赤铁矿纳米材料的合成方法及应用
Synthesis and Application of Hematite Nanomaterials
DOI: 10.12677/AAC.2023.132020, PDF, HTML, XML, 下载: 252  浏览: 445 
作者: 张 静, 谭小丽:华北电力大学环境科学与工程学院,北京
关键词: 赤铁矿环境应用制备Hematite Environmental Application Preparation
摘要: 赤铁矿因其热力学稳定、存在范围广、环境无害、催化特性突出而在各种氧化铁和(氧)氢氧化物中备受关注。赤铁矿纳米晶体在自然界中含量丰富,它们对元素和环境污染物的命运和转化的影响是深远的,在生物医学、太阳能电池、锂离子电池、环境修复等领域被广泛研究。因此,本文重点介绍了当前不同晶面和不同形态赤铁矿的合成方法与环境应用的最新进展。
Abstract: Hematite has attracted much attention in various iron oxides and hydroxides because of its thermodynamic stability, wide range of existence, environmental protection, and outstanding catalytic properties. Hematite nanocrystals are abundant in nature, and their influence on the fate and trans- formation of elements and environmental pollutants is profound, and they have been widely studied in biomedicine, solar cells, lithium-ion batteries, environmental remediation, and other fields. In this paper, the synthesis methods and environmental applications of hematite with different crystal faces and morphologies are introduced.
文章引用:张静, 谭小丽. 赤铁矿纳米材料的合成方法及应用[J]. 分析化学进展, 2023, 13(2): 164-170. https://doi.org/10.12677/AAC.2023.132020

1. 赤铁矿的作用与结构

铁无处不在,在地壳中自然丰富度排名第四。它是生物地球化学和地球化学过程的基本营养素和能量来源之一,如氧气输送,光合作用,呼吸作用和固氮作用,因此铁循环是自然界中最重要的循环之一 [1] 。氧化铁及它的(氧)氢氧化物种类繁多且分布范围广,特别是纳米级别的氧化铁,被认为基本上在自然界中无处不在。赤铁矿(α-Fe2O3)因其热力学稳定、赋存范围广、化学性质从对环境无害到催化特性突出而在各种氧化铁和(氧)氢氧化物中备受关注。例如,赤铁矿在生物医学、太阳能电池、锂离子电池、环境修复等领域被广泛研究 [2] 。

沉淀法、水热法和溶剂热法由于简单、收率高,被广泛应用于赤铁矿的合成 [3] [4] [5] 。由于关注角度的不同以及应用方向的差异,不同作用的赤铁矿被合成出来,本文将从不同暴露面以及不同形态的赤铁矿合成两个方面来综述。

2. 不同暴露面赤铁矿的合成

赤铁矿晶体具有菱面体结构,其中八面体空间的三分之二被铁阳离子占据。每个八面体与同一平面上的三个相邻八面体共享边,其中一个八面体与相邻平面上的另一个八面体共享一个边 [6] 。在这种情况下,独特的晶体结构特征可能导致赤铁矿的尺寸和形态具有不同的暴露面,如{001},{012},{110}和其他面。赤铁矿纳米晶体最常见的面是{001}、{012}和{110}面 [7] 。

