 200-210.
https://doi.org/10.1021/jacs.7b08366
[21] Auberson, Y.P., Benfatti, F., Gillingham, D. and Hartrampf, N. (2023) An Active Member of the EFMC: The Division of Medicinal Chemistry and Chemical Biology of the Swiss Chemical Society. ChemMedChem, 18, e202300014.
https://doi.org/10.1002/cmdc.202300014
[22] Zhan, W.H., et al. (2023) Discovery of Highly Selective Inhibitors of the Human Constitutive Proteasome β5c Chymotryptic Subunit. Journal of Medicinal Chemistry, 66, 1172-1185.
https://doi.org/10.1021/acs.jmedchem.2c00733
[23] Fadeyi, O.O., et al. (2017) Covalent Enzyme Inhibition through Fluorosulfate Modification of a Noncatalytic Serine Residue. ACS Chemical Biology, 12, 2015-2020.
https://doi.org/10.1021/acschembio.7b00403
[24] Guardiola, S., et al. (2018) Targeted Covalent Inhibition of Prolyl Oligopeptidase (POP): Discovery of Sulfonylfluoride Peptidomimetics. Cell Chemical Biology, 25, 1031-1037.
https://doi.org/10.1016/j.chembiol.2018.04.013
[25] Artschwager, R., et al. (2018) Potent and Highly Selective Inhibitors of the Proteasome Trypsin-Like Site by Incorporation of Basic Side Chain Containing Amino Acid Derived Sulfonyl Fluorides. Journal of Medicinal Chemistry, 61, 5395-5411.
https://doi.org/10.1021/acs.jmedchem.8b00685
[26] Hett, E.C., Xu, H., Geoghegan, K.F., et al. (2015) Rational Targeting of Active-Site Tyrosine Residues Using Sulfonyl Fluoride Probes. ACS Chemical Biology, 10, 1094-1098.
https://doi.org/10.1021/cb5009475
[27] Fadeyi, O., Parikh, M.D., Chen, M.Z., et al. (2016) Chemoselective Preparation of Clickable Aryl Sulfonyl Fluoride Monomers: A Toolbox of Highly Functionalized Intermediates for Chemical Biology Probe Synthesis. ChemBioChem, 17, 1925-1930.
https://doi.org/10.1002/cbic.201600427
[28] Jones, L.H. (2018) Emerging Utility of Fluorosulfate Chemical Probes. ACS Medicinal Chemistry Letters, 9, 584-586.
https://doi.org/10.1021/acsmedchemlett.8b00276
[29] Brouwer, A.J., Jonker, A., Werkhoven, P., et al. (2012) Peptido Sulfonyl Fluorides as New Powerful Proteasome Inhibitors. Journal of Medicinal Chemistry, 55, 10995-11003.
https://doi.org/10.1021/jm301443r
[30] Dubiella, C., Cui, H., Gersch, M., et al. (2014) Selective Inhibition of the Immunoproteasome by Ligand-Induced Crosslinking of the Active Site. Angewandte Chemie International Edition, 53, 11969-11973.
https://doi.org/10.1002/anie.201406964
[31] Herrero Alvarez, N., van de Langemheen, H., Brouwer, A.J. and Liskamp, R.M.J. (2017) Potential Peptidic Proteasome Inhibitors by Incorporation of an Electrophilic Trap Based on Amino Acid Derived α-Substituted Sulfonyl Fluorides. Bioorganic & Medicinal Chemistry, 25, 5055-5063.
https://doi.org/10.1016/j.bmc.2017.07.019
[32] Li, X.Q., Liao, Q.Q., Lai, J. and Liao, Y.Y. (2023) Visible-Light-Mediated Sulfonylation of Anilines with Sulfonylfluorides. Frontiers in Chemistry, 11, 1267223-1267230.
https://doi.org/10.3389/fchem.2023.1267223
[33] Li, S., Wu, P., Moses, J.E. and Sharpless, K.B. (2017) Multidimensional SuFEx Click Chemistry: Sequential Sulfur (VI) Fluoride Exchange Connections of Diverse Modules Launched from an SOF4 Hub. Angewandte Chemie International Edition, 56, 2903-2908.
https://doi.org/10.1002/anie.201611048
[34] Gao, B., et al. (2018) SuFEx Chemistry of Thionyl Tetrafluoride (SOF4) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angewandte Chemie International Edition, 57, 1939-1943.
