大白菜脱水素基因的鉴定和特征分析
Identification and Charaterization of Chinese Cabbage Dehydrin Genes
DOI: 10.12677/HJAS.2023.139120, PDF, HTML, XML, 下载: 190  浏览: 290  国家科技经费支持
作者: 李利斌*, 孟昭娟, 曹齐卫, 杨宗辉#:山东省农业科学院蔬菜花卉研究所,国家蔬菜改良中心山东分中心,山东省设施蔬菜生物学重点实验室,农业部黄淮地区蔬菜科学观测实验站(山东),山东 济南;刘明毓*:山东省东平县种业发展中心,山东 泰安;孔令霞:山东省郓城县陈坡乡政府,山东 菏泽;白林红:山东省农业农村发展研究中心,山东 济南
关键词: 大白菜脱水素结构进化顺式元件Chinese Cabbage Dehydrin Structure Phylogeny Cis-Element
摘要: 植物脱水素在非生物逆境响应过程中具有重要功能。但在我国重要蔬菜作物大白菜中缺乏研究。本文利用生物信息学的方法,鉴定出12个大白菜脱水素基因,对它们的结构特征、遗传进化和顺式调控元件进行了预测。结果显示,大白菜的脱水素基因在基因组中非均衡分布,大部分基因含有两个外显子,所有的大白菜脱水素可划分为两个不同的类群,其中BrDhn4单独为一个类群。顺式元件预测表明,大白菜脱水素基因含有多个响应环境和激素信号的顺式元件,可能在非生物逆境以及植物激素响应中具有一定功能。
Abstract: Plant dehydrins play important roles in the process of abiotic stress responses. However, the dehy-drin knowledge about the important vegetable—Chinese cabbage is scarce. In this paper, 12 dehydrin genes were identified in the Chinese cabbage genome through the bioinformatics method. Also, their structure, phylogeny and the cis-elements of them were analyzed. The results indicated that Chinese cabbage dehydrin genes are unevenly distributed in the genome, and most of them have 2 exons. They are divided into two phylogeny groups, and BrDhn4 is singly as one group. What’s more, Chinese cabbage dehdrin genes each have several different cis-elements responsive to different hormones and environmental stimuli, which suggests they may be involved in multiple abiotic stress and hormone responses.
文章引用:李利斌, 刘明毓, 孟昭娟, 曹齐卫, 孔令霞, 白林红, 杨宗辉. 大白菜脱水素基因的鉴定和特征分析[J]. 农业科学, 2023, 13(9): 857-864. https://doi.org/10.12677/HJAS.2023.139120

1. 引言

脱水素是植物种子胚胎晚期丰富性蛋白(LEA)的一类,最初是在水稻和棉花种子中发现的。后来发现,脱水素在植物的营养器官和脱水组织中也普遍表达 [1] 。这类蛋白的一个共同特征是含有一个由富含赖氨酸的15个氨基酸残基组成的保守的结构域EKKGIMDKIKEKLPG,为脱水素的特征结构域,叫K结构域,一般位于碳末端附近 [2] 。它是脱水素行使其功能的结构基础,可以形成一个两亲α-螺旋 [3] [4] ,有助于与细胞膜的连接和在抗菌中发挥作用 [5] [6] 。另外,有的脱水素成员还含有一个富含丝氨酸残基的片段S片段,它被磷酸化后可将脱水素转运到向细胞核 [7] [8] ;有的成员还有一个位于氮末端的Y片段T/VDEYGNP,可与植物和细菌分子伴侣的核苷酸结合位点相匹配,发挥分子伴侣的功能 [9] [10] 。根据这三个保守区段的位置和数目的不同,将脱水素分为五个亚类:YnSKn、YnKn、SKn、Kn和KnS [11] 。最近研究表明,苔藓脱水素PpDHNA中含有D-segment:EGφφD(R/K)AKDAφ,可能在减轻极端胁迫方面具有重要功能 [12] 。在一些脱水素中如拟南芥的COR47和杜鹃脱水素中含有11个氨基酸残基组成的F-区段DRGLFDFLGKK,具有乳酸脱氢酶保护的功能,可提高其冷胁迫的耐性 [13] [14] 。脱水素一般受ABA的诱导表达,在非生物逆境如干旱、盐、低温、重金属胁迫下大量累积 [15] [16] [17] 。它们可定位在细胞不同的部位,但主要定位在细胞质和细胞核中 [18] 。脱水素是植物细胞中的一类保护性物质,体外分析的结果显示YSKn类脱水素可以结合脂肪颗粒,KnS可与金属离子结合,能够清楚羟自由基,防止脂膜过氧化,或者对冷敏感的酶具有保护作用 [19] [20] [21] 。越来越多的证据表明,脱水素在植物耐受非生物逆境过程中具有重要功能,不同类型的脱水素可能具有不同的功能 [22] [23] [24] 。

