肠道菌群在急性髓系白血病中的研究进展
Advances in the Study of Intestinal Flora in Acute Myeloid Leukemia
DOI: 10.12677/ACM.2023.1361284, PDF, HTML, XML, 下载: 249  浏览: 407 
作者: 包雪伟:青海大学研究生院,青海 西宁;李文倩*:青海省人民医院血液科,青海 西宁
关键词: 肠道菌群急性髓系白血病治疗益生菌Intestinal Flora Acute Myeloid Leukemia Treatment Probiotics
摘要: 急性髓系白血病是一种起源于造血干细胞/祖细胞的恶性克隆性疾病,是成人白血病中最常见的类型。肠道菌群是人体微生物最大、最复杂群落,与人体的正常的生命活动、内环境的稳定及免疫系统密切相关。研究发现,肠道菌群与AML之间存在相互作用。近年来研究发现,肠道菌群通过多种机制影响AML的发生,并与其治疗、预后及预防均有着密切的关系。本文就肠道菌群对AML的发生、治效及预后的影响及相关机制进行综述,旨在为AML的治疗和预防提供新思路。
Abstract: Acute myeloid leukemia is a malignant clonal disease that originates from hematopoietic stem/pro genitor cells and is the most common type of adult leukemia. The intestinal flora is the largest and most complex community of microorganisms in the human body, and is closely related to the nor-mal life activities, stability of the internal environment and immune system. It has been found that there is an interaction between intestinal flora and AML. Recent studies have found that intestinal flora affects the occurrence of AML through various mechanisms, and has a close relationship with its treatment, prognosis and prevention. In this paper, we review the effects of intestinal flora on the occurrence, treatment and prognosis of AML and the related mechanisms, aiming to provide new ideas for the treatment and prevention of AML.
文章引用:包雪伟, 李文倩. 肠道菌群在急性髓系白血病中的研究进展[J]. 临床医学进展, 2023, 13(6): 9170-9176. https://doi.org/10.12677/ACM.2023.1361284

1. 急性髓系白血病定义

急性髓系白血病(acute myeloid leukemia, AML)是一种高度异质性的恶性血液病,在成人白血病中最为常见,约占70% [1] ,其特征是白血病细胞在外周血、骨髓或其他组织中克隆性扩增,抑制造血功能,还可通过血液循环渗入其他非造血组织和器官,造成器官衰竭,临床表现常有贫血、出血、感染、发热等症状,预后差,死亡率高。研究发现老年人群更易发生AML,平均诊断年龄约为65岁,目前5年生存率为28% [2] 。

2. 肠道菌群定义

肠道菌群是人体内最大、最复杂的微生态系统之一,由数万亿细菌、古细菌、病毒、真菌和其他微真核生物定植体组成 [3] ,其中95%以上的微生物是细菌,可以分为厚壁菌门、拟杆菌门、放线菌门和变形菌门等 [4] 。肠道微生物与宿主相互作用,并受遗传、环境、生活方式等的干预,这些因素共同影响癌症进展 [5] [6] 。

正常情况下,肠道菌群与宿主保持着一种相对平衡,当肠道菌群失衡时,可能使人体继发某些疾病例如神经发育障碍、炎症性肠病、风湿性疾病、2型糖尿病、肥胖、过敏及哮喘及肿瘤等 [7] [8] 。肠道菌群与血液系统疾病方面也有着紧密的联系,如贫血、血小板减少、白血病、淋巴瘤等,有研究报道,出生方式可能导致的肠道菌群差异从而导致白血病的发生 [9] 。

3. 肠道菌群与急性髓系白血病

3.1. 肠道菌群在AML发病过程中的作用

肠道菌群中存在恶性肿瘤的杀手,其中以放线菌门细菌为主,其次是变形菌门和厚壁菌门的细菌,它们可以在恶性细胞形成癌症之前将其清除。将健康人群的粪便微生物和肿瘤细胞共同培养,发现其有广谱的抗肿瘤活性,不仅可以防止肿瘤转移,也可以清除已经转移的癌细胞,但具体机制尚不清楚 [10] 。对成人急性髓系白血病的研究发现,慢性炎症性疾病与活性氧簇的积累和对DNA的氧化损伤相关,这可能导致基因组不稳定性增加和突变风险增加,使得胃肠道感染成为了初治AML的危险因素 [11] 。肠道菌群与AML的作用可能是相互的。