https://doi.org/10.1002/anie.201712145
[35] Guo, T., et al. (2018) A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F-SO2+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angewandte Chemie International Edition, 57, 2605-2610.
https://doi.org/10.1002/anie.201712429
[36] Zha, G.F., et al. (2018) SO2F2-Mediated Oxidative Dehydrogenation and Dehydration of Alcohols to Alkynes. Journal of the American Chemical Society, 140, 17666-17673.
https://doi.org/10.1021/jacs.8b10069
[37] Hmissa, T., et al. (2018) Autocatalytic Synthesis of Bifluoride Ionic Liquids by SuFEx Click Chemistry. Angewandte Chemie International Edition, 57, 16005-16009.
https://doi.org/10.1002/anie.201808304
[38] Gao, B., et al. (2017) Bifluoride-Catalysed Sulfur (VI) Fluoride Exchange Reaction for the Synthesis of Polysulfates and Polysulfonates. Nature Chemistry, 9, 1083-1088.
https://doi.org/10.1038/nchem.2796
[39] Yang, C., Flynn, J.P. and Niu, J. (2018) Facile Synthesis of Sequence-Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angewandte Chemie International Edition, 57, 16194-16199.
https://doi.org/10.1002/anie.201811051
[40] Brooks, K., et al. (2018) SuFEx Postpolymerization Modification Kinetics and Reactivity in Polymer Brushes. Macromolecules, 51, 297-305.
https://doi.org/10.1021/acs.macromol.7b02372
[41] Xie, Q.Q. and Hu, J.B. (2020) Chen’s Reagent: A Versatile Reagent for Trifluoromethylation, Difluoromethylenation, and Difluoroalkylation in Organic Synthesis. Chinese Journal of Chemistry, 38, 202-212.
https://doi.org/10.1002/cjoc.201900424
[42] Roughley, S.D. and Jordan, A.M. (2011) The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54, 3451-3479.
https://doi.org/10.1021/jm200187y
[43] Ou, C.Y., et al. (2023) Aliphatic Sulfonyl Fluoride Synthesis via Decarboxylative Fluorosulfonylation of Hypervalent Iodine(III) Carboxylates. Organic Letters, 25, 6751-6756.
https://doi.org/10.1021/acs.orglett.3c02652
[44] Krutak, J.J., Burpitt, R.D., Moore, W.H. and Hyatt, J.A. (1979) Chemistry of Ethenesulfonyl Fluoride. Fluorosulfonylethylation of Organic Compounds. The Journal of Organic Chemistry, 44, 3847-3858.
https://doi.org/10.1021/jo01336a022
[45] Dong, J.J., Krasnova, L., Finn, M.G. and Sharpless, K.B. (2014) Sulfur (VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angewandte Chemie International Edition, 53, 9430-9448.
https://doi.org/10.1002/anie.201309399
[46] Li, X.R., Chen, H.J., Wang, W., et al. (2019) Palladacycle Promoted Asymmetric Hydrophosphination of α, β-Unsaturated Sulfonyl Fluorides. Journal of Organometallic Chemistry, 899, Article ID: 120912.
https://doi.org/10.1016/j.jorganchem.2019.120912
[47] Moku, B., Fang, W.Y., Leng, J., et al. (2019) Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience, 21, 695-705.
https://doi.org/10.1016/j.isci.2019.10.051
[48] Chen, J., Huang, B.Q., Wang, Z.Q., Zhang, X.J. and Yan, M. (2019) Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-Oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Organic Letters, 21, 9742-9746.
https://doi.org/10.1021/acs.orglett.9b03911
[49] Yan, Z.M., et al. (2023) Photocatalytic C-C Bond Cleavage and Fluorosulfonylation of Strained Cycloalkanols for Carbonyl-Containing Aliphatic Sulfonyl Fluorides. Organic Letters, 38, 7051-7056.
https://doi.org/10.1021/acs.orglett.3c02727
[50] Ma, Y.Y., et al. (2023) Aryl Sulfonyl Fluoride Synthesis via Organophotocatalytic Fluorosulfonylation of Diaryliodonium Salts†. Organic & Biomolecular Chemistry, 21, 7597-7601.
