sST2在急性心肌梗死后心室重塑中的研究进展
Research Progress of sST2 in Ventricular Remodeling after Acute Myocardial Infarction
DOI: 10.12677/ACM.2023.13112526, PDF, HTML, XML, 下载: 247  浏览: 380 
作者: 玉麦尔江·巴拉提, 何鹏义*:新疆医科大学第五附属医院心脏中心,新疆 乌鲁木齐
关键词: 可溶性致癌抑制因子2急性心肌梗死心室重塑综述Suppression of Tumorigenicity-2 Ventricular Remodeling Acute Myocardial Infarction Review
摘要: 急性心肌梗死(acute myocardial infarction, AMI)后会出现左心室形状改变、体积增大、梗死节段心肌变薄和非梗死节段心肌肥厚等病理变化,被称为心室重塑(ventricular remodeling, VR)。这些过程无法通过心内膜活检进行常规评估,但可通过循环中的生物标记物水平反映出来。近几年来相关研究发现多种可反映AMI后VR的生物标志物,其中可溶性致癌抑制因子2 (soluble suppression of tu-morigenicity-2, sST2)与AMI后不良预后相关。本文综述sST2在急性心肌梗死后心室重塑中的研究进展。
Abstract: Acute myocardial infarction (AMI) is followed by changes in left ventricular shape, increased vol-ume and pathological changes of myocardial thinning in infarcted areas and hypertrophy in non-infarcted segments, termed ventricular remodeling (VR). These processes cannot be assessed routinely by endomyocardial biopsy but can be reflected by circulating levels of biomarkers. In re-cent years, various biomarkers reflecting VR after AMI have been identified, among which soluble suppression of tumorigenicity-2 (sST2) is associated with poor prognosis after AMI. This article re-views the research progress of sST2 in ventricular remodeling after acute myocardial infarction.
文章引用:玉麦尔江·巴拉提, 何鹏义. sST2在急性心肌梗死后心室重塑中的研究进展[J]. 临床医学进展, 2023, 13(11): 17994-18000. https://doi.org/10.12677/ACM.2023.13112526

1. 引言

急性心肌梗死(acute myocardial infarction, AMI)是由脆弱的动脉粥样硬化斑块破裂或侵蚀并叠加血栓形成导致的冠状动脉闭塞和低灌注区域心肌细胞的逐渐死亡 [1] 。药物和介入疗法的进步提高了AMI患者的存活率并降低了再次发生缺血性事件的风险 [2] 。然而,接受经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)的患者中,10%~30%存在左心室功能障碍 [3] 。这些个体倾向于进一步向心室重塑(ventricular remodeling, VR)和心力衰竭(Heart failure, HF)发展。VR作为AMI的后续改变,是HF发生发展的基本病理机制。因此,AMI后对VR的积极干预尤为重要。近期相关研究表明,可溶性致癌抑制因子2 (soluble suppression of tumorigenicity-2, sST2)可反映进行中的心肌损伤严重程度,因此可应用于跟踪心室重构过程 [4] 。本篇对sST2在急性心肌梗死后心室重塑中的研究进展进行综述。

2. 急性心肌梗死后心室重塑

2.1. AMI后VR的概念

20世纪80年代中期,Pfeffer等 [5] 记录到冠状动脉闭塞后左心室扩张和收缩功能进行性下降,并首次提出“心室重塑”这一概念。成年期,心室的形状、大小和壁厚会发生生理变化 [4] 。此外,可发生生理性心室重塑以满足妊娠或运动训练相关代谢需求的增加 [4] 。当存在应激源,如AMI、各类心肌病相关病因或后负荷慢性增加等,则会出现病理性心室重塑 [6] 。HF患者从药物和非药物治疗中的获益,在一定程度上抵消了持续的心肌损伤。根据上述两个因素之间的净平衡,心脏几何形状和功能得以改善,即逆向重塑(reverse remodeling, RR);甚至完全正常化,即缓解(remission);或者逐渐恶化,即不良重塑(adverse remodeling, AR)。前两者预示预后良好,而AR与患者临床状态和结局的恶化相关 [4] 。重塑过程最终涉及所有心腔,但传统上是根据左心室容积和射血分数(ejection fraction, EF)进行评价 [4] 。

