流速对鱼类行为、生理和肌肉品质影响的研究进展
Research Progress on the Effects of Flow Velocity on Fish Behavior, Physiology and Muscle Quality
DOI: 10.12677/OJFR.2023.104017, PDF, HTML, XML, 下载: 115  浏览: 267 
作者: 朱智文:淮阴工学院生命科学与食品工程学院,江苏 淮安;中国水产科学研究院黄海水产研究所海水养殖生物育种与可持续商品国家重点实验室,山东 青岛;费 凡, 刘宝良*:中国水产科学研究院黄海水产研究所海水养殖生物育种与可持续商品国家重点实验室,山东 青岛;曹淑全:中国水产科学研究院黄海水产研究所海水养殖生物育种与可持续商品国家重点实验室,山东 青岛;中国海洋大学水产学院,山东 青岛;张现红:中国水产科学研究院黄海水产研究所海水养殖生物育种与可持续商品国家重点实验室,山东 青岛;河北农业大学海洋学院,河北 秦皇岛
关键词: 流速生长摄食行为消化代谢营养品质Flow Velocity Growth Feeding Behavior Digestion and Metabolism Nutritional Quality
摘要: 流速是鱼类养殖生产的重要影响因子,在养殖生产管理过程中起重要作用。在不同的流速条件下,鱼类表现出差异化的行为、生长表现、代谢和免疫应激等,这为集约化养殖模式中选择适宜流速环境提供了新思路。本文重点综述了不同流速对鱼类行为、生理和营养品质影响的系列研究,并试图揭示鱼类对不同流速的应答特征,以期为集约化养殖模式中选择适宜的流速提供理论参考。
Abstract: Flow velocity is an important factor affecting fish production and plays an important role in the management of fish production. Under different flow rate conditions, fish exhibited differentiated behavior, growth performance, metabolic and immune stress, etc., which provided a new idea for selecting suitable flow rate environment in intensive culture mode. This paper focuses on a series of studies on the effects of different flow rates on the behavior, physiology and nutritional quality of fish, and attempts to reveal the characteristics of fish responses to different flow rates, in order to provide theoretical reference for the selection of appropriate flow rates in intensive culture mode.
文章引用:朱智文, 费凡, 曹淑全, 张现红, 刘宝良. 流速对鱼类行为、生理和肌肉品质影响的研究进展[J]. 水产研究, 2023, 10(4): 140-151. https://doi.org/10.12677/OJFR.2023.104017

1. 引言

在集约化养殖中,出于促进集污、降低养殖系统清洁压力的目的,流速是最早提出的主要途径 [1] [2] 。越来越多的研究表明,流速刺激鱼类的感觉器官,改变其原有的运动方式,直接或间接地影响鱼类的行为和生理生化等方面,是影响鱼类生长的重要环境因子之一 [3] [4] 。日前,国内外关于水流对鱼类的游泳行为 [5] 、生理 [6] [7] 、肌肉品质 [8] [9] [10] 、代谢 [11] [12] 等均有一定的报道,但关注点主要集中在流速与鱼类生长的关系上。Ibarz等 [13] 研究发现,金头鲷(Sparus aurata)在流水组(1.5 bl/s)的增重率显著高于对照组(约为0 bl/s);大口黑鲈(Micropterus salmoides)幼鱼在4.0 bl/s (Body Length, BL)时,其增重率和特定生长率显著高于其他流速组 [14] ;Shrivastava等 [15] 对鲤鱼(Cyprinus carpio)在0、1.5 bl/s和2.5 bl/s等3种水流速度下的研究发现,2.5 bl/s的流速组鲤鱼的增重率、特定生长率和饲料转化率显著提高;但大菱鲆(Scophthalmus maximus)幼鱼在低流速(0.3 bl/s)时,摄食量最高,生长发育最快 [16] 。因此,随着精准化和高密度集约化养殖模式的广泛应用,调控流速变得愈发关键,通过调节流速为鱼类提供适宜的生存环境可以有效提高养殖生产效率和产品质量。目前对于流速对鱼类营养、免疫等影响的综述较少,本文就流速对鱼类游泳行为、生理、肌肉品质的影响展开论述,以便更深入解析鱼类与流速之间的关系,为集约化养殖模式下选用何种流速更为适宜提供一定理论依据和参考价值。

2. 流速对鱼类行为改变的影响

鱼类能根据所处环境中水体的流速和流向,改变运动方式,调节游泳速度和方向,进而影响其进食、逃避捕食者以及迁徙等行为 [17] ,鱼类的主要运动方式分为趋流行为、逆流行为、摆尾行为和集群行为。

2.1. 趋流行为

大多数鱼类在流水中具有趋流性,它们能根据水流速度和流向调整自身的游泳速度和方向以维持位置,这是鱼类对水流做出的响应 [18] 。Song等 [19] 研究发现,红鳍银鲫幼鱼(Barbodes schwanenfeldi)在流速低于0.3 m/s时,趋流率随水流刺激时间的增加而增加,而流速高于0.3 m/s,趋流率则会随水流时间的增加而降低;相似的现象在齐口裂腹鱼(Schizothorax prenanti) [20] 中也有发现,流速低于0.14 m/s时,齐口裂腹鱼的趋流性不明显,而流速在0.14~1.24 m/s时,随着流速的增加,趋流率逐渐增加。因此,在适宜的流速范围内,随着流速的增加,鱼类的趋流率也随之上升。但由于不同鱼类游泳能力不同,鱼类的耐受流速范围也不同,并最终影响趋流行为占比存在一定的差异 [21] [22] 。

2.2. 逆流行为

大部分鱼类都具有逆流游泳的习性,根据水流的流速、方向,调整自身的游速与水体保持相对平衡,并逐渐适应水环境 [23] 。Li等 [24] 对杂交鲟幼鱼的研究发现,随着流速增大,杂交鲟幼鱼的游泳状态逐渐由逆流前进、逆流静止行为转变为逆流后退行为;Zhong等 [25] 研究发现,华鲮(Sinilabeo rendahli)幼鱼在4 bl/s流速下,逆流前进、逆流静止和逆流后退所占的时间比例无显著差异(P > 0.05),而当流速大于4 bl/s时,华鲮幼鱼以逆流静止为主。研究表明,一般鱼类逆流行为时能承受的极限流速约为体长的2~3倍 [26] 。随着流速的增大,鱼类做出逆流行为所需动力也相应增加,鱼类必须通过加大摆尾频率才能保持逆流行为。

2.3. 摆尾行为

鱼类通常会调整摆尾的频率和幅度以适应不同的流速环境 [27] 。Li等 [24] 研究发现随着流速的增大,鱼类逆流时需要更大的推动力,为保持逆流前进鱼类通常需要增加摆尾频率,且摆尾频率与流速正相关;Yuan等 [28] 研究发现,当流速从1 bl/s逐渐增加到8 bl/s时,细鳞裂腹鱼(Schizothorax chongi)的摆尾频率显著增加(P < 0.05),而摆尾幅度有减小的趋势。总的来说,当流速增加时,鱼类通过增加摆尾频率,保持在水中的稳定性和前进的方向,同时更好地抵抗水流的阻力向前游动。在高流速水环境中,鱼类需要更多的能量来保持身体的稳定和前进,因此它们可能会减小摆尾的幅度,以保证能量的高效利用。