https://doi.org/10.1039/D3OB01200J
[51] Chen, H.R., Hu, Z.Y., Qin, H.L. and Tang, H.L. (2021) A Novel Three-Component Reaction for Constructing Indolizine-Containing Aliphatic Sulfonyl Fluorides. Organic Chemistry Frontiers, 8, 1185-1189.
https://doi.org/10.1039/D0QO01430C
[52] Li, Z.X., et al. (2023) Copper-Catalyzed Enantioselective Decarboxylative Cyanation of Benzylic Acids Promoted by Hypervalent Iodine(III) Reagents. Organic Letters, 17, 3023-3028.
https://doi.org/10.1021/acs.orglett.3c00816
[53] Kirihara, M., Naito, S., Nishimura, Y., et al. (2014) Oxidation of Disulfides with Electrophilic Halogenating Reagents: Concise Methods for Preparation of Thiosulfonates and Sulfonyl Halides. Tetrahedron, 70, 2464-2471.
https://doi.org/10.1016/j.tet.2014.02.013
[54] Tang, L., Yang, Y., Wen, L.X., Yanga, X.K. and Wang, Z.Y. (2016) Catalyst-Free Radical Fluorination of Sulfonyl hydrazides in Water. Green Chemistry, 18, 1224-1228.
https://doi.org/10.1039/C5GC02755A
[55] Liu, Y.G., et al. (2020) Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. Organic Letters, 22, 2281-2286.
https://doi.org/10.1021/acs.orglett.0c00484
[56] Zhong, T., et al. (2020) Copper-Free Sandmeyer-Type Reaction for the Synthesis of Sulfonyl Fluorides. Organic Letters, 22, 3072-3078.
https://doi.org/10.1021/acs.orglett.0c00823
[57] Lin, Q., et al. (2020) Arenesulfonyl Fluoride Synthesis via Copper-Free Sandmeyer-Type Fluorosulfonylation of Arenediazonium Salts. Chinese Journal of Chemistry, 38, 1107-1110.
https://doi.org/10.1002/cjoc.202000175
[58] Louvel, D., et al. (2021) Metal-Free Visible-Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism. Chemistry—A European Journal, 27, 8704-8708.
https://doi.org/10.1002/chem.202101056
[59] Tribby, A.L., Rodríguez, I., Shariffudin, S. and Ball, N.D. (2017) Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. The Journal of Organic Chemistry, 82, 2294-2299.
https://doi.org/10.1021/acs.joc.7b00051
[60] Davies, A.T., Curto, J.M., Bagley, S.W. and Willis, M.C. (2017) One-Pot Palladium-Catalyzed Synthesis of Sulfonyl Fluorides from Aryl Bromides. Chemical Science, 8, 1233-1237.
https://doi.org/10.1039/C6SC03924C
[61] Lo, P.K.T., Chen, Y. and Willis, M.C. (2019) Nickel (II)-Catalyzed Synthesis of Sulfinates from Aryl and Heteroaryl Boronic Acids and the Sulfur Dioxide Surrogate DABSO. ACS Catalysis, 9, 10668-10673.
https://doi.org/10.1021/acscatal.9b04363
[62] Magre, M. and Cornella, J. (2021) Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides. Journal of the American Chemical Society, 143, 21497-21502.
https://doi.org/10.1021/jacs.1c11463
[63] Mo, C.L., et al. (2023) Recent Developments in Copper(I)-Catalyzed Enantioselective Alkynylation Reactions via a Radical Process. Chinese Journal of Chemistry, 41, 481-489.
https://doi.org/10.1002/cjoc.202200521
[64] Kwon, J. and Kim, B.M. (2019) Synthesis of Arenesulfonyl Fluorides via Sulfuryl Fluoride Incorporation from Arynes. Organic Letters, 21, 428-433.
https://doi.org/10.1021/acs.orglett.8b03610
[65] Leng, J. and Qin, H.L. (2018) 1-Bromoethene-1-Sulfonyl Fluoride (1-Br-ESF), A New SuFEx Clickable Reagent, and Its Application for Regioselective Construction of 5-Sulfonylfluoro Isoxazoles. Chemical Communications, 54, 4477-4480.
https://doi.org/10.1039/C8CC00986D
[66] Smedley, C.J., et al. (2018) 1-Bromoethene-1-Sulfonyl Fluoride (BESF) Is Another Good Connective Hub for SuFEx Click Chemistry. Chemical Communications, 54, 6020-6023.