2.2. AMI后VR相关生物标志物

在组织细胞水平,VR是心脏所有细胞类型(心肌细胞、成纤维细胞、内皮细胞和白细胞)发生改变的结果,这些细胞类型彼此间密切相联以响应心脏损伤、神经激素激活和应激反应。心肌细胞的伸展、坏死、肥厚和炎症反应是VR和HF中心机制 [7] 。以下主要围绕心肌细胞改变阐述AMI后VR相关生物标志物。

2.2.1. 心肌伸展

心房或心室壁张力增加时,心肌细胞分泌利钠肽(natriuretic peptides, NPs)。NPs释放其氨基末端部分后才会成熟并具有生物活性,即利钠肽B原(pro-B-type natriuretic peptide, proBNP)被裂解成N末端B型利纳肽原(N-Terminal Pro-Brain Natriuretic Peptide, NT-proBNP)和脑钠肽(Brain natriuretic peptide, BNP)。NPs促进心肌舒张,钠尿排泄和血管舒张,并钝化RAS和交感神经活性 [8] 。所有循环NPs及其第二信使环磷酸鸟苷(cyclic guanosine monophosphate, cGMP)的血浆浓度随房室壁张力的增加而增加,并与左室收缩和舒张功能障碍程度和严重程度成正比 [8] 。这与控制proBNP表达的机制有关,包括内皮素、血管紧张素II、细胞因子和心肌缺氧的刺激 [8] 。在射血分数降低的HF患者中,NT-proBNP的纵向变化与左房和左室RR相关 [9] [10] [11] 。因此,BNP和NT-proBNP目前被认为是整个左室射血分数谱系中HF的标志性诊断和预后生物标志物。

2.2.2. 心肌坏死

肌钙蛋白(cardiac troponin I, cTnI; cardiac troponin T, cTnT)在心肌细胞损伤、坏死或凋亡时释放,也可能由于质膜通透性增加而从受损但仍存活的心肌细胞中渗漏 [12] 。高敏感性心肌肌钙蛋白T (high-sensitivity cardiac troponin T, hs-cTnT)的增加与射血分数保留性心衰(HF with preserved EF, HFpEF)或射血分数降低性心衰(HF with reduced EF, HFrEF)患者的不良预后相关 [13] 。此外,hs-cTnT的纵向变化与HFrEF患者的左心房和左心室逆向重构相关 [9] 。

2.2.3. 心肌炎症反应

VR以大量的免疫细胞涌入,分泌大量的促炎和抗炎细胞因子为炎症反应的主要特点 [14] [15] 。一系列促炎细胞因子可刺激心肌产生心肌细胞衍生因子,这些因子具有作为VR生物标志物的潜力。例如,致癌抑制因子2 (suppression of tumorigenicity-2, ST2)是白细胞介素-1 (interleukin-1, IL-1)受体家族成员之一,包含可溶性ST2 (Soluble ST2, sST2)和跨模型ST2 (transmembrane ST2, ST2L)两个亚型,主要表达于心肌细胞,反映心室壁应激,与炎症和免疫反应有关 [16] 。ST2L与白细胞介素-33 (interleukin-33, IL-33)的相互作用可以减轻心肌肥厚和心肌纤维化,从而对心肌起到保护作用。相反,sST2从循环中去除IL-33,促进心肌肥厚、纤维化和心室功能障碍 [16] 。

NT-proBNP确定心肌牵拉、hs-cTnT表明心肌坏死、sST2反映心肌纤维化和重塑,上述三者浓度分别为AMI后HF患者提供了额外的预后信息。当这些标记物一起使用时,可进一步提供更好的危险分层依据。

3. ST2与IL-33

3.1. ST2

如上所述,ST2 是IL-1受体超家族成员,其有两种形式:一种是跨膜受体(ST2L),另一种是可溶性受体(sST2),后者通过可变剪接表达 [17] 。研究表明,ST2L基因缺失会延缓伤口愈合,损害血管生成并促进巨噬细胞向促炎表型极化 [18] 。相反,sST2是一种诱饵受体,它通过结合游离的IL-33来降低IL-33/ST2L途径对心脏的保护作用 [16] 。