尽管脱水素的研究在拟南芥 [25] [26] 、大麦 [27] 、小麦 [28] 、水稻 [29] [30] 、短柄草 [31] 、玉米 [32] 、大豆 [33] 、松树 [34] 、柑橘 [35] 、油菜 [36] 等植物上取得了很大进展,但是目前在我国重要蔬菜大白菜中只有一个脱水素基因报道 [37] 。大白菜基因组测序和数据库的建立,为解析大白菜功能基因提供了极大便利 [38] [39] 。本文利用比较基因组学和生物信息学的方法,从大白菜的基因组中鉴定出12个脱水素基因,并对这12个脱水素基因的遗传进化、编码蛋白的特征以及其顺式调控元件进行了分析,为下一步研究大白菜脱水素基因的功能和利用脱水素基因改良大白菜的抗逆性奠定基础。

2. 材料与方法

利用拟南芥中的脱水素基因序列在Genbank中搜索比对大白菜的基因组序列和EST序列(http://blast.ncbi.nlm.nih.gov/Blast.cgi),寻找大白菜的脱水素基因序列,并对鉴定出的大白菜脱水素基因进行进化分析和编码蛋白的结构分析,对它们在亚细胞组分中的定位进行预测,对脱水素基因启动子及上游序列(1500 bp)中的顺式调控元件进行分析。遗传进化分析利用MEGA4.1来进行进化树的构建,采用Bootstrap Test-Neighbor Joining 方法,重复500次运算。蛋白结构分析通过PlantsP Feature Scan (http://plantsp.genomics.purdue.edu/html/feature_scan.html)来进行。顺式调控元件分析在PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)中进行在线分析。

3. 结果与分析

3.1. 大白菜脱水素基因的鉴定和特征分析

本文通过生物信息学分析从白菜基因组中鉴定出12个脱水素基因,按照它们在染色体上的分布顺序分别命名为BrDhn1到BrDhn12,其中一个已被报道的基因COR25在本文中命名为BrDhn6 (见表1)。脱水素基因的编码蛋白序列分析表明,BrDhn1编码的脱水素除含有一个K结构域外,其它特征不明显,BrDhn4编码KS类型,BrDhn3、BrDhn10、BrDhn11和BrDhn12编码YnSKn类型的脱水素,其余脱水素基因编码SKn类型的脱水素。这些脱水素基因编码区大小从288 bp到816 bp不等,BrDhn4只有一个外显子,而BrDhn3有3个外显子,其余脱水素基因都含有2个外显子(见图1)。染色体分布分析显示,BrDhn1、BrDhn4、BrDhn5和BrDhn9分别位于1号、3号、6号和8号染色体,BrDhn2和BrDhn3位于2号染色体,BrDhn6、BrDhn7和BrDhn8三个基因位于7号染色体,BrDhn10、BrDhn11和BrDhn12位于9号染色体。亚细胞定位预测结果表明,BrDhn1、BrDhn2和BrDhn7编码蛋白定位在细胞核或者细胞质中,BrDhn4和BrDhn5编码蛋白定位在细胞质或者细胞核中,其余脱水素只定位到细胞核中。

