微小RNA在心房颤动中的研究进展
Research Progress of MicroRNA in Atrial Fibrillation
DOI: 10.12677/ACM.2023.13102181, PDF, HTML, XML, 下载: 255  浏览: 395 
作者: 阿尔祖古丽·麦麦提, 麦五久代·吐尔逊, 阿比旦·尼加提:新疆医科大学研究生院,新疆 乌鲁木齐;冯 艳*:新疆维吾尔自治区人民医院心电学科,新疆 乌鲁木齐
关键词: 心房颤动miRNA重构Atrial Fibrillation miRNA Remodeling
摘要: 微小RNA (miRNA)是一种小的非编码RNA,参与调控转录后基因表达。近年来miRNA在心房颤动中的调控作用成为研究热点。miRNA广泛参与心房电重构、结构重构和神经重构。根据现有研究,参与电重构的miRNA主要包括miRNA-1、miRNA-328、miRNA-499、miRNA-208、miRNA-26;参与结构重构的miRNA主要包括miRNA-21、miRNA-29、miRNA-133、miRNA-26;参与神经重构的miRNA主要包括miRNA-30、miRNA-206等。深入研究miRNA与心房重构的相关性,为心房颤动的诊疗提供新的思路。
Abstract: MicroRNA (miRNA) is a small non-coding RNA, which is involved in the regulation of post-tran- scriptional gene expression. In recent years, the regulatory role of miRNA in atrial fibrillation has become a research hotspot. miRNAs is widely involved in atrial electrical remodeling, structural remodeling and neural remodeling. According to the existing research, miRNAs involved in electri-cal reconfiguration mainly include miRNA-1, miRNA-328, miRNA-499, miRNA-208 and miRNA-26; miRNAs involved in structural reconstruction mainly include miRNA-133, miRNA-21, miRNA-29, miRNA-26 and miRNA-208; miRNAs involved in neural remodeling mainly includes miRNA-30 and miRNA-206. In-depth study on the correlation between miRNA and atrial remodeling provides new ideas for the diagnosis and treatment of atrial fibrillation.
文章引用:阿尔祖古丽·麦麦提, 麦五久代·吐尔逊, 阿比旦·尼加提, 冯艳. 微小RNA在心房颤动中的研究进展[J]. 临床医学进展, 2023, 13(10): 15593-15599. https://doi.org/10.12677/ACM.2023.13102181

1. 引言

心房颤动(Atrial fibrillation, AF)是最常见的室上性心律失常,其发病率和死亡率高,大大增加了心力衰竭、中风和全身血栓栓塞的风险 [1] 。相关流行病学统计数据表明,AF患者的平均年龄为75岁,约70%的患者年龄在65~85岁之间 [2] 。随着全球人口老龄化,心房颤动的疾病负担将增加,使得心房颤动中的危险因素识别至关重要 [3] 。

1993年,Lee等 [4] 首次在秀丽隐杆线虫中发现了微小RNA (miRNA)。miRNA是由大约22个核苷酸组成的单链非蛋白质编码RNA。miRNA通过在3’非翻译区与靶信使RNA结合参与转录后基因表达的调节 [5] 。miRNA在各种发育过程中发挥着至关重要的作用,包括细胞生长、增殖、分化和代谢。在哺乳动物基因组中,已经报道了大约2200个miRNA,大约三分之一的人类基因组由miRNA调节 [6] 。miRNA通过降解或抑制其靶信使RNA的翻译,从而调节基因表达并在广泛的生物学过程中发挥重要作用 [7] 。

近年来,miRNA在AF中的调控作用成为研究热点,miRNA通过调节心房重构在AF的病理生理学中发挥着至关重要的作用。研究表明miRNA与心房电重构、结构重构和自主神经重构密切相关,从而导致AF的发生。本文主要综述了部分相关的miRNA与心房电重构、结构重构和自主神经重构相关性,为AF的诊疗提供新的思路。