近期研究表明,肠道菌群与AML的基因突变之间有一定关联。TET-甲基胞嘧啶双加氧酶2 (tet methylcytosine dioxygenase 2, TET2)基因是一种肿瘤抑制基因,在表观遗传学中起重要作用。Tet2基因突变是诱发AML的因素之一 [12] 。Meisel等 [13] 研究发现,Tet2基因突变会破坏肠壁的完整性,使原本存在于小肠内的细菌进入血液及周边的器官。机体的免疫系统发现细菌异常入侵后,会产生相应的炎症因子IL-6,进而刺激白血病细胞的增殖。此外,有研究表明炎症刺激会导致肠道屏障完整性减弱,肠道菌群及其代谢物与肠上皮直接接触,引起肠上皮细胞中的NF-κB过度激活,促进TNF、IL-1、IL-6等细胞因子的生成并随血液循环进入骨髓,导致造血干细胞无限增殖不分化,从而诱发及加重白血病 [14] 。因此,肠道菌群对AML的发生与发展过程有着不可或缺的地位。

3.2. 急性髓系白血病的治疗与肠道菌群

化疗、抗生素的使用及造血干细胞的移植是治疗AML常用手段。肠道菌群和AML的治疗作用是相互的,AML的治疗影响微生物与人体的共生关系,肠道微生物紊乱影响AML治疗效果 [15] 。

3.2.1. 急性髓系白血病的治疗可以造成肠道菌群的失调

在AML患者中肠道菌群的组成、抗生素的使用以及感染的风险三者之间是紧密联系的。在AML中发生感染患者与没有感染患者之间的肠道菌群具有显着差异,但并不明确是抗生素使用所致还是感染自身引起。在小鼠模型上发现抗生素使用能降低小鼠的肠道微生物多样性,停用抗生素后有所恢复,但停用抗生素1月后尚未恢复到基线水平 [16] 。

化疗是AML患者治疗的重要组成部分,这些细胞毒性化疗药物能杀死肿瘤细胞,但不可避免也杀死了正常细胞,导致骨髓造血功能受到抑制,从而增加继发呼吸道、胃肠道、血液系统等方面的感染风险。在AML的治疗中,不管是感染后治疗性使用抗生素,还是粒细胞缺乏预防性使用抗生素,对于AML的生存至关重要。然而化疗药物及抗生素的使用会导致肠道菌群改变,继而可能导致一些机会致病菌定植及增殖引起某些疾病的产生以及影响机体正常免疫功能 [17] [18] 。Galloway-Pea等 [19] 分析了34例AML患者的口腔及粪便微生物得出了化疗后粪便微生物的多样性显著下降的结论,化疗期间微生物丰富度逐渐下降,丰富度越低的患者更容易发生感染,表明化疗前微生物的测量有助于减少化疗相关的并发症。Galloway-Pea等 [20] 还发现粪便微生物的时间变异率很大,且这种时间的不稳定性与病原菌的相对丰度相关,在时间变异率一致的情况下,不同微生物群的相对丰度之间具有显著差异,粪便微生物的时间变异率升高与诱导化疗结束后90天罹患感染的风险增加相关,强调了在临床实践过程中纵向采样的重要性。

接受化疗的AML患者会出现严重的肠道功能障碍,且患者多数存在骨髓抑制期,使其更容易发生感染及相关并发症。研究发现,抗菌药物对肠道菌群的影响因种类而异,在AML患者中,使用左氧氟沙星预防感染对肠道菌群的破坏作用可能小于广谱抗生素 [21] 。但在实际临床治疗中,广谱抗生素的使用广泛,且不能避免。因此,在AML患者治疗中肠道菌群的稳定,对其治疗效果和预后有重要意义。