2.1. {001}和{012}面合成

{001}面和{012}面都是是赤铁矿的基面,具有相对较低的表面能。迄今为止,已经开发了好几种方法来合成具有{001}外露面的赤铁矿纳米晶体 [8] 。Chen [9] 等以氯化铁、乙醇、醋酸钠和水为反应源制备六方赤铁矿。他们发现每个纳米板主要由{001}基面和{102}侧面组成,表明{001}是赤铁矿纳米板的主导表面积。{001}表面对醇的优先吸附影响了赤铁矿纳米板的生长,阻碍了沿{001}方向的生长。此外,水和醋酸钠的加入对赤铁矿纳米板的形貌有很大影响。增加醋酸钠的量将倾向于产生具有更大{001}暴露面的纳米晶体,因为醋酸钠的羧基似乎也强烈地结合到赤铁矿{001}面的铁阳离子上。欧阳 [10] 等人开发了一种通过调节溶液过饱和来控制赤铁矿纳米晶体形状的方法。他们以乙酰丙酮铁为铁前驱体,氢氧化钠、油酸、乙醇和水为反应剂,得到了具有{001}外露面的赤铁矿纳米板。他们认为,混合溶剂中含水量的增加可以降低铁阳离子的过饱和,从而有利于边界清晰的赤铁矿纳米板的生长。Sun [11] 等人在乙醇和丙三醇介质中,以十六烷基三甲基氯化铵(CTAC)为表面控制试剂(SCR),对Fe3+进行强制水解,可得到均匀片状形态的赤铁矿颗粒。选择电子衍射(SAED)表明,微孔板在沿菱形α-Fe2O3[001]带轴的电子束下为单晶结构。根据透射电镜观察,圆形微板的主要顶部和底部切面为(001)切面。

与{001}面的制备方法相似,水热法也被广泛应用在{012}面的制备上。Liang [12] 等人使用氯化铁、氢氧化钠、油酸、乙醇和水,得到了平均尺寸为20 nm的赤铁矿纳米立方体。这些赤铁矿纳米立方体的形状特征符合由{012}面包围的理想菱面体的几何模型。Wang [13] 等人还使用氯化铁、油酸钠、油酸、乙醇和水制备了具有{012}外露面的赤铁矿纳米立方体。他们认为铁(油酸)配合物的形成是第一步,然后铁(油酸)配合物分解形成核。在反应过程中,油酸和油酸钠在其中可以帮助核生长而不聚集,从而有利于形成均匀的平均尺寸为15 nm的赤铁矿纳米立方体。与{001}面的合成相比,主要体现在添加水的量的区别上。降低溶剂中含水量可增加Fe(III)的过饱和,有利于形成具有{012}外露面的赤铁矿纳米立方体。他们的策略提供了一种获得赤铁矿纳米立方体的有效而又简便的方法。Rasmita [14] 等人利用溶剂介导的沉淀路线,发现在含有较低浓度乙二醇的反应溶液中,倾向于形成相对稳定的面。通过将含有{012}面的伪立方体组装并进行二次生长,获得了面向{012}平面的赤铁矿纳米花。

2.2. {110}面合成

表达{110}面的赤铁矿纳米晶体的合成在地球化学、能源和环境科学中也经常被研究。带有这种表面的赤铁矿纳米晶体可以从氢氧化铁前体的煅烧中制备,利用这一事实,即在这一路线中,赤铁矿纳米晶体的形状强烈依赖于原始氢氧化铁前体的形状 [15] 。将棒状针铁矿前驱体在300℃的空气中热脱水1小时,可获得暴露出{001}和{110}面的赤铁矿纳米棒 [16] 。Vuong [17] 等人利用氯化铁和无机盐(如氯化铵、氯化钾和硫酸钠)水热法合成了纳米棒。然后,将前驱体热脱水得到赤铁矿纳米棒。这展示了一种获得带有{110}面暴露的赤铁矿纳米棒的途径。Zheng [18] 等人通过简便的溶剂热法成功地获得了由六个相同的{110}面包裹的准立方赤铁矿纳米晶体。他们以硝酸铁为铁前驱体,PVP为导向剂,N,N-二甲基甲酰胺(DMF)为溶剂。他们发现,准立方赤铁矿纳米晶体可以辅助初级纳米晶体定向附着形成,PVP可以控制最终形状。他们认为PVP可以稳定和分散赤铁矿纳米颗粒,并控制准立方结构的形成。

3. 不同形貌赤铁矿的合成

在过去的几十年里,尺寸和形态控制的赤铁矿纳米晶体的合成得到了广泛的研究,因为它们的物理和化学性质强烈地依赖于它们相应的体态。目前已成功合成了具有不同形态的赤铁矿纳米晶体和多种功能纳米结构,包括均匀纳米环、纳米棒、纳米管、六边形纳米板、纳米圆盘、纳米立方体、六边形双棱锥、多面体、花空心球、介孔空心微球等纳米结构 [19] [20] [21] 。