Table 1. Chinese cabbage dehydrin genes and their characters

表1. 大白菜脱水素基因及其特征

Figure 1. Intron-exon structure of Chinese cabbage dehydrin genes

图1. 大白菜脱水素基因的内含子–外显子结构

3.2. 大白菜脱水素基因的进化分析

为了寻找大白菜脱水素基因的功能线索,在得到大白菜的脱水素序列后,本文对它们的遗传进化进行了分析(见图2)。结果表明,大白菜的脱水素基因可划分为两类,其中大白菜的BrDhn4比较特殊,单独划为一类,其余脱水素为一大类。序列比对分析显示,BrDhn1和At4g39130同源,编码蛋白的序列一致性为70.20%;BrDhn2、BrDhn7和BrDhn8与AtERD14同源,其编码蛋白的序列一致性分别为77.40% (BrDhn2 Vs AtERD14)、75.98% (BrDhn7 Vs AtERD14)和78.92% (BrDhn7 Vs AtERD14),而BrDhn2和BrDhn7编码蛋白的序列一致性为78.43%;BrDhn3和BrDhn10与AtRAB18同源,其编码蛋白的序列一致性分别为80.10%和77.37%;BrDhn4和At1g54410直系同源,其编码蛋白的序列一致性为88.78%;BrDhn5和BrDhn6与AtCOR47同源,其编码蛋白的序列一致性分别为62.72%和54.58%;BrDhn9与At4g38410同源,序列一致性为66.67%,BrDhn11与AtXERO1同源,其编码蛋白的序列一致性为69.92%;BrDhn12与At2g21490同源,其编码蛋白的序列一致性为69.79%。已知拟南芥的脱水素基因大多受ABA的诱导表达,并且在冷胁迫和水分胁迫响应过程中具有重要功能 [22] 。作者认为大白菜的脱水素基因也具有类似的表达模式和功能。

4. 大白菜脱水素基因的顺式元件分析

顺式调控元件在基因的表达调控中具有重要作用。为了探讨大白菜的脱水素基因可能受哪些因子调控,本文对12个脱水素基因的启动子部分及上游序列进行了顺式元件分析(见表2)。结果显示,BrDhn1-3,5-8,11,12可应答ABA信号,BrDhn1-4,7,9,10,12可应答茉莉酸甲酯,BrDhn1,2,5,9-12可应答乙烯信号,BrDhn3,5-9,11,12可应答赤霉素信号,BrDhn3-6,8,9可响应热胁迫,BrDhn5-9,11,12可响应冷胁迫,BrDhn4-8,10,12可响应干旱胁迫,BrDhn1,2,4-8可进行防卫应答,BrDhn-8,11可应答水杨酸信号。综上,推测大白菜的脱水素基因可能在发育及生物逆境响应过程中具有重要功能。目前,有关脱水素在大白菜发育和生物逆境响应中的功能研究还未见报道,值得深入探讨。

Figure 2. Phylogeny of Chinese cabbage dehydrins

图2. 大白菜脱水素的遗传进化分析

Table 2. Cis-elements of Chinese cabbage dehydrin genes

表2. 大白菜脱水素基因的顺式元件

注:ABRE,ABA应答顺式元件;AuxRR-core为生长素应答元件;Box-W1为真菌激发子应答元件;CGTCA-motif,莉酸甲酯应答元件;HSE,热胁迫应答元件;MBS,为干旱胁迫应答元件;TC-rich repeats为防卫和逆境应答元件;TCA-element,水杨酸应答元件;W box为防卫应答元件;空白代表没有。

5. 结论

笔者利用生物信息学的方法从大白菜基因组中解析出12个脱水素基因,分析发现它们非均匀分布在大白菜不同的染色体上,而且结构类型也不一样。外显子–内含子结构分析显示,大白菜的脱水素基因多数含有2个外显子。亚细胞定位预测显示,它们编码的蛋白均定位于细胞质或者细胞核中,这与前人在其它物种中的研究结果一致。遗传进化分析表明,大白菜的脱水素基因可分为两个类群,BrDhn4比较特殊(KS类型),单独划为一类,其余的脱水素基因分为另一个类群。大白菜的大部分脱水素基因都能在拟南芥中找到相应的直系同源基因,相应的序列一致性大都在60%以上。启动子上游序列顺式元件分析表明,大白菜的脱水素基因大都含有多个激素和逆境应答顺式元件,而且各不相同。这说明大白菜的脱水素基因在功能上存在分化。目前研究表明:植物脱水素基因不仅在非生物逆境胁迫中具有重要功能,在生物胁迫应答中也发挥一定作用。植物脱水素不仅受激素和转录因子调控表达 [40] [41] ,而且还可被蛋白激酶的磷酸化调控 [8] ,和在渗透胁迫下激活谷胱甘肽转移酶基因的表达 [42] 。至于大白菜脱水素基因的具体功能以及它们表达调控的机制,需要进一步研究。本文为深入挖掘大白菜脱水素基因的功能和表达调控机理提供了重要线索。