3.2. IL-33

IL-33是ST2 的天然配体,亦是IL-1家族的成员,既可以作为传统的细胞因子,也可以作为转录因子 [19] 。IL-33 由具有屏障功能的不同类型细胞产生,如静止内皮细胞、肺和肠道上皮细胞、角质形成细胞、成纤维细胞和平滑肌细胞,并在炎症条件下下调 [19] 。在完整细胞中,IL-33显示出核定位并作为一种转录调节因子,能调节核因子NFκB的转录活性 [19] 。然而,在细胞损伤或坏死后会释放IL-33作为一种警戒素发挥相关作用 [19] 。IL-33一旦释放,就会协调免疫反应,尤其是自然免疫 [19] 。由于IL-33在组织损伤和炎症中发挥着复杂的作用,因此它与多种疾病的发病机制有关,如过敏、自身免疫性疾病、癌症、动脉粥样硬化和糖尿病。最重要的是,IL-33具有保护心脏的作用,可通过ST2L防止心脏纤维化和肥大,以应对机械负荷 [20] 。遗传性IL-33消融会加剧小鼠心脏重塑并损害其心脏功能 [21] 。

4. sST2临床应用前景

2002年Weinberg等 [22] 首次提出sST2与急性心肌梗死的关系。sST2在心肌缺血或机械应激时表达上调,在缺血损伤后VR中发挥重要作用。它是预测心肌缺血患者未来临床HF和死亡的一个有前景的预后生物标志物并与已建立的心脏生物标志物在预测价值上有协同作用 [23] 。近期相关研究表明,sST2在VR预后预测及危险分层等方面具有良好的应用前景。

4.1. 预后预测

4.1.1. 逆向重塑(RR)

Lupón等 [24] 开发了一个预测RR的评分系统并命名为ST2-R2评分,评分项包括:sST2 < 48 ng/ml (3分)、非缺血性病因(5分)、无左束支传导阻滞(4分)、HF持续时间 < 12个月(2分),β受体阻滞剂治疗(2分),基线LVEF < 24% (1分)。RR的发生频率在评分为2分的患者中为10%,而评分为15~17的患者中为5%~86%。在推导和验证队列中,该评分的曲线下面积值分别为0.79和0.73。ST2-R2评分是预测RR的有价值的工具,并且在评分值与4年全因死亡率之间的关系得到证明后,变得更加有吸引力 [25] 。

4.1.2. AMI预后

Levandovska等 [26] 研究发现,AMI后并发失代偿性HF患者身体对定量体力消耗的反应以及NT-prpBNP、和肽素(copeptin)和sST2的水平是临床和预后评估的重点。Somuncu等 [27] 的发现sST2升高可独立预测AMI患者1年内不良心血管事件(major adverse clinical events, MACE)和心血管死亡率。Mechtouff等 [28] 的研究提示sST2对急性ST段抬高型心肌梗死(myocardial infarction with ST-segment elevation, STEMI)和急性缺血性脑卒中(acute ischemic stroke, AIS)患者有预后价值。STEMI患者在入院后24小时达到峰值,而AIS患者的峰值较早且较低。高水平的sST2与STEMI患者的MACE相关。Kercheva等 [29] 的一项研究评估了初发STEMI患者血清中sST2和NT-proBNP的动态变化并发现血清中的sST2水平与不良左心室重塑发展相关。

4.1.3. AMI后HF

Xing等 [30] 研究评估sST2和IL-33在预测AMI并发HF患者中的价值。结果显示,sST2和IL-33水平升高与HF的发生相关,可作为独立预测因子。Pascual-Figal等 [31] 发现sST2浓度预测HF患者的死亡风险,还可以预测AMI患者的心血管死亡和HF发展风险。

4.1.4. AMI后心房颤动

Chen等 [32] 研究发现,sST2是AMI患者新发心房颤动的独立预测因子,可提高风险模型的准确性。Zhang等 [33] 的一项研究发现,AMI患者入院时血浆中的无细胞DNA (cell-free DNA, cfDNA)水平与心房颤动发病率相关。较高的cfDNA水平被发现与心房颤动的发生有关,且与纤维化因子sST2呈正相关。

4.1.5. AMI后急性肾损伤

Vyshnevska等 [34] 的一项研究涉及103名STEMI患者,发现在急性肾损伤的早期阶段,sST2和血糖是唯一显著的预测因素。这提示sST2作为生物标志物在STEMI患者中预测急性肾损伤的潜力。