3.1. 液相合成法

液相合成法是一种基于溶液的方法,它是一种简单而又可以额外扩展的制备纳米结构的方法。Vayssieres [22] 等人通过水热法在氟掺杂氧化锡(FTO)导电的材料表面,生长出了多孔α-Fe2O3纳米棒阵列。溶胶–凝胶法是又一个简便实用的制取赤铁矿纳米结构的新技术。Zhang [23] 等人报道了通过溶胶–凝胶法在反胶束中进行溶胶–凝胶反应,然后在回流中结晶的α-Fe2O3纳米棒的生长,其尺寸非常小,只有7~24纳米。Pratishtha Kushwaha [24] 等人以硝酸铁Fe(NO3)3·9H2O为前驱体,乙二醇单乙烯醚为溶剂,采用溶胶–凝胶法制备了α-Fe2O3纳米颗粒。水热法与溶胶–凝胶法都属于液相合成法,他们的区别在于水热法的溶剂是水而溶胶凝胶法是胶体,上述方法证明,通过不同的液相介质能够达到对α-Fe2O3的形态调控。

3.2. 气相沉积法

气相沉积合成法可以细分为物理气相沉积、化学气相沉积、原子层沉积和反应溅射,被广泛应用在制备纳米材料和各种薄膜 [25] [26] 。通过这些细分的方法研究者们制备了纳米线、纳米棒阵列、纳米树枝状结构和薄膜等不同形态的α-Fe2O3 [27] [28] 。例如,Wu [29] 等人利用有机化学气相制备了垂直排列的数组α-Fe2O3纳米棒沉积生长在硅衬底,制备的α-Fe2O3纳米棒为单晶。此外,Zhang [30] 等人报道了利用化学气相沉积法制备了树枝状的赤铁矿纳米结构。所制备的树枝状α-Fe2O3纳米结构具有较大的比表面积和良好的表面接触,这是实现载流子转移的必要条件。对合理设计金属氧化物半导体以实现更高的太阳能转换效率具有启发意义。Martinson [31] 等则以二茂铁和臭氧为前驱体,通过原子层沉积获得了α-Fe2O3薄膜,在熔融石英和硅上生长的致密而坚固的薄膜显示出预期的光学带隙(2.1 eV),有良好的光学应用场景。

3.3. 燃烧裂解法

燃烧解法是合成纳米赤铁矿的重要途径。通过热氧化铁金属是获得赤铁矿最直接的方法 [32] 。采用不同的合成参数,如不同的退火温度和不一样的气氛,可以改变α-Fe2O3的外在形貌 [33] 。热解方法主要的应用在纳米薄膜 [34] ,Nyarige [35] 等通过热喷雾热解在FTO基底上制备了α-Fe2O3纳米颗粒(NPs)。以生物分子L -精氨酸为结构导向剂,采用化学浴沉积法,在90℃恒温48 h下,将α-Fe2O3纳米颗粒转化为纳米球,处理之后的赤铁矿比原始赤铁矿的电流密度有所提升。Mahmud Diab and Taleb Mokari [36] 的方法是将醋酸铁在基底上热分解,然后在空气中退火,以产生连续的α-Fe2O3介孔膜,并良好地控制孔的大小,这种直接的制备方法简单安全而且通用,后续对赤铁矿的改进变性如添加催化剂等也可以在膜上直接生长,相较于分别合成再整合到一起的方法,可以明显改善接触界面质量。。如Chemelewski [37] 在模拟太阳照射下,由纯Si和Fe在氧气环境中共蒸发合成的赤铁矿(α-Fe2O3)薄膜的光电化学水氧化性能,硅掺杂的赤铁矿光电电化学性能有明显提高,这种致密的连接性也是燃烧裂解法最大的优势。。