https://doi.org/10.1039/C8CC03400A
[67] Thomas, J. and Fokin, V.V. (2018) Regioselective Synthesis of Fluorosulfonyl 1,2,3-Triazoles from Bromovinylsulfonyl Fluoride. Organic Letters, 20, 3749-3752.
https://doi.org/10.1021/acs.orglett.8b01309
[68] Smedley, C.J., et al. (2020) Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs. Angewandte Chemie International Edition, 59, 12460-12469.
https://doi.org/10.1002/anie.202003219
[69] Fang, W.Y., Wang, S.M., Zhang, Z.W. and Qin, H.L. (2020) Clickable Transformation of Nitriles (RCN) to Oxazolyl Sulfonyl Fluoride Warheads. Organic Letters, 22, 8904-8909.
https://doi.org/10.1021/acs.orglett.0c03298
[70] Davies, W. and Dick, J.H. (1931) CCLXXXVII.—Tertiary Phosphines Containing the Higher Alkyl Radicals. Journal of the Chemical Society (Resumed), 1931, 2104-2109.
https://doi.org/10.1039/JR9310002104
[71] Bianchi, T.A. and Cate, L.A. (1977) Structural Studies of Organosulfur Compounds. 3. Stereochemistry and Conformational Distortions in Trans-Hexahydro-1, 4-Benzoxathiane S-Oxides. The Journal of Organic Chemistry, 4, 22031-22032.
[72] Shafer, G.J., Forohar, F. and DesMarteau, D.D. (2000) Synthesis of Potassium 3,6-Dioxa-7-4-Trifluoromethyl Perfluorooctyl Sulfonate from Hydrolysis of 3,6-Dioxa-7-4-Trifluoromethyl Perfluorooctyl Sulfonyl Fluoride. A Simple High Yield Conversion Catalyzed by KF. Journal of Fluorine Chemistry, 101, 27-29.
https://doi.org/10.1016/S0022-1139(99)00178-5
[73] Kim, D.W., Jeong, H.J., Lim, S.T., et al. (2008) Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium:  Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. The Journal of Organic Chemistry, 73, 957-962.
https://doi.org/10.1021/jo7021229
[74] Song, X.Y., et al. (2022) Synthesis of Aryl Sulfonyl Fluorides from Aryl Sulfonyl Chlorides Using Sulfuryl Fluoride (SO2F2) as Fluoride Provider. Tetrahedron, 108, 132657-132661.
https://doi.org/10.1016/j.tet.2022.132657
[75] Wright, S.W. and Hallstrom, K.N. (2006) A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols. The Journal of Organic Chemistry, 71, 1080-1084.
https://doi.org/10.1021/jo052164+
[76] Oh, S., Moon, H., Son, I. and Jung, J. (2007) Synthesis of Sulfonamides and Evaluation of Their Histone Deacetylase (HDAC) Activity. Molecules, 12, 1125-1135.
https://doi.org/10.3390/12051125
[77] Waal, N.D., et al. (2005) Identification of Nonpeptidic Small-Molecule Inhibitors of Interleukin-2. Bioorganic & Medicinal Chemistry Letters, 15, 983-987.
https://doi.org/10.1016/j.bmcl.2004.12.045
[78] Guillard, J. and Viaud-Massuard, M.C. (2008) Synthesis and Biological Evaluations of New Pyrrolo [2,3-b] Pyrimidine as SDI Analogs. Heterocycles, 75, 1163-1189.
https://doi.org/10.3987/COM-07-11302
[79] Cheeseright, J.T., et al. (1994) Azasulfonamidopeptides as Peptide Bond Hydrolysis Transition State Analogues. Part 1. Synthetic Approaches. Journal of the Chemical Society, Perkin Transactions 1, 1, 1595-1600.
https://doi.org/10.1039/p19940001595
[80] Berredjem, M., Regainia, Z., Dewynter, G., Montero, J.L. and Aouf, N.E. (2006) Simple and Efficient Synthesis of New Chiral N,N’-Sulfonyl Bis-Oxazolidin-2-Ones. Heteroatom Chemistry, 17, 61-65.
https://doi.org/10.1002/hc.20183
[81] Berredjem, M., et al. (2004) N-Chlorosulfonyloxazolidin-2-Ones: Synthesis, Structure, and Reactivity toward Aminoesters. Synthetic Communications, 34, 1653-1662.