2.4. 集群行为

鱼类集群行为是指一群鱼在水中形成或参与的群体行为,这种行为涉及多个个体之间的相互作用,通常是协同合作或集体行动,这种行为可保护鱼类在流水环境下减少被其他鱼群攻击,从而提高鱼类的抵御能力。除此之外,长期的集群行为也可以减少鱼类个体差异形成的等级制度,使得鱼类的规格更加均匀统一。Hockley等 [29] 在孔雀鱼(Poecilia reticulate)的实验中观察到流速依赖的聚集差异,高流速下孔雀鱼形成的鱼群比在静水中形成的鱼群大;这一现象在白鲑(Leuciscus cephalus)身上也有发现。Lombana等 [30] 研究发现,随着流速的增加,野生成年斑马鱼(Danio rerio)并排游的趋势更多。此外,大麻哈鱼(Oncorhynchus keta)在静水中存在明显的等级性,具备较强的攻击性,随着流速的增加,大麻哈鱼的攻击性逐渐降低,出现规律性的同步化运动,并形成集群活动 [31] 。因此,流速能够对鱼类施加水流约束,促进鱼类的集体运动 [32] [33] 。

3. 流速对鱼类生长摄食的影响

3.1. 摄食

流速能够增加鱼类的运动量,增强食欲,进而提高鱼类的生长率 [34] [35] [36] 。Castro等 [37] 研究发现,大西洋鲑鱼(Salmo salar)在0.8 bl/s流速6周后,体重比静水组提高8%,相较于静水,0.8 bl/s的流速能够促进大西洋鲑对饲料的摄取,从而促进大西洋鲑的生长增重。但现并不是所有鱼类在水流刺激下都会食欲增强 [38] ,金头鲷(Sparus aurata)在1.5 bl/s流速下饲养30天的摄食量没有显著性差异,而生长率却显著优于静水组(0 bl/s) [11] 。此外,在非饱食投喂下,研究人员发现流水条件下鳟鱼(Squaliobarbus ourriculus) [34] 、鲇鱼(Silurus asotus) [35] [39] 生长率更高,因此流速促进鱼类生长的原因不单单是摄食量增加,也有可能是食物转换效率的提高造成的。

3.2. 生长

流速与鱼类的生长息息相关,研究表明,长时间在适宜流速(0.75 bl/s~2 bl/s)下有利于提高鱼类的生长率 [40] [41] [42] ,而对大多数鱼类而言,高流速(>2 bl/s)对鱼类的生长产生不利影响 [43] [44] [45] [46] 。Li等 [16] 研究发现,大菱鲆幼鱼在流速0.9 bl/s下的特定生长率显著高于0.3 bl/s和1.8 bl/s组;Nilsen等 [47] 研究发现,网箱养殖大西洋鲑鱼在流速0.36~0.63 bl/s下生长速率更高;Wang等 [48] 研究发现,当流速小于1.5 bl/s时,许氏平鲉(Sebastes schlegelii)的生长会随流速的增加呈上升趋势,而当流速达到2.5 bl/s时则会下降。这表明,适宜的流速会诱导鱼类进行有规律的游泳运动,增加摄食欲望,从而促进生长 [49] [50] ;较低流速下会导致鱼类频繁移动和竞争行为增加,使得原本用于生长的能量转移到运动消耗上 [51] [52] ;而过高流速会导致鱼类被迫进行高强度的运动,引起鱼类强烈的应激反应和游泳疲劳,从而抑制鱼类的生长 [53] [54] [55] 。也有学者认为流速对鱼类生长的影响与其自身游泳能力密切相关 [56] ,如游泳行为活跃的斑马鱼游泳的临界速度为18 bl/s。Palstra等 [57] 研究发现,成年斑马鱼在流水组养殖4周后,体长和体重均显著高于静水组(P < 0.05);而金鱼(Carassius auratus)等游泳行为不太活跃的鱼类,额外的流速反而会其生长能力造成负面影响 [58] 。

综上所述,低流速会导致鱼类自发性活动(如相互攻击等)增多,消耗大量的能量;高流速会导致鱼类过度运动,进而引发机体过度疲劳从而阻碍生长;而适宜的流速能够使得鱼类生长率和能耗利用效率更高。除此之外,适宜的流速与鱼类自身的游泳能力也密切相关,减少流速刺激反而有助于游泳能力不活跃的鱼类生存生长。

4. 流速对鱼类生理代谢和免疫能力的影响

4.1. 消化酶活性

消化酶活性是衡量生物消化能力的重要标志,与生物的生长发育密切相关 [59] [60] 。鱼类对营养物质的消化利用都与消化酶的活性有关,但关于流速对鱼类消化酶影响研究较少。Zhao等 [61] 研究发现罗非鱼(Oreochromis aureus)在流水7 d和30 d后,体内消化酶活性显著高于静水组(P < 0.05),蛋白酶、淀粉酶和脂肪酶活性随流速的增加而增大,2 bl/s达到最大,且随流速增加而降低;Liu等 [62] 研究发现,大口黑鲈流水组的肠胃脂肪酶活性随着流速增加而显著升高(P <0.05),流速2.0 bl/s时胃脂肪酶活性达到最大,1.0 bl/s流速时胃淀粉酶和蛋白酶活性最高;Li等 [63] 研究表明,流速能够显著提高中华倒刺鲃(Spinibarbus sinensis)幼鱼肝胰脏和肠道中的蛋白酶和脂肪酶活性。这表明,鱼类在流水影响下,运动能力增强,消耗较多的能量,进而需要增加摄食补充能的消耗,消化酶活性得以提高。因此,流速能够通过影响消化酶活性的高低,直接影响鱼类对饵料的消化吸收,最终影响其生长发育。