2. miRNA与心房电重构

2.1. miRNA-1

miRNA-1主要在心脏组织中表达,并在心血管疾病的发生发展中发挥重要作用 [8] 。研究发现,在兔心房快速起搏模型中,miRNA-1过表达通过下调电压门控钾通道亚家族E成员1 (KCNE1)和电压门控钾通道亚家族E成员2 (KCNE2)基因,缩短右心房速搏诱发的心房有效不应期(AERP),增加内向整流钾电流(IKs)。此外,KCNE1和KCNB2基因的下调与抗miRNA-1抑制剂寡核苷酸敲低miRNA-1成反比。KCNE1和KCNB2是miRNA-1的靶基因 [5] 。有人认为,这些钾通道基因的靶向下调会放大AF的持续时间和发生率。该研究证明了miRNA-1在AF电重构中的关键作用,及miRNA-1在AF治疗中的临床重要性。

例外,一些研究表明,miRNA-1通过降低细胞内浓度来调节心脏电重构,最终降低CACNB2表达的钙离子 [9] 。Shan等 [10] 发现,当miRNA-1过表达时,心房肌细胞内Ca2+内流增加,导致AF发生,而另一项研究发现,miRNA-1在AF患者中下调,从而抑制了L型钙通道的CACNB2亚基(Cavβ2)的表达。最终,细胞内Ca2+浓度的降低抑制了AF的发生 [9] 。Terentyev等 [11] 研究发现,在大鼠心肌细胞中,miRNA-1的下调可能会改善Ca2+的处理,从而对AF产生有益的影响。Li等 [12] 推测miRNA-1通过介导离子通道的表达和活性降低心律失常,可作为潜在的抗心律失常靶点。

2.2. miRNA-328

miRNA-328促进心房电重构。已有研究发现,左心房内径是房颤发生的独立危险因素,随着心功能分级的增加,房颤患者miRNA-328的表达水平升高 [13] ,由此得出,miRNA-328可能参与房颤患者心房重构过程。在犬AF模型和人AF模型中发现miRNA-328表达上调,腺病毒诱导的miRNA-328由于I型钙通道电流(ICaL)减少和动作电位持续时间(APD)缩短而增加AF的诱导性 [14] 。同时,一项研究表明,循环血液中miRNA-328的上调增加了AF的患病率,并在心肌细胞的钙处理和电重构中发挥重要作用 [5] 。miRNA-328的上调降低了人类和犬模型中CACNA1C和CACNB1的基因表达。因此,ICaL降低了L型钙通道活性,缩短了APD,增加了AF的易损性 [15] 。据报道,miRNA-328在左心耳中的表达高于AF患者外周血和肺静脉血液中的表达,而在对照组中未观察到这一点。因此,我们推测miRNA-328在左心房的局部表达可能参与了AF患者的心脏重构 [16] 。miRNA-328通过犬心房的腺病毒感染和小鼠的转基因方法再现了AF的表型,例如AF易感性增强,ICaL电流减弱,心房动作电位持续时间缩短 [17] 。此外,用拮抗剂使miRNA-328水平正常化逆转了这种情况,内源性miRNA-328的基因敲低抑制了AF的易感性。miRNA-328通过靶向L型钙通道基因,有助于AF的不良心房电重构 [17] 。因此,这项研究揭示了AF的一种新的分子机制,并表明miRNA-328是AF的潜在治疗靶点。

2.3. miRNA-499

在一项比较AF患者和对照个体的miRNA表达研究中,发现AF患者的心房组织中miRNA-499上调 [18] 。miRNA-499靶向并下调编码小电导钙激活钾通道蛋白3 (SK3)的基因KCNN3,该基因具有单核苷酸多态性,与AF的发生有关 [19] 。一项对永久性AF患者和正常窦性心律患者的比较研究发现,miRNA-499上调可通过靶向KCNN3基因,显著下调心脏SK3的表达 [18] 。快速AF患者的miRNA-499表达量是慢速AF患者和对照组患者的2.3倍 [15] 。此外,有研究发现,心房miRNA-499的上调诱导CACNB2表达的下调,并有助于心房颤动的电重构 [20] 。