初诊AML患者住院期间接受强化诱导化疗后,其肠道微生物多样性下降,即使在没有抗菌治疗的情况下也是如此,在第14天时其多样性的总体降低与缓解的状态相关,与年龄和基线多样性无关,在这个研究中,微生物多样性的降低与不良的临床结果相关 [22] 。因此,进一步研究肠道微生物群对AML患者预后的影响是有必要的。

Gyarmati等 [23] 对9名初诊AML患者在强化疗前后检测其肠道微生物宏基因组,结果表明,肠道微生物群中的细菌、真菌和病毒与抗微生物耐药基因同时存在。外周血白细胞计数的降低与检测到的肠道微生物DNA成反比。这项研究表明高通量测序可用于严重血液感染患者的个性化抗菌治疗。AML治疗大多需要反复进行化疗,在此过程中,肠道微生物群的失调随着化疗次数增多而加重。研究表明,反复化疗是肠球菌增多的显著预测因子,这与抗生素暴露、疾病类型和喂养方式无关。与诱导化疗相比,反复化疗期间微生物群落与化疗前基线的偏离更大。这种在重复治疗过程中导致的肠道微生物群失调使定植菌的抗菌免疫力降低,并增加了肠球菌的生长,更容易发生严重感染 [24] ,这对AML患者的预后造成严重影响。

研究表明 [25] 化疗会选择性杀死共生厌氧菌,这可以引起潜在的致病微生物的扩增。此外,益生菌对于减轻化疗引起的副作用有潜在的作用。研究发现 [26] ,给接受5-氟尿嘧啶化疗的小鼠服用鼠李糖乳杆菌和双歧杆菌,能够通过抑制肠道菌群失调相关的炎症反应,来改善化疗药引起的肠道黏膜炎。

造血干细胞移植是高危AML治疗的有效方法。接受移植的AML患者通常会出现移植物抗宿主病(graft versus-host disease, GVHD),此病是移植成功与否的重要因素。研究发现 [27] GVHD患者小肠内潘氏细胞数量减少,导致肠道抗菌肽α-防御素表达下降,造成肠道菌群失调。Jenq等 [28] 对造血干细胞移植后的患者12 d后的粪便肠道菌群进行分析,结果发现细菌多样性的增加与GVHD相关死亡率的减少有关。并且证实专性厌氧菌如布劳特氏菌属的细菌数量增加,会降低GVHD患者的死亡率。另有研究报道异基因骨髓移植后患者的肠上皮细胞产生丁酸盐减少。肠道内梭状芽孢杆菌产生的丁酸盐能减少肠道上皮细胞凋亡,增强肠上皮完整性,从而缓解GVHD症状。此外,给予移植小鼠高产丁酸的梭菌菌株,能够降低GVHD的严重程度,提高生存率 [29] 。因此,提高造血干细胞移植后AML患者肠道菌群的多样性,维持肠道菌群平衡,维护肠道屏障作用,能够降低GVHD的发生率和死亡率。

3.2.2. 急性髓系白血病治疗影响肠道菌群的对策

对于进行反复化疗或者复发难治的AML患者,建议在开始重新诱导治疗之前进行肠道菌群修复治疗。因此,在AML患者治疗过程中,控制其肠道菌群的策略,可以最大限度地减少与治疗相关的并发症,并有可能改善预后。Mohamad等 [30] 首次进行了多中心的前瞻性试验,对接收强化化疗和广谱抗生素治疗的AML患者进行自体粪菌移植(autologous fecal microbiota transfer, auto-FMT),研究结果表明,此种方式可促进肠道菌群失调的纠正和恢复正常微生物群。Mohamad等 [31] 再次完成了FMT前瞻性Ⅰ/Ⅱ期多中心试验,评估基于FMT与AML诱导治疗相结合,以恢复血液肿瘤患者肠道微生物群多样性的效果。测试FMT在接受强化诱导化疗的AML患者中的安全性和有效性,同时发现也减少了抗生素的耐药和肠道炎症。在AML、造血干细胞移植以及实体肿瘤化疗后进行auto-FMT治疗,发现此种治疗方法具有可靠的安全性和有效性,也有利于疾病的预后 [32] [33] [34] 。