基金项目

本论文受国家大宗蔬菜产业技术体系济南综合试验站项目资助,项目编号:CARS-23-G13。

NOTES

*共一作者。

#通讯作者。

参考文献

[1] Close, T.J. (1997) Dehydrins: A Commonality in the Response of Plants to Dehydration and Low Temperature. Physio-logia Plantarum, 100, 291-296.
https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
[2] 马杰, 刘翠芳, 李灵之, 向建华, 陈信波. 非生物胁迫下植物脱水素的研究进展[J]. 生物学杂志, 2012, 29(1): 71-74.
[3] Koag, M.C., Wilkens, S., Fenton, R.D., Resnik, J., Vo, E. and Close, T.J. (2009) The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes. Plant Physiology, 150, 1503-1514.
https://doi.org/10.1104/pp.109.136697
[4] Eriksson, S., Eremina, N., Barth, A., Danielsson, J. and Harryson, P. (2016) Membrane-Induced Folding of the Plant Stress Dehydrin Lti30. Plant Physiology, 171, 932-943.
https://doi.org/10.1104/pp.15.01531
[5] Zhai, C., Lan, J., Wang, H., Li, L., Cheng, X. and Liu, G. (2011) Rice Dehydrin K-Segments Have in vitro Antibacterial Activity. Biochemistry, 76, 645-650.
https://doi.org/10.1134/S0006297911060046
[6] Drira, M., Saibi, W., Amara, I., Masmoudi, K., Hanin, M. and Brini, F. (2015) Wheat Dehydrin K-Segments Ensure Bacterial Stress Tolerance, Antiaggregation and Antimicrobial Ef-fects. Applied Biochemistry and Biotechnology, 175, 3310-3321.
https://doi.org/10.1007/s12010-015-1502-9
[7] Alseikh, M.K., Svensson, J.T. and Randall, S.K. (2005) Phos-phorylation Regulated Ion-Binding Is a Property Shared by the Acidic Subclass Dehydrins. Plant, Cell and Environment, 28, 1114-1122.
https://doi.org/10.1111/j.1365-3040.2005.01348.x
[8] Maszkowska, J., Dębski, J., Kulik, A., Kistowski, M., Bucholc, M., Lichocka, M., Klimecka, M., Sztatelman, O., Szymańska, K.P., Dadlez, M. and Dobrowolska, G. (2019) Phosphoproteomic Analysis Reveals That Dehydrins ERD10 and ERD14 Are Phosphorylated by SNF1-Related Protein Kinase 2.10 in Response to Osmotic Stress. Plant, Cell & Environment, 42, 931-946.
https://doi.org/10.1111/pce.13465
[9] Kovacs, D., Kalmar, E., Torok, Z. and Tompa, P. (2008) Chaperone Activi-ty of ERD10 and ERD14, Two Disordered Stress-Related Plant Proteins. Plant Physiology, 147, 381-390.
https://doi.org/10.1104/pp.108.118208
[10] Murvai, N., Kalmar, L., Szabo, B., Schad, E., Micsonai, A., Kardos, J., Buday, L., Han, K.H., Tompa, P. and Tantos, A. (2021) Cellular Chaperone Function of Intrinsically Disordered Dehy-drin ERD14. International Journal of Molecular Sciences, 22, Article 6190.
https://doi.org/10.3390/ijms22126190
[11] Zaman Khan, N., Lal, S., Ali, W., Aasim, M., Mumtaz, S., Kamil, A. and Shad Bibi, N. (2020) Distribution and Classification of Dehydrins in Selected Plant Species Using Bioinformatics Approach. Iranian Journal of Biotechnology, 18, e2680.
[12] Upadhyaya, G., Das, A., Basu, C., Agarwal, T., Basak, C., Chakraborty, C., Halder, T., Basu, G. and Ray, S. (2021) Multiple Copies of a Novel Amphipathic α-Helix Forming Segment in Physcomitrella patens Dehydrin Play a Key Role in Abiotic Stress Mitigation. Journal of Biological Chemis-try, 296, Article ID: 100596.
https://doi.org/10.1016/j.jbc.2021.100596
[13] Ohkubo, T., Kameyama, A., Kamiya, K., Kondo, M. and Hara, M. (2020) F-Segments of Arabidopsis Dehydrins Show Cryoprotective Activities for Lactate Dehydrogenase Depending on the Hydrophobic Residues. Phytochemistry, 173, Article ID: 112300.
https://doi.org/10.1016/j.phytochem.2020.112300