4.2. 物质代谢

物质代谢对生物生理具有机器重要的作用,其中糖类、脂肪和蛋白质等能量物质的代谢尤其重要 [64] 。Gruber等 [65] 研究发现半带皱唇鲨(Triakis semifasciata)在0.7 bl/s 流速中糖类代谢酶柠檬酸合酶(CS)、乳酸脱氯酶(LDH)和丙酮酸激酶(PK)活性显著高于静水组(0 bl/s) (P < 0.05);溪红点鲑(Salvelinus fontinalis)在流速为25 cm/s中21 d后,糖分解酶如磷酸化酶、己糖激酶(HK)和PK活性显著高于3 cm/s流速组(P < 0.05) [66] 。流速除了影响糖代谢供能外,通常也会对大多数鱼类脂肪代谢酶活性产生影响。McClelland等 [67] 研究发现,在流速高于2 bl/s时,斑马鱼肉碱脂酰转移酶I、羟酰CoA脱氢酶活性和柠檬酸活性随着流速的增加而增加;虹鳟(Oncorhynchus mykiss)、鳕鱼(Gadus morhua)、溪红点鲑(Salvelinus fontinalis)脂肪代谢关键酶肉碱脂酰转移酶I、羟酰CoA脱氢酶活性也随流速的增加而增加 [44] [68] [69] ,表明脂肪分解能力的增强。而Anttila等 [70] 研究发现,不同流速下欧鳟(Salm trutta)葡萄糖激酶(GK)和HK活性没有显著性差异,血浆游离脂肪酸活性在流速1.0 bl/s、2.0 bl/s下显著升高,脂肪酶酯酶活性在0.5 bl/s下最高。这表明欧鳟在低流速时,更多利用肌肉自身的脂肪作能源供能。Richards等 [71] [72] 则认为,当流速达到鱼类临界游速的30%和60%时,糖与脂肪提供的能量比例分别为45%和35%,在超低流速或静水条件下,脂肪氧化供能的比例将持续减少。因此,流速对鱼类的糖类或脂肪代谢有显著影响,但结果不一,最主要原因是鱼类种类不同导致的,且和研究者所设定的流速方案有关 [41] 。目前关于物质代谢的研究主要集中在糖类和脂肪代谢上,而有关流速影响鱼类蛋白质代谢的研究较少 [73] 。

4.3. 免疫能力

非特异性免疫是机体先天的生理防御功能,对病原微生物和异物的入侵能迅速作出免疫应答,包括组织屏障、固有免疫细胞及固有免疫分子等。鱼类主要通过非特异性免疫来维持机体平衡和健康 [74] 。研究发现免疫相关酶活性与病害、代谢 [75] 、免疫 [23] [76] 等均有着密切的联系。Liu等 [77] 研究发现,大口黑鲈血清和肝脏总抗氧化能力(T-AOC)在流水组显著高于静水组(P < 0.05),中流速组(0.4 m/s)超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性最高,丙二醛(MDA)含量最低,因此适宜的流速可以增强大口黑鲈抗应激和抗氧化能力,预防疾病感染,而流速过高会降低机体的抗氧化能力;Wei等 [78] 研究发现,斜带石斑鱼(Epinephelus coioides)在1.0 bl/s流速下溶菌酶(LZM)活性显著高于静水组(P < 0.05),且0.5 bl/s和1.0 bl/s流速下斜带石斑鱼的碱性磷酸酶(ALP)和酸性磷酸酶(ACP)活性均显著高于静水组(P < 0.05),而2.0 bl/s则与静水组无显著性差异(P > 0.05)。这可能是由于适宜的流速能够提高斜带石斑鱼免疫能力,而流速过高则会降低其免疫能力。相似的研究结果在大西洋鲑中也有发现,大西洋鲑在0.8 bl/s流速下6周后,免疫能力提高,且间歇强度组(0.8 bl/s: 16 h; 1.0 bl/s: 8 h)大西洋鲑的抗病能力和存活率显著优于无间歇强度组(0.8 bl/s: 24 h) [37] 。但在大麻哈鱼中研究发现,不同流速组(3 cm/s, 13 cm/s, 23 cm/s)大麻哈鱼的免疫球蛋白(IgM)含量没有显著性差异,但在23 cm/s组中的SOD含量显著性上升(P < 0.05) [79] 。鱼类免疫相关酶活与免疫能力之间的关系是复杂的,它们能在一定程度上反映了机体的生理生化状态,影响鱼类固有免疫细胞的功能和整体的免疫应答。因此,适宜的流速可以促进鱼类运动继而提高鱼类免疫相关酶活性,从而提高鱼类抗氧化能力和免疫力,而过高的流速会刺激鱼类过量运动继而降低鱼类免疫力,但不同鱼的种类对流速的适应也不同。

5. 流速对鱼类肌肉品质的影响

鱼类肉质品质包括鱼类肌肉的纤维、质构特性和营养成分等。流速能够促进鱼类的运动,从而对鱼体产生一定影响,进而影响鱼类的肉质品质 [74] 。目前关于流速影响鱼类肉质的研究较多,这意味着通过调节流速改善养殖鱼类肉质品质是一种潜在的可行措施 [80] - [86] 。

5.1. 肌肉纤维和质构特性

流速能够刺激鱼类运动,影响鱼肉肌纤维结构,而肌肉质构特性的变化又与肌肉纤维结构的变化密切相关 [87] [88] [89] 。Davison等 [83] 研究表明,欧鳟的红肌纤维数目在流速(1.5、3.0和4.5 bl/s)分别比静水组高40%、18%和20%,红肌直径分别比静水组高14%、31%、15%。但也有许多研究表明长期的水流运动对鱼类某些肌纤维结构的影响并不明显,如Li [63] 的研究发现,中华倒刺鲃分别在静水组、1 bl/s组、2 bl/s组培育8周后,各实验组的红白肌纤维直径和密度并没有显著性差异(P > 0.05);金鱼 [58] 在静水与有流速条件下(1.5 bl/s, 3.0 bl/s, 4.5 bl/s)相比,仅1.5 bl/s组的红肌纤维数目比静水组高25%,另外两个流水组无显著性变化,但最高流速组(4.5 bl/s)的白色纤维显著增加22.4% (P < 0.05),且终体重减少15.7%。造成金鱼最高流速组体重减少的部分原因可能是鱼类的游泳行为在一定程度上影响了肌肉以外的其他器官和组织的重量,如内脏和骨骼 [82] [90] 。适当的流速会刺激鱼类游泳运动加快,使肌肉纤维直径和密度增加,进而改善肌肉结构 [4] [8] [41] [68] [91] ,而流速过低或水流持续时间过短不会对鱼类的肌肉产生影响 [9] [82] [92] [93] 。肌肉的质构特性是食物组织特性的一项重要指标,也是食物的四大品质要素之一(另外三个要素分别为食物的外观、风味和营养) [94] [95] 。Hurling等 [88] 研究表明,鱼类肌肉纤维直径与硬度负相关;Johnston等 [89] 研究表明,流速能够导致大西洋鲑肌肉纤维密度增加,从而大大增加其肌肉硬度;Hu等 [96] 研究发现,多种淡水鱼类肌肉硬度与水分含量呈负相关性,与脂肪含量呈正相关性;Li等 [82] 研究发现,持续水流运动能够通过增加肌肉纤维密度显著提升中华倒刺鲃肌肉的硬度、弹性、咀嚼性与凝聚性(P < 0.05)。但流速也不一定都会引起鱼类肌肉结构特性的改变,研究发现,虹鳟(Oncorhynchus mykiss)肌肉纤维直径和肌肉质构特性在适度流速刺激下与静水组相比没有显著性差异(P > 0.05) [97] 。综上所述,流速促进了鱼类的运动对鱼类肌肉纤维(肌肉纤维的数目、密度、直径)产生积极影响,进而影响了鱼类肌肉质构特性,使其肌肉品质得到了提升。但流速对某些鱼类肌肉纤维的数目、直径无显著性变化,这可能和鱼类的品种有关。