3.2.3. 肠道菌群对急性髓系白血病化疗药物的影响

肠道菌群对化疗药物的调节是通过微生物的酶及代谢产物对药物进行转化时改变药物的疗效和毒性来实现的 [35] ,其在宿主对不同化疗药物的反应中发挥的作用不同,主要通过影响免疫调节、细菌移位、代谢、酶的降解以及细菌多样性5个方面来实现这一作用,其中免疫调节是核心机制 [36] 。阿霉素主要用于治疗AML,阿霉素引起肠黏膜的损伤,诱导革兰阳性菌进入次级淋巴组织引起细菌移位,导致抗癌活性减弱,在治疗过程中产生的不良反应(如肠黏膜炎及心脏毒性)与口腔及肠道微生物的变化相关 [37] ,通过调节肠道微生物可以防止阿霉素诱导的心脏毒性更加证实了这一观点 [38] 。

3.2.4. 肠道菌群可以预测急性髓系白血病化疗相关的并发症

微生物群不仅是抵御疾病的第一道防线,还可以作为疾病的预测因子 [35] ,肠道菌群的组成比遗传因素更能预测BMI、血糖水平、胆固醇水平以及心脏的健康问题等 [6] ,羊水微生物群的组成是早产和绒毛膜羊膜炎的预测因子 [39] ,肠道菌群组成是肝硬化患者住院风险和疾病严重程度的预测指标 [40] 。Galloway-Pea等 [19] 研究发现化疗前变形杆菌的相对丰度可以预测AML患者发热伴中心粒细胞减少的发生,在化疗过程中肠球菌科或链球菌科控制肠道菌群,其相对丰度可以预测化疗后期的感染及胃肠道反应。

4. AML与肠道菌群预后

近些年来,益生元、益生菌或粪便微生物移植(FMT)运用于改善肠道菌群的失衡,从而用来治疗各种疾病,如胃肠道疾病、风湿、过敏性疾病、预防泌尿生殖系统感染、心血管疾病以及肿瘤性疾病 [41] 。在急性髓系白血病儿童患者中,发现予以益生菌可以改善胃肠道反应、减轻感染以及降低GVHD发生等 [42] [43] [44] 。FMT常用于治疗艰难梭菌感染、代谢和自身免疫性疾病、自闭症、帕金森病、多发性硬化症、慢性疲劳综合征、急性GVHD、肠易激综合征、克罗恩病、溃疡性结肠炎等胃肠道疾病 [45] [46] 。益生菌具有调节免疫系统功能、调节机体能量代谢以及预防肠癌发生等功能,能够促进人类健康。双歧杆菌辅助应用可以明显提高急性淋巴细胞白血病患者化疗相关性腹泻的临床疗效,降低炎性细胞因子水平,改善肠黏膜屏障功能,调节肠道菌群平衡紊乱,重建肠道生态平衡,值得在临床推广。

5. 结语与展望

急性髓系白血病的发病率逐渐升高,治疗大多数以延长生存期为目的,不同的肠道菌群对急性髓系白血病的影响和作用机制是不同的,若能明确急性髓系白血病发病过程中的特异微生物及其作用机制,明确肠道菌群与急性髓系白血病的关系,建立起疾病–菌群关系并深入研究其分子机制,控制急性髓系白血病肠道菌群的策略,如FMT纠正肠道菌群紊乱,恢复急性髓系白血病肠道菌群多样性,以期为急性髓系白血病的诊断、治疗及评估预后引入肠道菌群这一新的指标提供依据,可能对改善急性髓系白血病的疗效及预后有所帮助。