4.2. 危险分层

Li等 [23] 综述sST2是一个有前景的生物标志物,与急性心血管疾病预后和左心室不良重塑风险相关。在急诊科中,sST2可以作为一个有用的工具,通过与临床和仪器评估相结合,帮助风险分层、诊断和治疗。Hou等 [35] 研究发现,早期心肺复苏后,AMI患者人髓过氧化物酶、sST2和超敏C反应蛋白的水平会下降。此外,这些指标也与患者的复苏情况和存活率相关。Zhang等 [36] 一项真实世界研究表明,sST2与冠心病的关系研究主要集中在AMI方面,而这项研究扩展了冠心病的研究范围。这项研究的结果表明,sST2与HDL-C比值可能与心绞痛的发生有关。sST2是一种与IL-33结合并阻止其对心血管疾病的保护作用的蛋白质,而HDL-C是一种具有预防心血管疾病能力的脂蛋白。因此,将sST2与HDL-C比值作为一个新的心血管疾病风险指标可能是有益的。尽管这项研究规模较小,但其结果可以为理解心绞痛的发病机制提供重要线索。未来的大规模研究需要进一步证实这一发现并探讨sST2/HDL-C比值在心血管疾病诊断和治疗方面的潜在应用价值。

5. 结语

AMI后的VR与不良预后有关。相关研究发现sST2水平上调与AMI后出院前左心室射血分数降低、不良心血管预后和死亡率有关并参与VR过程。这些研究结果有助于理解心肌梗死后心脏重塑过程的内在机制并可能为探索预防AMI后VR的特效疗法提供新的思路。