5.2. 肌肉营养成分

鱼类受到水流的刺激促进了游泳运动,导致肌肉营养成分发生变化 [98] 。鱼类肌肉的营养价值是由多种指标来衡量的,如蛋白质和脂肪含量、氨基酸、脂肪酸谱和矿物质含量等,这些都在一定程度上受到流速的影响。

5.2.1. 常规营养成分

粗蛋白质、粗脂肪的含量及其营养成分组成比例代表鱼类肌肉组织的整体营养价值 [99] ,主要表现在水分、粗灰分、粗脂肪、粗蛋白质等方面 [100] [101] 。Song等 [102] 对多鳞四须鲃(Barbodes schwanenfdi)的研究发现,其肌肉蛋白质含量随着流速的增加而显著增长(P < 0.05);适度流速下能够提高中华倒刺鲃 [82] 、齐口裂腹鱼 [103] 、青鱼 [104] (Mylopharyngodon piceus)的蛋白质含量;欧鳟的肌肉蛋白质含量在1.5 bl/s流速下适应四周后显著高于静水组 [83] (P < 0.05)。但也有研究发现,流速对异育银鲫 [10] (Carassius auratus gibelio)、金头鲷 [13] 、金带蓝子鱼 [105] (Siganus rivulatus)的肌肉蛋白质含量无显著影响(P > 0.05)。总之,适宜的流速能够促进蛋白质的合成,提高大多数鱼类的蛋白质含量,但对少数鱼类无显著性变化,这可能与鱼的种类有关。

鱼类肌肉中脂肪含量的变化是一个与能量代谢密切相关的动态过程,受流速大小和水流持续时间影响。含有适量脂肪的鱼肉通常鲜美可口,一般来说,养殖鱼会有多余的脂肪,影响水产品的口感 [106] 。Li等 [107] 的实验结果表明1.2 bl/s的流速会导致中华倒刺鲃脂肪沉积,但当流速达到4 bl/s,脂肪含量显著低于静水组(P < 0.05);Song [108] 的研究结果表明,随着流速的增加,红鳍银鲫的主要供能物质由以糖类物质和蛋白质为主导逐渐向以脂肪为主导侧重。因此,在适宜的流速范围内,提高流速会促进鱼类运动能力加强,增加了脂肪的分解速度,降低肌肉脂肪含量,避免了养殖鱼类的脂肪过度沉积 [13] [109] 。流速还能影响鱼类肌肉水分及灰分含量的改变。Yogata等 [110] 对鰤鱼(Seriola quinqueradiata)的研究表明,流速能够显著降低其肌肉水分含量(P < 0.05);流速刺激可以显著性提升金带蓝子鱼肌肉的水分和灰分含量(P < 0.05) [105] ;但流速刺激对牙鲆(Paralichthys olivaceus)肌肉水分含量没有显著性影响(P > 0.05) [56] 。这表明流速能够影响大多数鱼类肌肉的水分和灰分含量,但对部分鱼类影响不大。

总的来说,鱼肉营养成分组成受到了流速高低和鱼的种类等多个方面因素的影响。在鱼肉中的营养成分是营养价值的具体体现,这也直接标志着鱼肉质量的高低。随着流速的增加,鱼体肌肉蛋白质含量增高且脂肪含量降低,进而改善鱼类肌肉品质。

5.2.2. 氨基酸和脂肪酸

氨基酸和脂肪酸是衡量营养价值的重要指标 [111] ,适宜的流速可以在一定程度上改善鱼类鱼肉的氨基酸和脂肪酸含量,而高流速则对其产生负面影响 [112] 。Li等 [82] 的研究表明,1~2 bl/s流速条件显著提高中华倒刺鲃氨基酸总量和必须氨基酸总量(P < 0.05),而在4 bl/s下氨基酸总量显著降低(P < 0.05),且鲜味氨基酸总量显著低于1 bl/s (P <0.05)。在Zhu等 [113] 的研究中发现,在1.0和2.0 bl/s组多鳞四须鲃(Barbodes schwanenfdi)肝脏中的单不饱和脂肪酸含量显著高于静水组;而大麻哈鱼在1.0~1.5 bl/s下多不饱和脂肪酸含量显著降低,单不饱和脂肪酸含量显著增加 [114] 。因此,流速通过影响鱼类肌肉的氨基酸和脂肪酸含量,直接或间接影响肌肉质量。但不同的鱼类得到的结果不一致,这可能是与品种及试验的方法、条件、环境等有关。

6. 结论

集约化养殖是一种高效、可持续的农业养殖模式,它具有提高生产效率,减少资源浪费,降低环境污染等优点,提供稳定的产品质量和产量,满足市场需求,提高养殖业的竞争力。流速在集约化养殖中的重要性不容小觑。已有的研究结果表明,过高或过低的流速在一定程度上削弱鱼类的摄食、抗病能力,抑制鱼类的生长,鱼品种、大小和其他环境因素等进一步促进或削弱这种影响;而中等流速(0.5 bl/s~2 bl/s)能够促进大多数鱼类生长,提高鱼体代谢水平和肌肉品质。因此,在集约化养殖模式中选用适宜的水流流速,制定相应的流速策略,不仅可以使得养殖鱼类脂肪含量降低,胶原蛋白含量升高,还能够改善鱼类的健康和福利,促进产业高产增效。