2.4. miRNA-208

miRNA-208为心脏特异性miRNA,有miRNA-208a和miRNA-208b两种亚型,分别在心脏发育的不同阶段表达。来自胞浆的Ca2+通过肌浆网Ca2+三磷酸腺苷2a型(SERCA2a)转运回肌浆网,从而影响肌浆和胞浆Ca2+浓度。Canon等 [21] 发现,在AF患者和对照个体的心房肌细胞中,miRNA-208b的上调与SERCA2mRNA的降低之间存在负相关。miRNA-208b的体外过表达也降低了SERCA2蛋白的表达。miRNA-208在小鼠模型中过表达,由于间隙连接蛋白-40表达的心律失常基因重构,导致心律失常负担增加 [22] 。

2.5. miRNA-26

miRNA-26家族包括三种亚型(miRNA-26a-1、miRNA-26a-2和miRNA-26b),它们都具有相同的种子序列和相同的靶基因。大量研究表明,向内K+电流(IK1)的增加,以及主要潜在钾电压门控通道亚家族J成员2 (KCNJ2) mRNA及其编码的内向整流钾通道(Kir) 2.1蛋白的表达增加,是AF相关心房电重构的一个突出特征 [23] 。然而,IK1失调在AF中的机制尚不清楚。在犬心动过速性心肌病模型中,心房AF中miRNA-26下调,导致瞬时受体电位阳离子3 通道上调,瞬时受体电位阳离子3通道调节钙注入并与心房重构相关 [24] 。与未发生AF的对照组相比,AF犬和AF患者的心房样品中miRNA-26亚型的表达显著降低,体外研究验证了KCNJ2是miRNA-26的靶点。在小鼠体内敲低内源性miRNA-26导致AF易感性增加,同时伴有IK1和Kir2.1蛋白水平升高 [25] 。同时,有研究发现,miRNA-26的下调可能通过靶向调节KCNJ2来促进AF [26] 。

3. miRNA与心房结构重构

3.1. miRNA-21

心房纤维化是AF的重要发病机制,但其信号转导尚不完全清楚。因此,Adam等 [27] 研究了miRNA-21及其下游靶点Sprouty1在AF中的作用,心脏过表达Rac1的转基因小鼠,导致自发性AF和心房纤维化的发展。miRNA-21还可以通过调节转录因子信号转导器和转录激活因子3磷酸化介导的炎症过程来加剧心房纤维化的过程 [7] 。几项研究报道了miRNA-21在心房重构进展中的作用,心房重构可能促进AF的发生和维持。Cardin等 [28] 发现,心房miRNA-21敲低可抑制心房纤维化和AF促进,提示miRNA-21是AF底物的重要信号分子。miRNA-21的表达有助于心房的结构重构。Nishi等 [29] 发现,miRNA-21在人类心房组织中的表达与心房纤维化呈正相关,并可能影响AF的发生,表明其作为生物标志物的潜力。Ramanujam等 [30] 报告了miRNA-21在心脏巨噬细胞中的关键调节作用,它控制旁分泌向心脏成纤维细胞的促纤维化信号传导,从而决定心脏重构和整体心脏功能。通过数据表明,抑制巨噬细胞中的miRNA-21对治疗纤维化心肌病具有治疗前景。总之,几项研究提供了关于miRNA-21在心房结构重构和AF病理生理中潜在作用的一致证据。