NOTES

*通讯作者。

参考文献

[1] Anderson, J.L. and Morrow, D.A. (2017) Acute Myocardial Infarction. The New England Journal of Medicine, 376, 2053-2064.
https://doi.org/10.1056/NEJMra1606915
[2] Byrne, R.A., Rossello, X., Coughlan, J.J., et al. (2023) 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. European Heart Journal, 44, 3720-3826.
[3] Mamas, M.A., Anderson, S.G., O’Kane, P.D., et al. (2014) Impact of Left Ventricular Function in Re-lation to Procedural Outcomes following Percutaneous Coronary Intervention: Insights from the British Cardiovascular Intervention Society. European Heart Journal, 35, 3004-3012.
https://doi.org/10.1093/eurheartj/ehu303
[4] Aimo, A., Vergaro, G., González, A., et al. (2022) Cardiac Remodelling—Part 2: Clinical, Imaging and Laboratory Findings. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 24, 944-958.
https://doi.org/10.1002/ejhf.2522
[5] Pfeffer, J.M., Pfeffer, M.A. and Braunwald, E. (1985) Influence of Chronic Captopril Therapy on the Infarcted Left Ventricle of the Rat. Cir-culation Research, 57, 84-95.
https://doi.org/10.1161/01.RES.57.1.84
[6] Carbone, A., D’Andrea, A., Riegler, L., et al. (2017) Cardiac Damage in Athlete’s Heart: When the “Supernormal” Heart Fails! World Journal of Cardiology, 9, 470-480.
https://doi.org/10.4330/wjc.v9.i6.470
[7] González, A., Richards, A.M., De Boer, R.A., et al. (2022) Cardiac Remodelling—Part 1: From Cells and Tissues to Circulating Biomarkers. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 24, 927-943.
https://doi.org/10.1002/ejhf.2493
[8] Goetze, J.P., Bruneau, B.G., Ramos, H.R., et al. (2020) Cardi-ac Natriuretic Peptides. Nature Reviews Cardiology, 17, 698-717.
https://doi.org/10.1038/s41569-020-0381-0
[9] Murphy, S.P., Prescott, M.F., Maisel, A.S., et al. (2021) Associa-tion between Angiotensin Receptor—Neprilysin Inhibition, Cardiovascular Biomarkers, and Cardiac Remodeling in Heart Failure with Reduced Ejection Fraction. Circulation: Heart Failure, 14, e008410.
https://doi.org/10.1161/CIRCHEARTFAILURE.120.008410
[10] Januzzi, J.L., Prescott, M.F., Butler, J., et al. (2019) Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide following Initiation of Sacubitril-Valsartan Treatment with Cardiac Structure and Function in Patients with Heart Failure with Reduced Ejection Fraction. JAMA, 322, 1085-1095.
https://doi.org/10.1001/jama.2019.12821
[11] Daubert, M.A., Adams, K., Yow, E., et al. (2019) NT-proBNP Goal Achievement Is Associated with Significant Reverse Remodeling and Improved Clinical Outcomes in HFrEF. JACC: Heart Failure, 7, 158-168.
https://doi.org/10.1016/j.jchf.2018.10.014
[12] Hartikainen, T. and Westermann, D. (2023) Advances in Rapid Di-agnostic Tests for Myocardial Infarction Patients. Expert Review of Molecular Diagnostics, 23, 391-403.
https://doi.org/10.1080/14737159.2023.2207740
[13] Gohar, A., Chong, J.P.C., Liew, O.W., et al. (2017) The Prognostic Value of Highly Sensitive Cardiac Troponin Assays for Adverse Events in Men and Women with Stable Heart Failure and a Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 19, 1638-1647.
https://doi.org/10.1002/ejhf.911
[14] Steffens, S., Van Linthout, S., Sluijter, J.P.G., et al. (2020) Stimulating Pro-Reparative Immune Responses to Prevent Adverse Cardiac Remodelling: Consensus Document from the Joint 2019 Meeting of the ESC Working Groups of Cellular Biology of the Heart and Myocardial Function. Cardiovascular Re-search, 116, 1850-1862.
https://doi.org/10.1093/cvr/cvaa137
[15] Swirski, F.K. and Nahrendorf, M. (2018) Cardioimmunology: The Im-mune System in Cardiac Homeostasis and Disease. Nature Reviews. Immunology, 18, 733-744.
https://doi.org/10.1038/s41577-018-0065-8
[16] Thanikachalam, P.V., Ramamurthy, S., Mallapu, P., et al. (2023) Modulation of IL-33/ST2 Signaling as a Potential New Therapeutic Target for Cardiovascular Diseases. Cytokine & Growth Factor Reviews, 71-72, 94-104.
https://doi.org/10.1016/j.cytogfr.2023.06.003
[17] Iwahana, H., Yanagisawa, K., Ito-Kosaka, A., et al. (1999) Dif-ferent Promoter Usage and Multiple Transcription Initiation Sites of the Interleukin-1 Receptor-Related Human ST2 Gene in UT-7 and TM12 Cells. European Journal of Biochemistry, 264, 397-406.
https://doi.org/10.1046/j.1432-1327.1999.00615.x
[18] Lee, J.S., Seppanen, E., Patel, J., et al. (2016) ST2 Recep-tor Invalidation Maintains Wound Inflammation, Delays Healing and Increases Fibrosis. Experimental Dermatology, 25, 71-74.
https://doi.org/10.1111/exd.12833