3.4. 电化学方法

电化学方法已广泛应用于电化学沉积和电化学阳极氧化制备纳米结构。经典的例子就是利用电化学沉积的方法将纳米棒阵列沉积到AAO模板上 [38] 。溶液中的氧化还原反应,让离子沉积到电池的阳极或者阴极表面,就得到了我们所需要的镀层。Mao [39] 等于阳极氧化铝(AAO)模板上用阴极电沉积法合为直α-Fe2O3纳米管纳米棒。Tempa [40] 等人本文报道了铁箔在含NH4F和去离子水的乙二醇电解质中恒电位阳极氧化制备α-Fe2O3 (赤铁矿)纳米管阵列。垂直方向的纳米管阵列提供了高度有序的高表面积材料结构,几乎是高效传输和分离光生电荷的理想选择。在不使用AAO模板的情况下,电化学沉积也可以形成具有良好性能的赤铁矿纳米颗粒薄膜。Meng [41] 等在他们的工作中,提出了阴极电化学沉积在铟锡氧化物(ITO)薄膜上制备可重复和均匀的赤铁矿(α-Fe2O3)纳米颗粒。相较于其他方法,电化学沉积的α-Fe2O3纳米颗粒具有良好的稳定性和结晶度。

4. 赤铁矿的应用

α-Fe2O3 (赤铁矿)的价带非常窄,大约只有约2.2 eV,可以作为良好的催化剂使用。因其成本低、稳定性好、天然丰度高,在锂离子电池、环境污染治理、气体传感器和医学等领域得到广泛应用而备受关注。Minglong等 [42] 研究了超声喷雾热解法制备的未掺杂、掺硅、掺杂钛的α-Fe2O3薄膜的光电化学性能,探究了赤铁矿作为光化学电池的潜能。除此之外,赤铁矿α-Fe2O3还是一种很有前途的光催化剂,在有机污染物的光催化降解中得到了广泛的研究 [43] 。Yan [44] 等人在高温下煅烧合成前驱体,再对前驱体进行处理得到α-Fe2O3纳米颗粒。在H2O2的存在下,表现出了良好的光催化活性,对亚甲基蓝有良好的降解效果。同时气敏测试结果表明,产物对乙醇和丙酮有良好的气体响应。同时,赤铁矿还可以作为气体传感器的原料。Silva [45] 等人报道了一种以赤铁矿(α-Fe2O3)微金刚石为原料,通过水热法合成的BTEX气体传感器。电测结果表明,赤铁矿和微赤铁矿对亚ppm级别的 BTEX水平敏感,最低检测水平为3  ppb,长期稳定时间为1个月。研究结果证明了赤铁矿作为传感材料制造BTEX气体传感器器件的潜力。Gyeong [46] 等报道了基于赤铁矿的新型生物传感平台的开发,酶促生物传感器能够检测葡萄糖、乙醇和乳酸,甚至成功检测了人体血浆中的葡萄糖,这表明了赤铁矿在医学上的实际用途。除此以外,赤铁矿还有很多其他的用途,比如其在地球化学中的循环,与亚铁的反应等,都决定了赤铁矿在环境中的重要地位。

5. 结论

本文简单回顾了赤铁矿纳米材料几个重要暴露面{001}、{012}、{110}的合成方法,主要通过表面控制试剂,如十六烷基三甲基氯化铵、水等控制晶面的生长方向,从而长成以某一个特定面为主要暴露面的赤铁矿。除此以外,又综述了不同形貌的赤铁矿的合成方法,主要包括液相合成法、气相沉积法、燃烧裂解法以及电化学等方法,其中液相合成法由于其简单易操作,通过改变变量的方法可以很容易得到不同形貌的赤铁矿而被广泛使用。制备得到的赤铁矿由于其带隙小,对可见光吸收极快产量丰富,成本低,化学稳定性好,在多个领域被广泛应用,如电池、环境治理、医学等。为后续开发定制的赤铁矿纳米晶体作为选择性污染物修复基质提供借鉴。