3.2. miRNA-29

人类miRNA-29家族的miRNA具有三个成熟成员,即miRNA-29a,miRNA-29b和miRNA-29c。miRNA-29在成纤维细胞中高表达,其抑制作用可在心肌梗死后诱导细胞培养物和小鼠中的胶原表达 [23] ,这证明了降低miRNA-29表达的促纤维化作用。Zhang等 [31] 研究证明了miRNA-29b在血管紧张素II诱导的小鼠心脏纤维化中的抗纤维化作用。AF患者血浆miRNA-29b水平(约降低54%)和充血性心力衰竭合并AF患者血浆miRNA-29b水平(约降低84%)明显低于对照组。此外,慢性AF患者与窦性心律人群相比,miRNA-29b在心房中的表达降低了约54%。在小鼠中,腺相关病毒介导的miRNA-29b的下调显著增加了心房胶原蛋白-1A1信使RNA的表达和心脏组织中胶原蛋白的含量。这表明miRNA-29在心房纤维化重构中的潜在作用 [32] 。由此可见,miRNA-29可能在心房结构重构中发挥作用,并可能具有作为生物标志物或治疗靶点的价值。

3.3. miRNA-133

miRNA-133主要在心肌细胞和成纤维细胞中表达,其靶向缺失、过表达和反义介导的敲低已证明其在心脏重构中的重要作用 [23] 。miRNA-133a是一种促纤维化细胞因子,靶向调控转化生长因子β1 (TGF-β)和结缔组织生长因子,在控制心肌细胞外基质的结构变化中发挥了重要作用,从而促进结构重构 [32] 。有研究表明,胶原蛋白-1A1是参与心肌纤维化的关键基因,是miRNA-133a的直接靶标。在体内,miRNA-133a的心肌下调可能代表了一种调节机制,通过增加胶原蛋白-1A1表达造成心脏损伤导致心肌纤维化 [33] 。miRNA133a还通过抑制TGF-β和促进纤维化的其他因子的表达来预防心脏纤维化 [34] ,因此,它是心房颤动的生物标志物和潜在的治疗靶点,可以预防心脏纤维化及其并发症。

3.4. miRNA-26

miRNA-26除了在电重构中的作用外,miRNA-26还可能通过调节瞬时受体电位通道3 (TRPC3)的表达来促进心房纤维化重构。TRPC3是一种非选择性阳离子通道,介导各种细胞类型的Ca2+进入。在房颤犬的心房成纤维细胞中,TRPC3表达和TRPC3介导的Ca2+进入均增加;这些变化增强了Ca2+依赖性细胞外信号调节激酶信号和成纤维细胞的增殖和分化,促进了心房纤维化 [24] 。因此,miRNA-26下调可能是AF发展的中心机制,影响心肌细胞IK1升高和成纤维细胞TRPC3上调 [24] 。

4. miRNA与心房自主神经重构

4.1. miRNA-30

心脏自主神经系统的失调通过增加G蛋白门控钾通道电流,缩短动作电位持续时间 [35] ,在AF的发生和维持中发挥着重要作用。在持续性AF患者中,miRNA-30d的上调与乙酰胆碱敏感的内向整流性钾离子电流(IKAch)下调有关 [36] 。因此,miRNA-30可能在心房神经重构中发挥作用。

4.2. miRNA-206

目前,越来越多的证据表明miRNA-206在心血管疾病中发挥着至关重要的作用。有报道称,在犬模型中,通过靶向三磷酸鸟苷环化水解酶1 (GCH1)下调miRNA-206可通过BH4通路加剧自主神经重构,抑制心房有效不应期的表达,从而增加AF敏感性 [37] 。右心房起搏犬体内慢病毒介导的miRNA-206过表达与活性氧(ROS)增加、神经密度和心房有效不应期缩短有关。荧光素酶检测证实miRNA-206直接调控抗氧化超氧化物歧化酶1 (SOD1) [38] 。这些结果表明,miRNA-206可能通过降低SOD1和增加ROS诱导自主神经重构。