[19] Martin, N.T. and Martin, M.U. (2016) Interleukin 33 Is a Guardian of Barriers and a Local Alarmin. Nature Immunology, 17, 122-131.
https://doi.org/10.1038/ni.3370
[20] Kakkar, R. and Lee, R.T. (2008) The IL-33/ST2 Pathway: Therapeutic Target and Novel Biomarker. Nature Reviews Drug Discov-ery, 7, 827-840.
https://doi.org/10.1038/nrd2660
[21] Veeraveedu, P.T., Sanada, S., Okuda, K., et al. (2017) Abla-tion of IL-33 Gene Exacerbate Myocardial Remodeling in Mice with Heart Failure Induced by Mechanical Stress. Bio-chemical Pharmacology, 138, 73-80.
https://doi.org/10.1016/j.bcp.2017.04.022
[22] Weinberg, E.O., Shimpo, M., De Keulenaer, G.W., et al. (2002) Expression and Regulation of ST2, an Interleukin-1 Receptor Family Member, in Cardiomyocytes and Myocardial In-farction. Circulation, 106, 2961-2966.
https://doi.org/10.1161/01.CIR.0000038705.69871.D9
[23] Li, J., Cao, T., Wei, Y., et al. (2021) A Review of Novel Cardiac Biomarkers in Acute or Chronic Cardiovascular Diseases: The Role of Soluble ST2 (sST2), Lipopro-tein-Associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO), and Procalcitonin (PCT). Disease Markers, 2021, Article ID: 6258865.
https://doi.org/10.1155/2021/6258865
[24] Lupón, J., Gaggin, H.K., De Antonio, M., et al. (2015) Biomarker-Assist Score for Reverse Remodeling Prediction in Heart Failure: The ST2-R2 Score. Interna-tional Journal of Cardiology, 184, 337-343.
https://doi.org/10.1016/j.ijcard.2015.02.019
[25] Lupón, J., Sanders-Van Wijk, S., Januzzi, J.L., et al. (2016) Pre-diction of Survival and Magnitude of Reverse Remodeling Using the ST2-R2 Score in Heart Failure: A Multicenter Study. International Journal of Cardiology, 204, 242-247.
https://doi.org/10.1016/j.ijcard.2015.11.163
[26] Levandovska, K.V., Vakaliuk, I.P. and Naluzhna, T.V. (2022) Marker Diagnostic Heart Failure Progression in the Post-Infarction Period. Wiadomosci Lekarskie, 75, 2476-2480.
https://doi.org/10.36740/WLek202210135
[27] Somuncu, M.U., Kalayci, B., Avci, A., et al. (2020) Predicting Long-Term Cardiovascular Outcomes of Patients with Acute Myocardial Infarction Using Soluble ST2. Hormone Mo-lecular Biology and Clinical Investigation, 41, Article ID: 20190062.
https://doi.org/10.1515/hmbci-2019-0062
[28] Mechtouff, L., Paccalet, A., Crola Da Silva, C., et al. (2022) Prog-nosis Value of Serum Soluble ST2 Level in Acute Ischemic Stroke and STEMI Patients in the Era of Mechanical Reper-fusion Therapy. Journal of Neurology, 269, 2641-2648.
https://doi.org/10.1007/s00415-021-10865-3
[29] Kercheva, M., Ryabova, T., Gusakova, A., et al. (2019) Serum Soluble ST2 and Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction. Clinical Medicine Insights: Cardiology, 13, 1-18.
https://doi.org/10.1177/1179546819842804
[30] Xing, J., Liu, J. and Geng, T. (2021) Predictive Values of sST2 and IL-33 for Heart Failure in Patients with Acute Myocardial Infarction. Experimental Biology and Medicine, 246, 2480-2486.
https://doi.org/10.1177/15353702211034144
[31] Pascual-Figal, D.A., Bayes-Genis, A., Asensio-Lopez, M.C., et al. (2019) The Interleukin-1 Axis and Risk of Death in Patients with Acutely Decompensated Heart Failure. Journal of the American College of Cardiology, 73, 1016-1025.
https://doi.org/10.1016/j.jacc.2018.11.054
[32] Chen, L., Chen, W., Shao, Y., et al. (2022) Association of Soluble Suppression of Tumorigenicity 2 with New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Cardiology, 147, 381-388.
https://doi.org/10.1159/000524765
[33] Zhang, Q., He, X., Ling, J., et al. (2022) Association between Circulating Cell-Free DNA Level at Admission and the Risk of Heart Failure Incidence in Acute Myocardial Infarction Patients. DNA and Cell Biology, 41, 742-749.
https://doi.org/10.1089/dna.2022.0238
[34] Vyshnevska, I., Kopytsya, M., Hilоva, Y., et al. (2020) Biomarker Sst2 as an Early Predictor of Acute Renal Injury in Patients with St-Segment Elevation Acute Myocardial Infarction. Georgian Medical News, 302, 53-58.
[35] Hou, M., Ren, Y.P., Wang, R. and Lu,, X. (2021) Early Cardiopulmonary Resuscitation on Serum Levels of Myeloperoxidase, Soluble ST2, and Hypersensitive C-Reactive Protein in Acute Myo-cardial Infarction Patients. World Journal of Clinical Cases, 9, 10585-10594.
https://doi.org/10.12998/wjcc.v9.i34.10585
[36] Zhang, Y., Zhang, L. and Chen, Z. (2023) Effect of Combining sST2/HDL-C Ratio with Risk Factors of Coronary Heart Disease on the Detection of Angina Pectoris in Chinese: A Retrospective Observational Study. Cardiovascular Diagnosis and Therapy, 13, 345-354.
https://doi.org/10.21037/cdt-22-520