https://doi.org/10.1081/SCC-120030753
[82] Graf, R. (1968) Neuere Methoden der präparativen organischen Chemie VI† Umsetzungen mit N-Carbonyl-sulfamidsäurechlorid. Angewandte Chemie, 80, 179-189.
https://doi.org/10.1002/ange.19680800503
[83] Kowalczyk, R., Edmunds, A.J.F., Hall, R.G. and Bolm, C. (2011) Synthesis of CF3-Substituted Sulfoximines from Sulfonimidoyl Fluorides. Organic Letters, 13, 768-771.
https://doi.org/10.1021/ol103030w
[84] Akita, M., et al. (2023) Progress in Photocatalysis for Organic Chemistry. The Journal of Organic Chemistry, 88, 6281-6283.
https://doi.org/10.1021/acs.joc.3c00812
[85] Kirihara, M., Naito, S., Ishizuka, Y., Hanai, H. and Noguchi, T. (2011) Oxidation of Disulfides with Selectfluor™: Concise Syntheses of Thiosulfonates and Sulfonyl Fluorides. Tetrahedron Letters, 52, 3086-3089.
https://doi.org/10.1016/j.tetlet.2011.03.132
[86] Graf, R. (1963) Umsetzungen mit N-Carbonyl-sulfamidsäurechlorid, III. Umsetzungen mit Olefinen und Aldehyden; über β-Lactame. Justus Liebigs Annalen der Chemie, 661, 111-157.
https://doi.org/10.1002/jlac.19636610109
[87] Grosso, S., Mlynczak, M., Evano, g., et al. (2023) Copper-Catalyzed Cross-Coupling of Acylzirconocenes and Diaryliodonium Salts: An Efficient Synthesis of Alkyl-Aryl-Ketones from Alkenes. European Journal of Organic Chemistry, 38, e202300938.
[88] Das, B., Sahoo, S.R., Das, A., Pathak, B. and Sarkar, D. (2023) Sustainable Organic Photocatalysis for Site-Selective Hydrazocoupling of Electron-Rich Arenes. Organic Letters, 42, 7733-7738.
https://doi.org/10.1021/acs.orglett.3c03137
[89] Chang, S.Q., Xing, D.H., Zheng, Y.Z. and Huang, L.B. (2023) Copper-Catalyzed Synthesis of Quinoline-4-Thiols from Diaryliodonium Salts, Alkynyl Sulfides, and Nitriles. Organic Letters, 28, 5350-5355.
https://doi.org/10.1021/acs.orglett.3c01929
[90] Willis, M.C., Lou, T.S.B. and Bagley, S.W. (2019) Cyclic Alkenylsulfonyl Fluorides: Palladium-Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angewandte Chemie International Edition, 58, 18859-18863.
https://doi.org/10.1002/anie.201910871
[91] Wang, J., et al. (2023) Biomimetic Synthesis of an Antiviral Cinnamoylphloroglucinol Collection from Cleistocalyx operculatus: A Synthetic Strategy Based on Biogenetic Building Blocks. Angewandte Chemie International Edition, 62, e202312568.
https://doi.org/10.1002/anie.202312568
[92] Chen, Z.D., et al. (2022) Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Organic Letters, 24, 2474-2478.
https://doi.org/10.1021/acs.orglett.2c00459
[93] Qin, H.L., et al. (2016) A Heck-Matsuda Process for the Synthesis of β-Arylethenesulfonyl Fluorides: Selectively Addressable Bis-Electrophiles for SuFEx Click Chemistry. Angewandte Chemie International Edition, 55, 14155-14158.
https://doi.org/10.1002/anie.201608807
[94] Xu, R.T., et al. (2019) A Rapid Access to Aliphatic Sulfonyl Fluorides. Nature Communication, 10, Article No. 3752.
https://doi.org/10.1038/s41467-019-11805-6
[95] Zhang, X., et al. (2020) An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Advanced Synthesis & Catalysis, 362, 3358-3363.
https://doi.org/10.1002/adsc.202000515
[96] Wang, P., Zhang, H.H., Nie, X.L., Xu, T.X. and Liao, S.H. (2022) Photoredox Catalytic Radical Fluorosulfonylation of Olefins Enabled by a Bench-Stable Redox-Active Fluorosulfonyl Radical Precursor. Nature Communication, 13, Article No. 3370.
https://doi.org/10.1038/s41467-022-31089-7