5. 结语

到目前为止,还没有明确的miRNA被确定为临床有用的生物标志物或AF治疗的靶点。miRNAs被认为在调控多种导致AF的基因表达中发挥着关键作用。近年来,miRNAs逐渐成为哺乳动物心血管发育和疾病发生的关键调节因子,包括肥大、心力衰竭、心律失常、心脏损伤等。每个miRNA可以调控多个功能相似的miRNA,从而影响复杂的生物过程。miRNA表达的变化在心血管病理生理学的不同方面发挥着重要作用,而miRNA活性的调节可以为心血管疾病提供潜在的新治疗靶点。随着对miRNAs研究的不断深入,以及对新miRNAs功能的深入了解,在miRNAs在AF领域取得了显著进展。AF发生发展的分子生物学机制得到了完善,为AF的诊断、治疗及预防提供了新的策略。然而,目前的文献大多缺乏全面的研究,对miRNA在AF中的基因调控的认识还存在一些空白。深入研究miRNA在AF患者中的表达水平和具体机制,靶向调控miRNA预防和逆转AF,将改善心房重构,为AF的诊断和治疗提供新的思路。

NOTES

*通讯作者。

参考文献

[1] Cintra, F.D. and Figueiredo, M. (2021) Atrial Fibrillation (Part 1): Pathophysiology, Risk Factors, and Therapeutic Basis. Arquivos Brasileiros de Cardiologia, 116, 129-139.
[2] Yuan, K., Zhao, P. and Wang, L. (2021) Molecular Mecha-nism of Atrial Remodeling in Patients with Aging Atrial Fibrillation under the Expression of microRNA-1 and mi-croRNA-21. Bioengineered, 12, 12905-12916.
https://doi.org/10.1080/21655979.2021.2008668
[3] Park, J.H., Lee, H., Kim, J.W. and Song, T.J. (2023) Asso-ciation between Periodontal Disease Status and Risk of Atrial Fibrillation: A Nationwide Population-Based Cohort Study. BMC Oral Health, 23, Article No. 461.
https://doi.org/10.1186/s12903-023-03165-x
[4] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Ele-gans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[5] Komal, S., Yin, J.J., Wang, S.H., et al. (2019) MicroRNAs: Emerging Biomarkers for Atrial Fibrillation. Journal of Cardiology, 74, 475-482.
https://doi.org/10.1016/j.jjcc.2019.05.018
[6] Mir, R., Elfaki, I., Khullar, N., et al. (2021) Role of Selected miR-NAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocar-dial Infarction and Atherosclerosis. Journal of Cardiovascular Development and Disease, 8, Article 22.
https://doi.org/10.3390/jcdd8020022
[7] Sygitowicz, G., Maciejak-Jastrzebska, A. and Sitkiewicz, D. (2021) A Review of the Molecular Mechanisms Underlying Cardiac Fibrosis and Atrial Fibrillation. Journal of Clinical Medicine, 10, Article 4430.
https://doi.org/10.3390/jcm10194430
[8] Li, J., Dong, X., Wang, Z. and Wu, J.H. (2014) MicroRNA-1 in Cardiac Diseases and Cancers. The Korean Journal of Physiology & Pharmacology, 18, 359-363.
https://doi.org/10.4196/kjpp.2014.18.5.359
[9] Lu, Y., Hou, S., Huang, D., et al. (2015) Expression Profile Analysis of Circulating microRNAs and Their Effects on Ion Channels in Chinese Atrial Fibrillation Patients. Interna-tional Journal of Clinical and Experimental Medicine, 8, 845-853.
[10] Shan, H., Zhang, Y., Cai, B., et al. (2013) Up-regulation of microRNA-1 and microRNA-133 Contributes to Arsenic-Induced Cardiac Electrical Remodeling. Interna-tional Journal of Cardiology, 167, 2798-2805.
https://doi.org/10.1016/j.ijcard.2012.07.009
[11] Terentyev, D., Belevych, A.E., Terentyeva, R., et al. (2009) MiR-1 Overexpression Enhances Ca2+ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2. Circulation Research, 104, 514-521.
https://doi.org/10.1161/CIRCRESAHA.108.181651