基金项目

现代农业产业技术体系专项(CARS-47-G24)、青岛海洋科技中心山东省专项经费(2022QNLM030001)资助。

参考文献

[1] 任效忠, 王江竹, 薛博茹, 等. 方形圆弧角海水养殖池排污特性的试验研究[J]. 海洋环境科学, 2021, 40(5): 790-797.
[2] 车宗龙, 任效忠, 张倩. 循环水养殖系统中水动力特性及其与鱼类相互影响研究进展[J]. 大连海洋大学学报, 2021, 36(5): 886.
[3] 陈松波, 陈伟兴, 范兆廷. 鱼类呼吸代谢研究进展[J]. 水产学杂志, 2004, 17(1): 82.
[4] Palstra, A.P. and Planas, J.V. (2011) Fish under Exercise. Fish Physiology and Biochemistry, 37, 259-272.
https://doi.org/10.1007/s10695-011-9505-0
[5] 王婕. 流速对工厂化养殖许氏平鲉(Sebastes schlegelii)生长、行为及代谢的影响研究[D]: [硕士学位论文]. 大连: 大连海洋大学, 2023.
[6] Zhu, T., Yang, R., Xiao, R., et al. (2023) Effects of Flow Velocity on the Growth Performance, Antioxidant Activity, Immunity and Intestinal Health of Chinese Perch (Siniperca chuatsi) in Recirculating Aquaculture Systems. Fish & Shellfish Immunology, 138, Article ID: 108811.
https://doi.org/10.1016/j.fsi.2023.108811
[7] 柴若愚, 尹恒, 霍润明, 等. 水流速度对黑鲷和美国红鱼续航游泳能力及生理代谢的影响[J]. 水生生物学报, 2023, 47(5): 723-731.
[8] Bugeon, J., Lefevre, F. and Fauconneau, B. (2003) Fillet Texture and Muscle Structure in Brown Trout (Salmo trutta) Subjected to Long-Term Exercise. Aquaculture Research, 34, 1287-1295.
https://doi.org/10.1046/j.1365-2109.2003.00938.x
[9] Timmerhaus, G., Lazado, C.C., Cabillon, N.A.R., et al. (2021) The Optimum Velocity for Atlantic Salmon Post-Smolts in RAS Is a Compromise between Muscle Growth and Fish Welfare. Aquaculture, 532, Article ID: 736076.
https://doi.org/10.1016/j.aquaculture.2020.736076
[10] 王海珊. 游泳训练对异育银鲫“中科3号”肌肉品质与甲状腺激素代谢的影响[D]: [硕士学位论文]. 武汉: 华中农业大学, 2019.
[11] 钱振家, 徐金铖, 余友斌, 等. 水流对鱼类游泳行为和生理代谢的影响的研究进展[J]. 中国农学通报, 2022, 38(32): 133-138.
[12] 许亚琴, 吴立新, 陈炜, 等. 水流对鱼类生理生态学影响的研究进展[J]. 现代农业科技, 2020(4): 199-200.
[13] Ibarz, A., Felip, O., Fernández-Borràs, J., et al. (2011) Sustained Swimming Improves Muscle Growth and Cellularity in Gilthead Sea Bream. Journal of Comparative Physiology B, 181, 209-217.
https://doi.org/10.1007/s00360-010-0516-4
[14] Chen, Z., Ye, Z., Ji, M., et al. (2021) Effects of Flow Velocity on Growth and Physiology of Juvenile Largemouth Bass (Micropterus salmoides) in Recirculating Aquaculture Systems. Aquaculture Research, 52, 3093-3100.
https://doi.org/10.1111/are.15153
[15] Shrivastava, J., Rašković, B., Blust, R., et al. (2018) Exercise Improves Growth, Alters Physiological Performance and Gene Expression in Common Carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 226, 38-48.
https://doi.org/10.1016/j.cbpa.2018.08.007
[16] Li, X., Ji, L., Wu, L., et al. (2019) Effect of Flow Velocity on the Growth, Stress and Immune Responses of Turbot (Scophthalmus maximus) in Recirculating Aquaculture Systems. Fish & Shellfish Immunology, 86, 1169-1176.
https://doi.org/10.1016/j.fsi.2018.12.066
[17] Crook, D.A., Buckle, D.J., Morrongiello, J.R., et al. (2020) Tracking the Resource Pulse: Movement Responses of Fish to Dynamic Floodplain Habitat in a Tropical River. Journal of Animal Ecology, 89, 795-807.
https://doi.org/10.1111/1365-2656.13146
[18] Hoyt, D.F., Taylor, C.R. (1981) Gait and the Energetics of Locomotion in Horses. Nature, 292, 239-240.
https://doi.org/10.1038/292239a0
[19] 宋波澜, 林小涛, 王伟军, 等. 不同流速下红鳍银鲫趋流行为与耗氧率的变化[J]. 动物学报, 2008, 54(4): 686-694.
[20] 廖磊, 安瑞冬, 李嘉, 等. 齐口裂腹鱼趋流行为的水力学特性研究[J]. 水电能源科学, 2019, 37(5): 69-72.
[21] 张硕, 陈勇. 黑鲪幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287.
[22] 钟金鑫, 张倩, 李小荣, 等. 不同流速对鱇(鱼良)白鱼游泳行为的影响[J]. 生态学杂志, 2013, 32(3): 655-660.
[23] 董鹏. 菊黄东方鲀的游泳运动及对其呼吸排泄和非特异性免疫的影响[D]: [硕士学位论文]. 大连: 大连海洋大学, 2017.
[24] 李丹, 林小涛, 李想, 等. 水流对杂交鲟幼鱼游泳行为的影响[J]. 淡水渔业, 2008, 38(6): 46-51.
[25] 钟金鑫, 张倩, 李小荣. 流速对云南华鲮幼鱼游泳行为的影响[J]. 安徽农业科学, 2012, 40(35): 17137-17139.
[26] 何大仁. 俄国鱼类行为与感觉研究(I) [J]. 台湾海峡, 1996, 15(2): 191-199.
[27] 曹誉尹. 计算机视觉在观测量化鱼类行为中的研究[J]. 农业与技术, 2022, 42(17): 121-124.
[28] 袁喜, 涂志英, 韩京成, 等. 流速对细鳞裂腹鱼游泳行为及能量消耗影响的研究[J]. 水生生物学报, 2012, 36(2): 270-275.
[29] Hockley, F.A., Wilson, C., Graham, N., et al. (2014) Combined Effects of Flow Condition and Parasitism on Shoaling Behaviour of Female Guppies Poecilia reticulata. Behavioral Ecology and Sociobiology, 68, 1513-1520.
https://doi.org/10.1007/s00265-014-1760-5
[30] Lombana, D.A.B. and Porfiri, M. (2022) Collective Response of Fish to Combined Manipulations of Illumination and Flow. Behavioural Processes, 203, Article ID: 104767.
https://doi.org/10.1016/j.beproc.2022.104767
[31] Kallberg, H. (1958) Observations in a Stream Tank of Territoriality and Competition in Juvenile Salmon and Trout. Report No. 39, Institute of Freshwater Research, Drottningholm, 55-98.
[32] Filella, A., Nadal, F., Sire, C., et al. (2018) Model of Collective Fish Behavior with Hydrodynamic Interactions. Physical Review Letters, 120, Article ID: 198101.
https://doi.org/10.1103/PhysRevLett.120.198101
[33] Petroff, A. and Libchaber, A. (2014) Hydrodynamics and Collective Behavior of the Tethered Bacterium Thiovulum majus. Proceedings of the National Academy of Sciences, 111, E537-E545.
https://doi.org/10.1073/pnas.1322092111
[34] Leon, K.A. (1986) Effect of Exercise on Feed Consumption, Growth, Food Conversion, and Stamina of Brook Trout. The Progressive Fish-Culturist, 48, 43-46.
https://doi.org/10.1577/1548-8640(1986)48<43:EOEOFC>2.0.CO;2
[35] Ohya, S., Simizu, T., Horikawa, Y., et al. (1991) Effect of Water Drawing System on Productivity and Body Composition of Cultured Ayu Plecoglossus altivelis. Aquaculture Science, 39, 1-8.
[36] Jørgensen, E.H. and Jobling, M. (1994) Feeding and Growth of Exercised and Unexercised Juvenile Atlantic Salmon in Freshwater, and Performance after Transfer to Seawater. Aquaculture International, 2, 154-164.