NOTES

*通讯作者。

参考文献

[1] Zhai, H., Zhao, J., Pu, J., et al. (2021) LncRNA-DUXAP8 Regulation of the Wnt/beta-Catenin Signaling Pathway to In-hibit Glycolysis and Induced Apoptosis in Acute Myeloid Leukemia. Turkish Journal of Haematology, 38, 264-272.
https://doi.org/10.4274/tjh.galenos.2021.2020.0769
[2] Allison, M., Mathews, J., Gilliland, T., et al. (2022) Nat-ural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers (Basel), 14, Article No. 843.
https://doi.org/10.3390/cancers14030843
[3] Sarin, S.-K., Pande, A. and Schnabl, B. (2019) Microbiome as a Therapeutic Target in Alcohol-Related Liver Disease. Journal of Hepatology, 70, 260-272.
https://doi.org/10.1016/j.jhep.2018.10.019
[4] Landman, C. and Quevrain, E. (2016) Gut Microbiota: Description, Role and Pathophysiologic Implications. La Revue de Médecine Interne, 37, 418-423.
https://doi.org/10.1016/j.revmed.2015.12.012
[5] Grandt, C.-L., Brackmann, L.-K., Poplawski, A., et al. (2022) Radiation-Response in Primary Fibroblasts of Long-Term Survivors of Childhood Cancer with and without Second Pri-mary Neoplasms: The KiKme Study. Molecular Medicine, 28, Article No. 105.
https://doi.org/10.1186/s10020-022-00520-6
[6] Rothschild, D., Weissbrod, O., Barkan, E., et al. (2018) Envi-ronment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215.
https://doi.org/10.1038/nature25973
[7] DeFilipp, Z., Hohmann, E., Jenq, R.-R., et al. (2019) Fecal Microbiota Transplantation: Restoring the Injured Microbiome after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 25, e17-e22.
https://doi.org/10.1016/j.bbmt.2018.10.022
[8] Vivarelli, S., Salemi, R., Candido, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel), 11, Article No. 38.
https://doi.org/10.3390/cancers11010038
[9] Marcotte, E.-L., Richardson, M.-R., Roesler, M.-A., et al. (2018) Cesarean Delivery and Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Epide-miology, Biomarkers & Prevention, 27, 473-478.
https://doi.org/10.1158/1055-9965.EPI-17-0778
[10] Zhou, Y.-J., Zhao, D.-D., Liu, H., et al. (2017) Cancer Killers in the Human Gut Microbiota: Diverse Phylogeny and Broad Spectra. Oncotarget, 8, 49574-49591.
https://doi.org/10.18632/oncotarget.17319
[11] Ostgard, L.S.G., Norgaard, M., Pedersen, L., et al. (2018) Auto-immune Diseases, Infections, Use of Antibiotics and the Risk of Acute Myeloid Leukaemia: A National Popula-tion-Based Case-Control Study. British Journal of Haematology, 181, 205-214.
https://doi.org/10.1111/bjh.15163
[12] Chiba, S. (2016) Significance of TET2 Mutations in Myeloid and Lymphoid Neoplasms. Rinsho Ketsueki, 57, 715-722.
[13] Meisel, M., Reinhard, H., Alain, P., et al. (2018) Microbial Signals Drive Pre-Leukaemic Myeloproliferation in a Tet2-Deficient Host. Nature (London), 557, 580-584.
https://doi.org/10.1038/s41586-018-0125-z
[14] Zhang, Y., Yu, X., Lin, D., et al. (2017) Propiece IL-1alpha Facil-itates the Growth of Acute T-Lymphocytic Leukemia Cells through the Activation of NF-kappaB and SP1. Oncotarget, 8, 15677-15688.
https://doi.org/10.18632/oncotarget.14934
[15] Mauray, A., Felgines, C., Morand, C., et al. (2010) Bilberry An-thocyanin-Rich Extract Alters Expression of Genes Related to Atherosclerosis Development in Aorta of apo E-Deficient Mice. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 22, 72-80.
[16] Willemsen, M.L.-E. (2003) Short Chain Fatty Acids Stimulate Epithelial Mucin 2 Expression through Differential Effects on Prostaglandin E1 and E2 Production by Intestinal Myofibroblasts. Gut, 52, 1442-1447.
https://doi.org/10.1136/gut.52.10.1442
[17] Illiano, P., Brambilla, R. and Parolini, C. (2020) The Mutual Interplay of Gut Microbiota, Diet and Human Disease. FEBS Journal, 287, 833-855.