参考文献

[1] Jickells, T.D., An, Z.S., Andersen, K.K., et al. (2005) Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 308, 67-71.
https://doi.org/10.1126/science.1105959
[2] Taylor, K.G. and Konhauser, K.O.J.E. (2011) Iron in Earth Surface Systems: A Major Player in Chemical and Biological Processes. Elements, 7, 83-88.
https://doi.org/10.2113/gselements.7.2.83
[3] Schwertmann, U. and Cornell, R.M. (1991) Iron Oxides in the Laboratory: Preparation and Characterization. Wiley- VCH, Weinheim.
[4] Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, Weinheim.
https://doi.org/10.1002/3527602097
[5] He, K., Song, B., Zhan, L., et al. (2016) Size-Controlled Synthesis of Hematite Mesocrystals. CrystEngComm, 18, 754-758.
https://doi.org/10.1039/C5CE00849B
[6] Ling, D., Lee, N. and Hyeon, T. (2015) Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48, 1276-1285.
https://doi.org/10.1021/acs.accounts.5b00038
[7] Huang, X.P., Hou, X.J., Zhang, X., Rosso, K.M. and Zhang, L.Z. (2018) Facet-Dependent Contaminant Removal Properties of Hematite Nanocrystals and Their Environmental Implications. Environmental Science: Nano, 5, 1790- 1806.
https://doi.org/10.1039/C8EN00548F
[8] Liu, T., Xue, L., Guo, X., Huang, Y. and Zheng, C.G. (2016) DFT and Experimental Study on the Mechanism of Elemental Mercury Capture in the Presence of HCl on α-Fe2O3(001). Environmental Science & Technology, 50, 4863- 4868.
https://doi.org/10.1021/acs.est.5b06340
[9] Chen, L., Yang, X., Chen, J., et al. (2010) Continuous Shape- and Spectroscopy-Tuning of Hematite Nanocrystals. Inorganic Chemistry, 49, 8411-8420.
https://doi.org/10.1021/ic100919a
[10] Ouyang, J., Pei, J., Kuang, Q., Xie, Z.X. and Zheng, L.S. (2014) Supersaturation-Controlled Shape Evolution of α-Fe2O3 Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties. ACS Applied Materials & Interfaces, 6, 12505-12514.
https://doi.org/10.1021/am502358g
[11] Sun, L., Zhan, W., Li, Y.A., et al. (2018) Understanding the Facet-Dependent Catalytic Performance of Hematite Micro- crystals in a CO Oxidation Reaction. Inorganic Chemistry Frontiers, 5, 2332-2339.
https://doi.org/10.1039/C8QI00548F
[12] Liang, X., Wang, X., Zhuang, J., et al. (2006) Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials, 16, 1805-1813.
https://doi.org/10.1002/adfm.200500884
[13] Wang, J. and Rustad, J.R. (2006) A Simple Model for the Effect of Hydration on the Distribution of Ferrous Iron at Reduced Hematite (012) Surfaces. Geochimica et Cosmochimica Acta, 70, 5285-5292.
https://doi.org/10.1016/j.gca.2006.08.022
[14] Barik, R. and Mohapatra, M. (2015) Solvent Mediated Surface Engineering of α-Fe2O3 Nanomaterials: Facet Sensitive Energy Storage Materials. CrystEngComm, 17, 9203-9215.
https://doi.org/10.1039/C5CE01369K
[15] Zhou, X., Yang, H., Wang, C., et al. (2010) Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles. The Journal of Physical Chemistry C, 114, 17051-17061.
https://doi.org/10.1021/jp103816e
[16] Wu, C., Yin, P., Zhu, X., OuYang, C.Z. and Xie, Y. (2006) Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. The Journal of Physical Chemistry B, 110, 17806-17812.
https://doi.org/10.1021/jp0633906
[17] Vuong, D.D., Phuoc, L.H., Hien, V.X. and Chien, N.D. (2020) Hydrothermal Synthesis and Ethanol-Sensing Properties of α-Fe2O3 Hollow Nanospindles. Materials Science in Semiconductor Processing, 107, Article ID: 104861.