[12] Li, W., Liu, M., Zhao, C., et al. (2020) MiR-1/133 At-tenuates Cardiomyocyte Apoptosis and Electrical Remodeling in Mice with Viral Myocarditis. Cardiology Journal, 27, 285-294.
https://doi.org/10.5603/CJ.a2019.0036
[13] 刘兆奕, 吴桂平, 林瑶瑶, 等. microRNA-328与心房颤动患者心房重构的相关性[J]. 中国医科大学学报, 2022, 51(1): 28-32.
[14] Lu, Y., Zhang, Y., Wang, N., et al. (2010) MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation. Circulation, 122, 2378-2387.
https://doi.org/10.1161/CIRCULATIONAHA.110.958967
[15] Kim, G.H. (2013) MicroRNA Regulation of Car-diac Conduction and Arrhythmias. Translational Research, 161, 381-392.
https://doi.org/10.1016/j.trsl.2012.12.004
[16] Soeki, T., Matsuura, T., Bando, S., et al. (2016) Relationship be-tween Local Production of MicroRNA-328 and Atrial Substrate Remodeling in Atrial Fibrillation. Journal of Cardiology, 68, 472-477.
https://doi.org/10.1016/j.jjcc.2015.12.007
[17] Shi, K.H., Tao, H., Yang, J.J., et al. (2013) Role of microRNAs in Atrial Fibrillation: New Insights and Perspectives. Cellular Signalling, 25, 2079-2084.
https://doi.org/10.1016/j.cellsig.2013.06.009
[18] Ling, T.Y., Wang, X.L., Chai, Q., et al. (2013) Regulation of the SK3 Channel by MicroRNA-499—Potential Role in Atrial Fibrillation. Heart Rhythm, 10, 1001-1009.
https://doi.org/10.1016/j.hrthm.2013.03.005
[19] Ellinor, P.T., Lunetta, K.L., Glazer, N.L., et al. (2010) Common Variants in KCNN3 Are Associated with Lone Atrial Fibrillation. Nature Genetics, 42, 240-244.
https://doi.org/10.1038/ng.537
[20] Ling, T.Y., Wang, X.L., Chai, Q., et al. (2017) Regulation of Cardiac CACNB2 by microRNA-499: Potential Role in Atrial Fibrillation. BBA Clinical, 7, 78-84.
https://doi.org/10.1016/j.bbacli.2017.02.002
[21] Canon, S., Caballero, R., Herraiz-Martinez, A., et al. (2016) MiR-208b Upregulation Interferes with Calcium Handling in HL-1 Atrial Myocytes: Implications in Human Chronic Atrial Fibrillation. Journal of Molecular and Cellular Cardiology, 99, 162-173.
https://doi.org/10.1016/j.yjmcc.2016.08.012
[22] Callis, T.E., Pandya, K., Seok, H.Y., et al. (2009) Mi-croRNA-208a Is a Regulator of Cardiac Hypertrophy and Conduction in Mice. Journal of Clinical Investigation, 119, 2772-2786.
https://doi.org/10.1172/JCI36154
[23] Parikh, M. and Pierce, G.N. (2021) A Brief Review on the Bi-ology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction. International Journal of Molecular Sciences, 22, Article 4995.
https://doi.org/10.3390/ijms22094995
[24] Harada, M., Luo, X., Qi, X.Y., et al. (2012) Transient Receptor Poten-tial Canonical-3 Channel-Dependent Fibroblast Regulation in Atrial Fibrillation. Circulation, 126, 2051-2064.
https://doi.org/10.1161/CIRCULATIONAHA.112.121830
[25] Luo, X., Pan, Z., Shan, H., et al. (2013) Mi-croRNA-26 Governs Profibrillatory Inward-Rectifier Potassium Current Changes in Atrial Fibrillation. Journal of Clini-cal Investigation, 123, 1939-1951.
https://doi.org/10.1172/JCI62185