https://doi.org/10.1007/BF00231512
[37] Castro, V., Grisdale-Helland, B., Helland, S.J., et al. (2011) Aerobic Training Stimulates Growth and Promotes Disease Resistance in Atlantic Salmon (Salmo salar). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160, 278-290.
https://doi.org/10.1016/j.cbpa.2011.06.013
[38] Christiansen, J.S. and Jobling, M. (1990) The Behaviour and the Relationship between Food Intake and Growth of Juvenile Arctic Charr, Salvelinus alpinus L., Subjected to Sustained Exercise. Canadian Journal of Zoology, 68, 2185-2191.
https://doi.org/10.1139/z90-303
[39] Nematipour, G.R. (1991) Effects of Water Velocities on Lipid Reserves in Ayu. Nippon Suisan Gakkaishi, 57, 1737-1741.
https://doi.org/10.2331/suisan.57.1737
[40] Jobling, M., Baardvik, B.M., Christiansen, J.S., et al. (1993) The Effects of Prolonged Exercise Training on Growth Performance and Production Parameters in Fish. Aquaculture International, 1, 95-111.
https://doi.org/10.1007/BF00692614
[41] Davison, W. (1997) The Effects of Exercise Training on Teleost Fish, a Review of Recent Literature. Comparative Biochemistry and Physiology Part A: Physiology, 117, 67-75.
https://doi.org/10.1016/S0300-9629(96)00284-8
[42] Inoue, L.A.K.A., Hackbarth, A., Arberláez-Rojas, G., et al. (2019) Growth Performance and Metabolism of the Neotropical Fish Piaractus mesopotamicus under Sustained Swimming. Aquaculture, 511, Article ID: 734219.
https://doi.org/10.1016/j.aquaculture.2019.734219
[43] East, P. and Magnan, P. (1987) The Effect of Locomotor Activity on the Growth of Brook Charr, Salvelinus fontinalis Mitchill. Canadian Journal of Zoology, 65, 843-846.
https://doi.org/10.1139/z87-134
[44] Farrell, A.P., Johansen, J.A. and Suarez, R.K. (1991) Effects of Exercise-Training on Cardiac Performance and Muscle Enzymes in Rainbow Trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry, 9, 303-312.
https://doi.org/10.1007/BF02265151
[45] Young, P.S. and Cech Jr., J.J. (1994) Optimum Exercise Conditioning Velocity for Growth, Muscular Development, and Swimming Performance in Young-of-the-Year Striped Bass (Morone saxatilis). Canadian Journal of Fisheries and Aquatic Sciences, 51, 1519-1527.
https://doi.org/10.1139/f94-151
[46] Young, P.S. and Cech Jr., J.J. (1994) Effects of Different Exercise Conditioning Velocities on the Energy Reserves and Swimming Stress Responses in Young-of-the-Year Striped Bass (Morone saxatilis). Canadian Journal of Fisheries and Aquatic Sciences, 51, 1528-1534.
https://doi.org/10.1139/f94-152
[47] Nilsen, A., Hagen, Ø., Johnsen, C.A., et al. (2019) The Importance of Exercise: Increased Water Velocity Improves Growth of Atlantic Salmon in Closed Cages. Aquaculture, 501, 537-546.
https://doi.org/10.1016/j.aquaculture.2018.09.057
[48] 王婕, 张佳, 张旭, 李海霞, 胡雨, 马真. 不同流速对许氏平鲉生长及行为的影响[J]. 水生生物学报, 2023, 47(6): 973-981.
[49] Fernö, A., et al. (2020) The Welfare of Fish. Springer International Publishing, Cham.
[50] Balseiro, P., Moe, Ø., Gamlem, I., et al. (2018) Comparison between Atlantic Salmon Salmo salar Post-Smolts Reared in Open Sea Cages and in the Preline Raceway Semi-Closed Containment Aquaculture System. Journal of Fish Biology, 93, 567-579.
https://doi.org/10.1111/jfb.13659
[51] Ashley, P.J. (2007) Fish Welfare: Current Issues in Aquaculture. Applied Animal Behaviour Science, 104, 199-235.
https://doi.org/10.1016/j.applanim.2006.09.001
[52] Morro, B., Davidson, K., Adams, T.P., et al. (2022) Offshore Aquaculture of Finfish: Big Expectations at Sea. Reviews in Aquaculture, 14, 791-815.
https://doi.org/10.1111/raq.12625
[53] Nilsen, A., Nielsen, K.V. and Bergheim, A. (2020) A Closer Look at Closed Cages: Growth and Mortality Rates during Production of Post-Smolt Atlantic Salmon in Marine Closed Confinement Systems. Aquacultural Engineering, 91, Article ID: 102124.
https://doi.org/10.1016/j.aquaeng.2020.102124
[54] Is-haak, J., Kaewnern, M., Yoonpundh, R., et al. (2019) Oxygen Consumption Rates of Hybrid Red Tilapia at Different Sizes during Challenge to Water Velocity. Journal of Fisheries and Environment, 43, 52-65.
[55] Hvas, M. and Oppedal, F. (2017) Sustained Swimming Capacity of Atlantic salmon. Aquaculture Environment Interactions, 9, 361-369.
https://doi.org/10.3354/aei00239
[56] Ogata, H.Y. and Oku, H. (2000) Effects of Water Velocity on Growth Performance of Juvenile Japanese Flounder Paralichthys olivaceus. Journal of the World Aquaculture Society, 31, 225-231.
https://doi.org/10.1111/j.1749-7345.2000.tb00357.x
[57] Palstra, A.P., Tudorache, C., Rovira, M., et al. (2010) Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression. PLOS ONE, 5, e14483.
https://doi.org/10.1371/journal.pone.0014483
[58] Davison, W. and Goldspink, G. (1978) The Effect of Training on the Swimming Muscles of the Goldfish (Carassius auratus). Journal of Experimental Biology, 74, 115-122.
https://doi.org/10.1242/jeb.74.1.115
[59] Lemieux, H., Blier, P. and Dutil, J.D. (1999) Do Digestive Enzymes set a Physiological Limit on Growth Rate and Food Conversion Efficiency in the Atlantic Cod (Gadus morhua)? Fish Physiology and Biochemistry, 20, 293-303.
https://doi.org/10.1023/A:1007791019523
[60] Hakim, Y., Uni, Z., Hulata, G., et al. (2006) Relationship between Intestinal Brush Border Enzymatic Activity and Growth Rate in Tilapias Fed Diets Containing 30% or 48% Protein. Aquaculture, 257, 420-428.