https://doi.org/10.1016/j.mssp.2019.104861
[18] Zheng, Y., Cheng, Y., Wang, Y., et al. (2006) Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance. The Journal of Physical Chemistry B, 110, 3093-3097.
https://doi.org/10.1021/jp056617q
[19] Zhou, H. and Wong, S.S. (2008) A Facile and Mild Synthesis of 1-D ZnO, CuO, and α-Fe2O3 Nanostructures and Nanostructured Arrays. ACS Nano, 2, 944-958.
https://doi.org/10.1021/nn700428x
[20] Kay, A., Cesar, I. and Grätzel, M. (2006) New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. Journal of the American Chemical Society, 128, 15714-15721.
https://doi.org/10.1021/ja064380l
[21] Huang, X.P., Hou, X.J., Zhao, J.C. and Zhang, L.Z. (2016) Hematite Facet Confined Ferrous Ions as High Efficient Fenton Catalysts to Degrade Organic Contaminants by Lowering H2O2 Decomposition Energetic Span. Applied Catalysis B: Environmental, 181, 127-137.
https://doi.org/10.1016/j.apcatb.2015.06.061
[22] Vayssieres, L., Beermann, N., Lindquist, S.E. and Hagfeldt, A. (2001) Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides. Chemistry of Materials, 13, 233-235.
https://doi.org/10.1021/cm001202x
[23] Zhang, R., Liu, D.B. and Yang, P.J.R.A. (2019) Morphology Control of α-Fe2O3 towards Super Electrochemistry Performance. RSC Advances, 9, 21947-21955.
https://doi.org/10.1039/C9RA01675A
[24] Kushwaha, P. and Chauhan, P. (2022) Influence of Annealing Temperature on Microstructural and Magnetic Properties of Fe2O3 Nanoparticles Synthesized via Sol-Gel Method. Inorganic and Nano-Metal Chemistry, 52, 937-950.
https://doi.org/10.1080/24701556.2021.2025108
[25] Li, Y., Xiang, J., Qian, F., et al. (2006) Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors. Nano Letters, 6, 1468-1473.
https://doi.org/10.1021/nl060849z
[26] Qian, F., Gradecak, S., Li, Y., Wen, C.Y. and Lieber, C.M. (2005) Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Letters, 5, 2287-2291.
https://doi.org/10.1021/nl051689e
[27] Atacan, K., Güy, N., Boutra, B. and Özacar, M. (2020) Enhancement of Photoelectrochemical Hydrogen Production by Using a Novel Ternary Ag2CrO4/GO/MnFe2O4 Photocatalyst. International Journal of Hydrogen Energy, 45, 17453- 17467.
https://doi.org/10.1016/j.ijhydene.2020.04.268
[28] Lin, Y., Zhou, S., Sheehan, S.W. and Wang, D.W. (2011) Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting. Journal of the American Chemical Society, 133, 2398-2401.
https://doi.org/10.1021/ja110741z
[29] Wu, J.J., Lee, Y.L., Chiang, H.H. and Wong, D.K.P. (2006) Growth and Magnetic Properties of Oriented α-Fe2O3 Nanorods. The Journal of Physical Chemistry B, 110, 18108-18111.
https://doi.org/10.1021/jp0644661
[30] Zhang, S., Gao, B. and Leng, W. (2023) Kinetic Difference in Water Photooxidation between TiO2 and WO3 Electrodes by Rate Law Analysis. ACS Applied Energy Materials, 6, 1973-1981.
https://doi.org/10.1021/acsaem.2c03895
[31] Martinson, A.B.F., Devries, M.J., Libera, J.A., et al. (2011) Atomic Layer Deposition of Fe2O3 Using Ferrocene and Ozone. The Journal of Physical Chemistry C, 115, 4333-4339.
https://doi.org/10.1021/jp110203x
[32] Rao, P.M. and Zheng, X. (2009) Rapid Catalyst-Free Flame Synthesis of Dense, Aligned α-Fe2O3 Nanoflake and CuO Nanoneedle Arrays. Nano Letters, 9, 3001-3006.