[26] Du, J., Li, Z., Wang, X., et al. (2020) Long Noncoding RNA TCONS-00106987 Promotes Atrial Electrical Remodelling during Atrial Fibrillation by Sponging miR-26 to Regulate KCNJ2. Journal of Cellular and Molecular Medicine, 24, 12777-12788.
https://doi.org/10.1111/jcmm.15869
[27] Adam, O., Lohfelm, B., Thum, T., et al. (2012) Role of miR-21 in the Pathogenesis of Atrial Fibrosis. Basic Research in Cardiology, 107, Article No. 278.
https://doi.org/10.1007/s00395-012-0278-0
[28] Cardin, S., Guasch, E., Luo, X., et al. (2012) Role for Mi-croRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated with Experimental Postinfarction Heart Failure. Circulation: Arrhythmia and Electrophysiology, 5, 1027-1035.
https://doi.org/10.1161/CIRCEP.112.973214
[29] Nishi, H., Sakaguchi, T., Miyagawa, S., et al. (2013) Impact of MicroRNA Expression in Human Atrial Tissue in Patients with Atrial Fibrillation Undergoing Cardiac Surgery. PLOS ONE, 8, e73397.
https://doi.org/10.1371/journal.pone.0073397
[30] Ramanujam, D., Schon, A.P., Beck, C., et al. (2021) Mi-croRNA-21-Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 143, 1513-1525.
https://doi.org/10.1161/CIRCULATIONAHA.120.050682
[31] Zhang, Y., Huang, X.R., Wei, L.H., et al. (2014) MiR-29b as a Therapeutic Agent for Angiotensin II-Induced Cardiac Fibrosis by Targeting TGF-β/Smad3 Signaling. Molecular Therapy, 22, 974-985.
https://doi.org/10.1038/mt.2014.25
[32] Dilaveris, P., Antoniou, C.K., Manolakou, P., et al. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802.
https://doi.org/10.2174/0929867324666170918122502
[33] Castoldi, G., Di Gioia, C.R., Bombardi, C., et al. (2012) MiR-133a Regulates Collagen 1A1: Potential Role of miR-133a in Myocardial Fibrosis in Angiotensin II-Dependent Hypertension. Journal of Cellular Physiology, 227, 850-856.
https://doi.org/10.1002/jcp.22939
[34] Menezes, J.A., Ferreira, L.C., Barbosa, L., et al. (2023) Circulating Mi-croRNAs as Specific Biomarkers in Atrial Fibrillation: A Meta-Analysis. Non-Coding RNA, 9, Article 13.
https://doi.org/10.3390/ncrna9010013
[35] Shen, M.J., Choi, E.K., Tan, A.Y., et al. (2011) Neural Mechanisms of Atrial Arrhythmias. Nature Reviews Cardiology, 9, 30-39.
https://doi.org/10.1038/nrcardio.2011.139
[36] Morishima, M., Iwata, E., Nakada, C., et al. (2016) Atrial Fibrilla-tion-Mediated Upregulation of miR-30d Regulates Myocardial Electrical Remodeling of the G-Protein-Gated K+ Channel, IK.ACh. Circulation Journal, 80, 1346-1355.
https://doi.org/10.1253/circj.CJ-15-1276
[37] Wei, J., Zhang, Y., Li, Z., et al. (2018) GCH1 Attenuates Cardiac Autonomic Nervous Remodeling in Canines with Atrial-Tachypacing via Tetrahydrobiopterin Pathway Regulated by Mi-croRNA-206. Pacing and Clinical Electrophysiology, 41, 459-471.
https://doi.org/10.1111/pace.13289
[38] Zhang, Y., Zheng, S., Geng, Y., et al. (2015) MicroRNA Profiling of Atrial Fibrillation in Canines: MiR-206 Modulates Intrin-sic Cardiac Autonomic Nerve Remodeling by Regulating SOD1. PLOS ONE, 10, e122674.
https://doi.org/10.1371/journal.pone.0122674