https://doi.org/10.1111/febs.15217
[18] Bai, L., Zhou, P., Li, D., et al. (2017) Changes in the Gastrointestinal Mi-crobiota of Children with Acute Lymphoblastic Leukaemia and Its Association with Antibiotics in the Short Term. Jour-nal of Medical Microbiology, 66, 1297-1307.
https://doi.org/10.1099/jmm.0.000568
[19] Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2016) The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute My-eloid Leukemia. Cancer, 122, 2186-2196.
https://doi.org/10.1002/cncr.30039
[20] Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2017) Characterization of Oral and Gut Microbiome Temporal Variability in Hospitalized Cancer Patients. Genome Medicine, 9, Article No. 21.
https://doi.org/10.1186/s13073-017-0409-1
[21] Ziegler, M., Han, J.-H., Landsburg, D., et al. (2019) Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients with Hematologic Malig-nancy. Open Forum Infectious Diseases, 6, z252.
https://doi.org/10.1093/ofid/ofz252
[22] Lee, S., Ritchie, E.-K., Miah, S., et al. (2019) Changes in Gut Microbial Diversity and Correlations with Clinical Outcomes in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) Receiving Intensive Chemotherapy. Blood, 134, Article No. 1336.
https://doi.org/10.1182/blood-2019-125441
[23] Gyarmati, P., Kjellander, C., Aust, C., et al. (2016) Metagenomic Analysis of Bloodstream Infections in Patients with Acute Leukemia and Therapy-Induced Neutropenia. Scientific Re-ports, 6, Article No. 23532.
https://doi.org/10.1038/srep23532
[24] Rashidi, A., Kaiser, T., Shields-Cutler, R., et al. (2019) Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Scientific Reports, 9, Article No. 6083.
https://doi.org/10.1038/s41598-019-42652-6
[25] van Vliet, M.-J., Tissing, W.-J., Dun, C.-A., et al. (2009) Chem-otherapy Treatment in Pediatric Patients with Acute myeloid Leukemia Receiving Antimicrobial Prophylaxis Leads to a Relative Increase of Colonization with Potentially Pathogenic Bacteria in the Gut. Clinical Infectious Diseases, 49, 262-270.
https://doi.org/10.1086/599346
[26] Kato, S., Hamouda, N., Kano, Y., et al. (2017) Probiotic Bifidobac-terium Bifidum G9-1 Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice via Suppression of Dysbio-sis-Related Secondary Inflammatory Responses. Clinical and Experimental Pharmacology and Physiology, 44, 1017-1025.
https://doi.org/10.1111/1440-1681.12792
[27] Eriguchi, Y., Takashima, S., Oka, H., et al. (2012) Graft-versus-Host Disease Disrupts Intestinal Microbial Ecology by Inhibiting Paneth Cell Production of Al-pha-Defensins. Blood, 120, 223-231.
https://doi.org/10.1182/blood-2011-12-401166
[28] Jenq, R.-R., Taur, Y., Devlin, S.-M., et al. (2015) Intestinal Blautia Is Associated with Reduced Death from Graft- versus-Host Disease. Biology of Blood and Marrow Transplanta-tion, 21, 1373-1383.
https://doi.org/10.1016/j.bbmt.2015.04.016
[29] Mathewson, N.-D., Jenq, R., Mathew, A.-V., et al. (2016) Gut Microbiome-Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-Host Disease. Nature Immunology, 17, 505-513.
https://doi.org/10.1038/ni.3400
[30] Mohty, M., Malard, F., D’Incan, E., et al. (2017) Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transplantation (auto-FMT) in Acute Myeloid Leukemia (AML) Pa-tients Undergoing Intensive Treatment (ODYSSEE Study): First Results of a Prospective Multicenter Trial. Blood, 130, Article No. 2624.
https://doi.org/10.1182/blood-2018-99-112825
[31] Mohty, M., Malard, F., Vekhoff, A., et al. (2018) The Odys-see Study: Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transfer (FMT) in Acute Myeloid Leukemia (AML) Patients Undergoing Intensive Treatment: Results of a Prospective Multicenter Trial. Blood: The Jour-nal of the American Society of Hematology, 132, Article No. 1444.