https://doi.org/10.1016/j.aquaculture.2006.02.034
[61] 赵璐琪, 宋波澜. 流速对吉富罗非鱼幼鱼行为和消化酶的影响[J]. 河北渔业, 2017(3): 21-23.
[62] 刘梅, 练青平, 倪蒙, 等. 池塘内循环流水养殖模式对大口黑鲈生长性能, 抗氧化酶, 消化酶及消化道组织结构和菌群的影响[J]. 水产学报, 2021, 45(12): 2011-2028.
[63] 李秀明. 运动训练对中华倒刺鲃幼鱼生长的影响及其机理研究[D]: [博士学位论文]. 重庆: 西南大学, 2013.
[64] 魏小岚. 运动训练影响尼罗罗非鱼(Oreochromis niloticus)蛋白质与糖类代谢及其营养需求的生理机制研究[D]: [博士学位论文]. 广州: 暨南大学, 2015.
[65] Gruber, S.J. and Dickson, K.A. (1997) Effects of Endurance Training in the Leopard Shark, Triakis semifasciata. Physiological Zoology, 70, 481-492.
https://doi.org/10.1086/515851
[66] Hinterleitner, S., Huber, M., Lackner, R., et al. (1992) Systemic and Enzymatic Responses to Endurance Training in Two Cyprinid Species with Different Life Styles (Teleostei: Cyprinidae). Canadian Journal of Fisheries and Aquatic Sciences, 49, 110-115.
https://doi.org/10.1139/f92-013
[67] McClelland, G.B., Craig, P.M., Dhekney, K., et al. (2006) Temperature- and Exercise-Induced Gene Expression and Metabolic Enzyme Changes in Skeletal Muscle of Adult Zebrafish (Danio rerio). The Journal of Physiology, 577, 739-751.
https://doi.org/10.1113/jphysiol.2006.119032
[68] Johnston, I.A. and Moon, T.W. (1980) Endurance Exercise Training in the Fast and Slow Muscles of a Teleost Fish (Pollachius virens). Journal of Comparative Physiology, 135, 147-156.
https://doi.org/10.1007/BF00691204
[69] Johnston, I.A. and Moon, T.W. (1980) Exercise Training in Skeletal Muscle of Brook Trout (Salvelinus fontinalis). Journal of Experimental Biology, 87, 177-194.
https://doi.org/10.1242/jeb.87.1.177
[70] Anttila, K., Jäntti, M. and Mänttäri, S. (2010) Effects of Training on Lipid Metabolism in Swimming Muscles of Sea Trout (Salmo trutta). Journal of Comparative Physiology B, 180, 707-714.
https://doi.org/10.1007/s00360-010-0446-1
[71] Richards, J.G., Mercado, A.J., Clayton, C.A., et al. (2002) Substrate Utilization during Graded Aerobic Exercise in Rainbow Trout. Journal of Experimental Biology, 205, 2067-2077.
https://doi.org/10.1242/jeb.205.14.2067
[72] Richards, J.G., Heigenhauser, G.J.F. and Wood, C.M. (2002) Lipid Oxidation Fuels Recovery from Exhaustive Exercise in White Muscle of Rainbow Trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 282, R89-R99.
https://doi.org/10.1152/ajpregu.00238.2001
[73] Grisdale-Helland, B., Takle, H. and Helland, S.J. (2013) Aerobic Exercise Increases the Utilization Efficiency of Energy and Protein for Growth in Atlantic Salmon Post-Smolts. Aquaculture, 406, 43-51.
https://doi.org/10.1016/j.aquaculture.2013.05.002
[74] 许亚琴. 流速对拉氏鱥幼鱼生长, 非特异性免疫能力及脂肪酸组成的影响[D]: [硕士学位论文]. 大连: 大连海洋大学, 2020.
[75] 崔雅军. 肝酶与代谢综合征的相关性研究[J]. 中国社区医师, 2016, 32(20): 118-119.
[76] 刘经纬, 麦康森, 徐玮, 等. 谷氨酰胺对半滑舌鳎稚鱼非特异性免疫相关酶活力和低氧应激后 HIF-1α表达的影响[J]. 水生生物学报, 2016, 40(4): 736-743.
[77] 刘梅, 原居林, 练青平, 等. 不同流速对流水槽大口黑鲈生长性能, 抗氧化能力, 能量代谢及组织结构的影响[J]. 水生生物学报, 2023, 47(1): 25-36.
[78] 魏小岚, 虞顺年, 阳艳, 等. 运动强度对斜带石斑鱼生长, 非特异性免疫和肝脏抗氧化能力的影响[J]. 中国水产科学, 2017, 24(5): 1055-1064.
[79] Azum, T., Noda, S., Yada, T., et al. (2002) Profiles in Growth, Smoltification, Immune Function and Swimming Performance of 1-Year-Old Masu Salmon Oncorhynchus masou Masou Reared in Water Flow. Fisheries Science, 68, 1282-1294.
https://doi.org/10.1046/j.1444-2906.2002.00566.x
[80] Steinbacher, P. and Eckl, P. (2015) Impact of Oxidative Stress on Exercising Skeletal Muscle. Biomolecules, 5, 356-377.
https://doi.org/10.3390/biom5020356
[81] Ji, L.L., Kang, C. and Zhang, Y. (2016) Exercise-Induced Hormesis and Skeletal Muscle Health. Free Radical Biology and Medicine, 98, 113-122.
https://doi.org/10.1016/j.freeradbiomed.2016.02.025
[82] Li, X.M., Yuan, J.M., Fu, S.J., et al. (2016) The Effect of Sustained Swimming Exercise on the Growth Performance, Muscle Cellularity and Flesh Quality of Juvenile Qingbo (Spinibarbus sinensis). Aquaculture, 465, 287-295.
https://doi.org/10.1016/j.aquaculture.2016.09.021
[83] Davison, W. and Goldspink, G. (1977) The Effect of Prolonged Exercise on the Lateral Musculature of the Brown Trout (Salmo trutta). Journal of Experimental Biology, 70, 1-12.
https://doi.org/10.1242/jeb.70.1.1
[84] Sänger, A.M. (1992) Effects of Training on Axial Muscle of Two Cyprinid Species: Chondrostoma nasus (L.) and Leuciscus cephalus (L.). Journal of Fish Biology, 40, 637-646.
https://doi.org/10.1111/j.1095-8649.1992.tb02611.x
[85] Martin, C.I. and Johnston, I.A. (2005) The Role of Myostatin and the Calcineurin-Signalling Pathway in Regulating Muscle Mass in Response to Exercise Training in the Rainbow Trout Oncorhynchus mykiss Walbaum. Journal of Experimental Biology, 208, 2083-2090.
https://doi.org/10.1242/jeb.01605
[86] Shi, C., Wang, J., Yang, Z., et al. (2019) Sustained Swimming Training Is Associated with Reversible Filet Texture Changes of European Sea Bass (Dicentrarchus labrax L.). Frontiers in Physiology, 10, Article No. 725.
https://doi.org/10.3389/fphys.2019.00725
[87] Hatae, K., Yoshimatsu, F. and Matsumoto, J.J. (1990) Role of Muscle Fibers in Contributing Firmness of Cooked Fish. Journal of Food Science, 55, 693-696.
https://doi.org/10.1111/j.1365-2621.1990.tb05208.x
[88] Hurling, R., Rodell, J.B. and Hunt, H.D. (1996) Fiber Diameter and Fish Texture. Journal of Texture Studies, 27, 679-685.
https://doi.org/10.1111/j.1745-4603.1996.tb01001.x
[89] Johnston, I.A., Alderson, R., Sandham, C., et al. (2000) Muscle Fibre Density in Relation to the Colour and Texture of Smoked Atlantic Salmon (Salmo salar L.). Aquaculture, 189, 335-349.