https://doi.org/10.1021/nl901426t
[33] Maabong, K., Machatine, A.G.J., Mwankemwa, B.S., et al. (2018) Nanostructured Hematite Thin Films for Photoelectrochemical Water Splitting. Physica B: Condensed Matter, 535, 67-71.
https://doi.org/10.1016/j.physb.2017.06.054
[34] Perednis, D. and Gauckler, L.J. (2005) Thin Film Deposition Using Spray Pyrolysis. Journal of Electroceramics, 14, 103-111.
https://doi.org/10.1007/s10832-005-0870-x
[35] Nyarige, J.S., Krüger, T.P.J. and Diale, M. (2020) Structural and Optical Properties of Hematite and L-Arginine/He- matite Nanostructures Prepared by Thermal Spray Pyrolysis. Surfaces and Interfaces, 18, Article ID: 100394.
https://doi.org/10.1016/j.surfin.2019.100394
[36] Diab, M. and Mokari, T. (2014) Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation. Inorganic Chemistry, 53, 2304-2309.
https://doi.org/10.1021/ic403027r
[37] Chemelewski, W.D., Hahn, N.T. and Mullins, C.B. (2012) Effect of Si Doping and Porosity on Hematite’s (α-Fe2O3) Photoelectrochemical Water Oxidation Performance. The Journal of Physical Chemistry C, 116, 5255-5261.
https://doi.org/10.1021/jp210877u
[38] Zhang, K., Shi, X., Kim, J.K., Lee, J.S. and Park, J.H. (2013) Inverse Opal Structured α-Fe2O3 on Graphene Thin Films: Enhanced Photo-Assisted Water Splitting. Nanoscale, 5, 1939-1944.
https://doi.org/10.1039/c2nr33036a
[39] Mao, A., Shin, K., Kim, J.K., et al. (2011) Controlled Synthesis of Vertically Aligned Hematite on Conducting Substrate for Photoelectrochemical Cells: Nanorods versus Nanotubes. ACS Applied Materials & Interfaces, 3, 1852-1858.
https://doi.org/10.1021/am200407t
[40] Latempa, T.J., Feng, X., Paulose, M. and Grimes, C.A. (2009) Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties. The Journal of Physical Chemistry C, 113, 16293-16298.
https://doi.org/10.1021/jp904560n
[41] Meng, Q., Wang, Z., Chai, X., et al. (2016) Fabrication of Hematite (α-Fe2O3) Nanoparticles Using Electrochemical Deposition. Applied Surface Science, 368, 303-308.
https://doi.org/10.1016/j.apsusc.2016.02.007
[42] Zhang, M.L., Luo, W.J., Li, Z.S., Yu, T. and Zou, Z.G. (2010) Improved Photoelectrochemical Responses of Si and Ti Codoped α-Fe2O3 Photoanode Films. Applied Physics Letters, 97, Article 042105.
https://doi.org/10.1063/1.3470109
[43] Hitam, C.N.C. and Jalil, A.A. (2020) A Review on Exploration of Fe2O3 Photocatalyst towards Degradation of Dyes and Organic Contaminants. Journal of Environmental Management, 258, Article ID: 110050.
https://doi.org/10.1016/j.jenvman.2019.110050
[44] Yan, H., Su, X., Yang, C., Wang, J.D. and Niu, C.G. (2014) Improved Photocatalytic and Gas Sensing Properties of α-Fe2O3 Nanoparticles Derived from β-FeOOH Nanospindles. Ceramics International, 40, 1729-1733.
[45]
https://doi.org/10.1016/j.ceramint.2013.07.070
[46] Da Silva, L.F., Catto, A.C., Bernardini, S., et al. (2021) BTEX Gas Sensor Based on Hematite Microrhombuses. Sensors and Actuators B: Chemical, 326, Article ID: 128817.
https://doi.org/10.1016/j.snb.2020.128817
[47] Ryu, G.M., Lee, M., Choi, D.S. and Park, C.B. (2015) A Hematite-Based Photoelectrochemical Platform for Visible Light-Induced Biosensing. Journal of Materials Chemistry B, 3, 4483-4486.
https://doi.org/10.1039/C5TB00478K