[14] Wei, H., Yang, Y., Himmel, M.E., Tucker, M.P., Ding, S.Y., Yang, S. and Arora, R. (2019) Identification and Characterization of Five Cold Stress-Related Rhododendron De-hydrin Genes: Spotlight on a FSK-Type Dehydrin with Multiple F-Segments. Frontiers in Bioengineering and Biotech-nology, 7, Article 30.
https://doi.org/10.3389/fbioe.2019.00030
[15] 邢鑫, 刘洋, 李德全. 植物脱水素的结构和功能[J]. 植物生理学通讯, 2010, 46(3): 268-276.
[16] 张琪, 周薇, 崔慧萍, 等. 不同类型脱水素在植物低温胁迫应答中的作用[J]. 核农学报, 2017, 31(4): 689-695.
[17] 王西子, 信欣, 张方亦琢, 等. 植物脱水素的生物学功能与调控机制研究进展[J]. 植物生理学报, 2022, 58(9): 1617-1628.
[18] Rorat, T. (2006) Plant Dehydrins—Tissue Location, Structure and Function. Cellular and Molecular Biology Letters, 11, 536-556.
https://doi.org/10.2478/s11658-006-0044-0
[19] Yu, Z., Wang, X. and Zhang, L. (2018) Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. International Journal of Molecular Sciences, 19, Article 3420.
https://doi.org/10.3390/ijms19113420
[20] Graether, S.P. and Boddington, K.F. (2014) Disorder and Function: A Review of the Dehydrin Protein Family. Frontiers in Plant Science, 5, Article 576.
https://doi.org/10.3389/fpls.2014.00576
[21] Murray, M.R. and Graether, S.P. (2022) Physiological, Structural, and Functional Insights into the Cryoprotection of Membranes by the Dehydrins. Frontiers in Plant Science, 13, Article 886525.
https://doi.org/10.3389/fpls.2022.886525
[22] Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S. and Masmoudi, K. (2011) Plant Dehydrins and Stress Tolerance: Versatile Proteins for Complex Mechanisms. Plant Signal-ing & Behavior, 6, 1503-1509.
https://doi.org/10.4161/psb.6.10.17088
[23] Smith, M.A. and Graether, S.P. (2022) The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules, 12, Article 294.
https://doi.org/10.3390/biom12020294
[24] Sun, Z., Li, S., Chen, W., Zhang, J., Zhang, L., Sun, W. and Wang, Z. (2021) Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. International Journal of Molecular Sciences, 22, Article 12619.
https://doi.org/10.3390/ijms222312619
[25] Abdul Aziz, M., Sabeem, M., Mullath, S.K., Brini, F. and Masmoudi, K. (2021) Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules, 11, Article 1662.
https://doi.org/10.3390/biom11111662
[26] Liu, Y., Song, Q., Li, D., Yang, X. and Li, D. (2017) Multifunctional Roles of Plant Dehydrins in Response to Environmental Stresses. Frontiers in Plant Science, 8, Article 1018.
https://doi.org/10.3389/fpls.2017.01018
[27] Abedini, R., Ghane Golmohammadi, F., PishkamRad, R., Pourabed, E., Jafarnezhad, A., Shobbar, Z.S. and Shahbazi, M. (2017) Plant Dehydrins: Shedding Light on Structure and Expres-sion Patterns of Dehydrin Gene Family in Barley. Journal of Plant Research, 130, 747-763.
https://doi.org/10.1007/s10265-017-0941-5
[28] Kosová, K., Vítámvás, P. and Prášil, I.T. (2014) Wheat and Barley Dehydrins under Cold, Drought, and Salinity—What Can LEA-II Proteins Tell Us about Plant Stress Response? Fron-tiers in Plant Science, 5, Article 343.
https://doi.org/10.3389/fpls.2014.00343
[29] Zaman, N., Lal, S., Ali, W., Aasim, M., Mumtaz, S., Kamil, A. and Bibi, N.S. (2020) Distribution and Classification of Dehydrins in Selected Plant Species Using Bioinformatics Approach. Iranian Journal of Biotechnology, 18, 56-66.
https://doi.org/10.30498/IJB.2020.2680
[30] Momma, M. (2019) Detection and Cryoprotective Activity of Dehy-drin Proteins from Rice Bran and Soybean Whey. Journal of Nutritional Science and Vitaminology, 65, S129-S133.