https://doi.org/10.1182/blood-2018-99-112825
[32] DeFilipp, Z., Peled, J.-U., Li, S., et al. (2018) Third-Party Fe-cal Microbiota Transplantation Following allo-HCT Reconstitutes Microbiome Diversity. Blood Advances, 2, 745-753.
https://doi.org/10.1182/bloodadvances.2018017731
[33] Bilinski, J., Grzesiowski, P., Sorensen, N., et al. (2017) Fecal Microbiota Transplantation in Patients with Blood Disorders Inhibits Gut Colonization with Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study. Clinical Infectious Diseases, 65, 364-370.
https://doi.org/10.1093/cid/cix252
[34] Kaito, S., Toya, T., Yoshifuji, K., et al. (2018) Fecal Microbiota Transplan-tation with Frozen Capsules for a Patient with Refractory Acute Gut Graft-versus-Host Disease. Blood Advances, 2, 3097-3101.
https://doi.org/10.1182/bloodadvances.2018024968
[35] Koontz, J.-M., Dancy, B.C.R., Horton, C.-L., et al. (2019) The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 38, 251-264.
https://doi.org/10.1177/1091581819849833
[36] Ma, W., Mao, Q., Xia, W., et al. (2019) Gut Microbiota Shapes the Efficiency of Cancer Therapy. Frontiers in Microbiology, 10, Article No. 1050.
https://doi.org/10.3389/fmicb.2019.01050
[37] Alexander, J.-L., Wilson, I.-D., Teare, J., et al. (2017) Gut Micro-biota Modulation of Chemotherapy Efficacy and Toxicity. Nature Reviews Gastroenterology & Hepatology, 14, 356-365.
https://doi.org/10.1038/nrgastro.2017.20
[38] Huang, K., Liu, Y., Tang, H., et al. (2019) Glabridin Prevents Dox-orubicin-Induced Cardiotoxicity through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Frontiers in Pharmacology, 10, Article No. 107.
https://doi.org/10.3389/fphar.2019.00107
[39] Urushiyama, D., Suda, W., Ohnishi, E., et al. (2017) Microbiome Profile of the Amniotic Fluid as a Predictive Biomarker of Perinatal Outcome. Scientific Reports, 7, Article No. 12171.
https://doi.org/10.1038/s41598-017-11699-8
[40] Bajaj, J.-S., Thacker, L.-R., Fagan, A., et al. (2018) Gut Micro-bial RNA and DNA Analysis Predicts Hospitalizations in Cirrhosis. JCI Insight, 3, Article No. 98019.
https://doi.org/10.1172/jci.insight.98019
[41] Mego, M., Holec, V., Drgona, L., et al. (2013) Probiotic Bacteria in Cancer Patients Undergoing Chemotherapy and Radiation Therapy. Complementary Therapies in Medicine, 21, 712-723.
https://doi.org/10.1016/j.ctim.2013.08.018
[42] Reyna-Figueroa, J., Barron-Calvillo, E., Garcia-Parra, C., et al. (2019) Probiotic Supplementation Decreases Chemotherapy-Induced Gastrointestinal Side Effects in Patients with Acute Leukemia. Journal of Pediatric Hematology/Oncology, 41, 468-472.
https://doi.org/10.1097/MPH.0000000000001497
[43] Gerbitz, A., Schultz, M., Wilke, A., et al. (2004) Probiotic Effects on Experimental Graft-versus-Host Disease: Let Them Eat Yogurt. Blood, 103, 4365-4367.
https://doi.org/10.1182/blood-2003-11-3769
[44] Redman, M.-G., Ward, E.-J. and Phillips, R.-S. (2014) The Effi-cacy and Safety of Probiotics in People with Cancer: A Systematic Review. Annals of Oncology, 25, 1919-1929.
https://doi.org/10.1093/annonc/mdu106
[45] Evrensel, A. and Ceylan, M.-E. (2016) Fecal Microbiota Transplanta-tion and Its Usage in Neuropsychiatric Disorders. Clinical Psychopharmacology and Neuroscience, 14, 231-237.
https://doi.org/10.9758/cpn.2016.14.3.231
[46] Scher, J.-U., Ubeda, C., Artacho, A., et al. (2015) Decreased Bac-terial Diversity Characterizes the Altered Gut Microbiota in Patients with Psoriatic Arthritis, Resembling Dysbiosis in In-flammatory Bowel Disease. Arthritis & Rheumatology, 67, 128-139.
https://doi.org/10.1002/art.38892