https://doi.org/10.1016/S0044-8486(00)00373-2
[90] Kiessling, A., Higgs, D.A., Dosanjh, B.S., et al. (1994) Influence of Sustained Exercise at Two Ration Levels on Growth and Thyroid Function of All-Female Chinook Salmon (Oncorhynchus tshawytscha) in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1975-1984.
https://doi.org/10.1139/f94-200
[91] Johnston, I.A. (1999) Muscle Development and Growth: Potential Implications for Flesh Quality in Fish. Aquaculture, 177, 99-115.
https://doi.org/10.1016/S0044-8486(99)00072-1
[92] Palstra, A.P., Mes, D., Kusters, K., et al. (2015) Forced Sustained Swimming Exercise at Optimal Speed Enhances Growth of Juvenile Yellowtail Kingfish (Seriola lalandi). Frontiers in Physiology, 5, Article No. 506.
https://doi.org/10.3389/fphys.2014.00506
[93] Totland, G.K., Kryvi, H., Jødestøl, K.A., et al. (1987) Growth and Composition of the Swimming Muscle of Adult Atlantic Salmon (Salmo salar L.) during Long-Term Sustained Swimming. Aquaculture, 66, 299-313.
https://doi.org/10.1016/0044-8486(87)90115-3
[94] 李里特. 食品物性学[M]. 北京: 中国农业出版社, 2001.
[95] Harimana, Y., Tang, X., Xu, P., et al. (2019) Effect of Long-Term Moderate Exercise on Muscle Cellularity and Texture, Antioxidant Activities, Tissue Composition, Freshness Indicators and Flavor Characteristics in Largemouth Bass (Micropterus salmoides). Aquaculture, 510, 100-108.
https://doi.org/10.1016/j.aquaculture.2019.05.051
[96] 胡芬, 李小定, 熊善柏, 等. 5种淡水鱼肉的质构特性及与营养成分的相关性分析[J]. 食品科学, 2011, 32(11): 69-73.
[97] Rasmussen, R.S., Heinrich, M.T., Hyldig, G., et al. (2011) Moderate Exercise of Rainbow Trout Induces Only Minor Differences in Fatty Acid Profile, Texture, White Muscle Fibres and Proximate Chemical Composition of Fillets. Aquaculture, 314, 159-164.
https://doi.org/10.1016/j.aquaculture.2011.02.003
[98] Zhu, Z., Song, B., Lin, X., et al. (2016) Effect of Sustained Training on Glycolysis and Fatty Acids Oxidation in Swimming Muscles and Liver in Juvenile Tinfoil Barb Barbonymus schwanenfeldii (Bleeker, 1854). Fish Physiology and Biochemistry, 42, 1807-1817.
https://doi.org/10.1007/s10695-016-0259-6
[99] Periago, M.J., Ayala, M.D., López-Albors, O., et al. (2005) Muscle Cellularity and Flesh Quality of Wild and Farmed Sea Bass, Dicentrarchus labrax L. Aquaculture, 249, 175-188.
https://doi.org/10.1016/j.aquaculture.2005.02.047
[100] 吴亮. 光照对豹纹鳃棘鲈幼鱼栖息, 生长和肌肉营养成分的影响[D]: [硕士学位论文]. 上海: 上海海洋大学, 2016.
[101] Feng, H., Peng, D., Liang, X.F., et al. (2022) Effect of Dietary Hydroxyproline Supplementation on Chinese Perch (Siniperca chuatsi) Fed with Fish Meal Partially Replaced by Fermented Soybean Meal. Aquaculture, 547, Article ID: 737454.
https://doi.org/10.1016/j.aquaculture.2021.737454
[102] 宋波澜, 林小涛, 许忠能. 逆流运动训练对多鳞四须鲃摄食, 生长和体营养成分的影响[J]. 水产学报, 2012, 36(1): 106-114.
[103] Liu, G., Wu, Y., Qin, X., et al. (2018) The Effect of Aerobic Exercise Training on Growth Performance, Innate Immune Response and Disease Resistance in Juvenile Schizothorax prenanti. Aquaculture, 486, 18-25.
https://doi.org/10.1016/j.aquaculture.2017.12.006
[104] Harimana, Y., Tang, X., Le, G., et al. (2018) Quality Parameters of Black Carp (Mylopharyngodon piceus) Raised in Lotic and Lentic Freshwater Systems. LWT, 90, 45-52.
https://doi.org/10.1016/j.lwt.2017.11.060
[105] Mohanna, C. (2010) Effect of Continuous Water Movement on Growth and Body Composition of Juvenile Rabbitfish, Siganus rivulatus.
[106] Rincón, L., Castro, P.L., Álvarez, B., et al. (2016) Differences in Proximal and Fatty Acid Profiles, Sensory Characteristics, Texture, Colour and Muscle Cellularity between Wild and Farmed Blackspot Seabream (Pagellus bogaraveo). Aquaculture, 451, 195-204.
https://doi.org/10.1016/j.aquaculture.2015.09.016
[107] Li, X.M., Yu, L.J., Wang, C., et al. (2013) The Effect of Aerobic Exercise Training on Growth Performance, Digestive Enzyme Activities and Postprandial Metabolic Response in Juvenile Qingbo (Spinibarbus sinensis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166, 8-16.
https://doi.org/10.1016/j.cbpa.2013.04.021
[108] 宋波澜. 水流因子对红鳍银鲫(Barbodes schwanenfeldi)游泳行为、生长和生理生态影响的研究[D]: [博士学位论文]. 广州: 暨南大学, 2008.
[109] Grigorakis, K. (2007) Compositional and Organoleptic Quality of Farmed and Wild Gilthead Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) and Factors Affecting It: A Review. Aquaculture, 272, 55-75.
https://doi.org/10.1016/j.aquaculture.2007.04.062
[110] Yogata, H. and Oku, H. (2000) The Effects of Swimming Exercise on Growth and Wholebody Protein and Fat Contents of Fed and Unfed Fingerling Yellowtail. Fisheries Science, 66, 1100-1105.
https://doi.org/10.1046/j.1444-2906.2000.00175.x
[111] Zhu, T., Yang, R., Xiao, R., et al. (2023) Effect of Swimming Training on the Flesh Quality in Chinese Perch (Siniperca chuatsi) and Its Relationship with Muscle Metabolism. Aquaculture, 577, Article ID: 739926.
https://doi.org/10.1016/j.aquaculture.2023.739926
[112] Huang, X., Hegazy, A.M. and Zhang, X. (2021) Swimming Exercise as Potential Measure to Improve Flesh Quality of Cultivable Fish: A Review. Aquaculture Research, 52, 5978-5989.
https://doi.org/10.1111/are.15510
[113] 朱志明. 运动训练下多鳞四须鲃(Barbodes schwanenfeldi)肌肉和肝脏糖, 脂代谢研究[D]: [博士学位论文]. 广州: 暨南大学, 2014.
[114] Kiessling, A., Pickova, J., Eales, J.G., et al. (2005) Age, Ration Level, and Exercise Affect the Fatty Acid Profile of Chinook Salmon (Oncorhynchus tshawytscha) Muscle Differently. Aquaculture, 243, 345-356.
https://doi.org/10.1016/j.aquaculture.2004.10.003