https://doi.org/10.3177/jnsv.65.S129
[31] Decena, M.A., Gálvez-Rojas, S., Agostini, F., Sancho, R., Contre-ras-Moreira, B., Des Marais, D.L., Hernandez, P. and Catalán, P. (2021) Comparative Genomics, Evolution, and Drought-Induced Expression of Dehydrin Genes in Model Brachypodium Grasses. Plants, 10, Article 2664.
https://doi.org/10.3390/plants10122664
[32] Saruhan Güler, N., Terzi, R., Demiralay, M., Ozturk, K. and Kadioglu, A. (2022) Increased Dehydrin Level Decreases Leaf Rolling Grade by Altering the Reactive Oxygen Species Homeosta-sis and Abscisic Acid Content in Maize Subjected to Osmotic Stress. 3 Biotech, 12, Article No. 201.
https://doi.org/10.1007/s13205-022-03275-3
[33] Yamasaki, Y., Koehler, G., Blacklock, B.J. and Randall, S.K. (2013) Dehydrin Expression in Soybean. Plant Physiology and Biochemistry, 70, 213-220.
https://doi.org/10.1016/j.plaphy.2013.05.013
[34] Kartashov, A.V., Zlobin, I.E., Pashkovskiy, P.P., Pojidaeva, E.S, Ivanov Y.V, Mamaeva, A.S., Fesenko, I.A. and Kuznetsov, V.V. (2021) Quantitative Analysis of Differential Dehydrin Regulation in Pine and Spruce Seedlings under Water Deficit. Plant Physiology and Biochemistry, 162, 237-246.
https://doi.org/10.1016/j.plaphy.2021.02.040
[35] Xu, Y.Y., Zeng, R.F., Zhou, H., Qiu, M.Q., Gan, Z.M., Yang, Y.L., Hu, S.F., Zhou, J.J., Hu, C.G. and Zhang, J.Z. (2022) Citrus FRIGIDA Cooperates with Its Interaction Partner Dehydrin to Regulate Drought Tolerance. The Plant Journal, 111, 164-182.
https://doi.org/10.1111/tpj.15785
[36] Edrisi Maryan, K., Samizadeh Lahiji, H., Farrokhi, N. and Hasani Komeleh, H. (2019) Analysis of Brassica napus Dehydrins and Their Co-Expression Regulatory Networks in Relation to Cold Stress. Gene Expression Patterns, 31, 7-17.
https://doi.org/10.1016/j.gep.2018.10.002
[37] Lu, Y., Sun, X., Yao, J., Chai, Y., Zhao, X., Zhang, L., Song, J., Pang, Y.Z., Wu, W. and Tang, K. (2003) Isolation and Expression of Cold-Regulated cDNA from Chinese Cabbage (Brassica pekinensis). DNA Sequence, 14, 219-222.
https://doi.org/10.1080/1042517031000095381
[38] Wang, X., Wang, H., Wang J., et al. (2011) The Genome of the Mesopolyploid Crop Species Brassica rapa. Nature Genetics, 43, 1035-1039.
https://doi.org/10.1038/ng.919
[39] Cai, C.C., Wang, X.B., Liu, B., Wu, J., Liang, J.L., Cui, Y., Cheng, F. and Wang, X. (2017) Brassica rapa Genome 2.0: A Reference Upgrade through Sequence Re-Assembly and Gene Re-Annotation. Molecular Plant, 10, 649-651.
https://doi.org/10.1016/j.molp.2016.11.008
[40] Yang, Y., Liu, H., Wang, A. and Zhang, L. (2020) An ERF-Type Transcription Factor Is Involved in the Regulation of the Dehydrin Wzy1-2 Gene in Wheat. Plant Signaling & Behavior, 15, Article ID: 1778920.
https://doi.org/10.1080/15592324.2020.1778920
[41] Liu, H., Yang, Y., Liu, D., Wang, X. and Zhang, L. (2020) Transcription Factor TabHLH49 Positively Regulates Dehydrin WZY2 Gene Expression and Enhances Drought Stress Tolerance in Wheat. BMC Plant Biology, 20, Article 259.
https://doi.org/10.1186/s12870-020-02474-5
[42] Nguyen, P.N., Tossounian, M.A., Kovacs, D.S., Thu, T.T., Stijlemans, B., Vertommen, D., Pauwels, J., Gevaert, K., Angenon, G., Messens, J. and Tompa, P. (2020) Dehydrin ERD14 Activates Glutathione Transferase Phi9 in Arabidopsis thaliana under Osmotic Stress. Biochimica et Biophysica Acta (BBA)—General Subjects, 1864, Article ID: 129506.
https://doi.org/10.1016/j.bbagen.2019.129506