应用荧光法快速检测土霉素含量
Rapid Detection of Oxytetracycline Content by Fluorescence Method
DOI: 10.12677/AAC.2023.132015, PDF, HTML, XML, 下载: 219  浏览: 463  科研立项经费支持
作者: 王 瑞, 郑露莹, 胡 博, 毛正旭:沈阳师范大学化学化工学院,辽宁 沈阳
关键词: 快速检测土霉素荧光光谱Rapid Detection Oxytetracycline Fluorescence Spectrum
摘要: 抗生素是药剂学中使用最广泛的药物类型之一。然而,由于抗生素耐药性的威胁,这些药物的效率最近有所下降。导致抗生素耐药性的重要因素之一是动物过度使用抗菌剂。因此,检测动物源性食品中的抗生素至关重要。本文将四苯基-1,3-丁二烯制成荧光探针,探究抗生素对固体TPB的猝灭效果。结果表明,土霉素对TPB高度猝灭;体系荧光强度与土霉素浓度成反比,且在浓度高于0.005 mol∙L−1时,荧光猝灭效应明显;四氢呋喃水溶液和正己烷水溶液体系下,土霉素对TPB高度猝灭;酸性和中性条件下,土霉素猝灭效果较好。因此,可以将此技术应用于快速检测土霉素,从而建立了定量抗生素测定的巨大潜力。
Abstract: Antibiotics are one of the most widely used drugs in pharmaceutics. However, due to the threat of antibiotic resistance, the efficiency of these drugs has recently declined. One of the important factors leading to antibiotic resistance is the excessive use of antibiotics in animals. Therefore, the detection of antibiotics in animal-derived foods is very important. In this paper, tetraphenyl-1,3- butadiene was used as a fluorescent probe to investigate the quenching effect of antibiotics on solid TPB. The results showed that oxytetracycline highly quenched TPB; The fluorescence intensity of the system is inversely proportional to the concentration of oxytetracycline, and the fluorescence quenching effect is obvious when the concentration is higher than 0.005 mol∙L−1; In the system of tetrahydrofuran aqueous solution and n-hexane aqueous solution, oxytetracycline highly quenched TPB; Under acidic and neutral conditions, oxytetracycline has better quenching effect. Therefore, this technology can be applied to the rapid detection of oxytetracycline, thus establishing a huge potential for quantitative antibiotic determination.
文章引用:王瑞, 郑露莹, 胡博, 毛正旭. 应用荧光法快速检测土霉素含量[J]. 分析化学进展, 2023, 13(2): 127-133. https://doi.org/10.12677/AAC.2023.132015

1. 引言

抗生素可以说是医学化疗治疗中最成功的一种形式,它是指由微生物或高等动植物在生活过程中产生的一类能干扰其他细胞代谢发育功能的物质,具有杀菌消炎的作用,在临床上多用于治疗感染类疾病,多年来已经拯救过数百万数千万人的性命,解决了人类历史上许多不可控制的传染病难题 [1] 。然而,抗生素的广泛应用也会导致不良的生物过程,包括解码遗传信息、蛋白质合成、过敏反应和某些感染的风险,如内分泌紊乱等。四环素类抗生素、喹诺酮类抗生素、磺胺类抗生素对各种革兰氏阳性菌和革兰氏阴性菌 [2] 引起的感染均有较好的疗效。这些残留抗生素仍然保持其生物活性,并可能造成严重的环境问题,如水生生物和陆生动物的破坏和细菌耐药性的增加 [3] [4] [5] 。因此,有选择地、方便地识别四环素类、喹诺酮类、磺胺类抗生素是保护环境可持续性和人类健康的重要任务 [6] [7] 。

常用的常规方法用于抗生素残留分析耗时长、非特异性、灵敏度差、复杂,需要技术人员 [8] 。因此,需要定期筛选,以确保对食品的卓越性和安全性进行敏感、简单、经济、准确的评估。与其他检测技术相比,荧光传感技术具有成本低、灵敏度高、选择性好等特点,在过去几十年受到越来越多的关注 [9] [10] 。

与传统的荧光染料相比,基于聚集诱导发光(Aggregation-induced emission, AIE) [11] - [16] 的荧光分子具有优异的光稳定性,具有最小的聚集致猝灭效应。与传统的聚集诱导猝灭类型荧光探针相比,具有AIE性质的物质在聚集状态或者固体薄膜中发光明显,它的发现为这些有用的发光材料的发展提供了一个极好的平台,因此受到了人们的广泛关注 [17] ,在光学、电子学到能源和生物科学都有着广泛的应用。而四苯基-1,3-丁二烯(TPB)作为AIE的典型代表,具有独特的双螺旋结构,由于其构象敏感性,TPB可以通过改变发射波长来灵敏地探测一些弱相互作用。TPB有望成为AIE研究领域的一颗新星 [18] 。本文将其制成荧光探针,与不同抗生素作用后,体现出对土霉素的特异性识别,在此基础上,本文进一步探究了不同环境条件下对土霉素猝灭固体TPB的影响。不断发展和应用荧光传感技术已经成为一个热门的研究领域。这种新的分析手段可以在改善残留抗生素对人类健康和生态系统的负面影响方面发挥重要作用。

2. 实验部分

2.1. 试剂和方法

盐酸四环素(Shanghai Aladdin Biochemical Technology Co., Ltd.)、土霉素(Shanghai Titan Scientific Co., Ltd.)、盐酸金霉素、强力霉素、盐酸左氧氟沙星、氧氟沙星、盐酸洛美沙星、磺胺-5-甲氧嘧啶、磺胺嘧啶厂家均为Shanghai Macklin Biochemical Co., Ltd.,以上抗生素纯度均≥98%,四苯基-1,3-丁二烯(>99.0%,梯希爱(上海)化成工业发展有限公司)等。

F-7100荧光光谱仪(固体) (日本,日立)、UH-5300紫外光谱仪(日本,日立)、Cary Eclipse荧光分光光度计(美国,Varian)等。

2.2. 方法

称量一定量的TPB固体,配制成0.0005 mol∙L−1的TPB储备液。另称取一定质量的抗生素,配制成0.01 mol∙L−1的悬浮液。光谱扫描范围为380~600 nm,狭缝宽度为5 nm。

3. 结果与讨论

3.1. 机理解释

图1(a),图1(b)可以看出,四环素类抗生素和TPB的荧光光谱重叠范围较大,满足内滤作用 [19] ,由于吸收体的吸光度变化可以转化为荧光体荧光信号的指数型变化,从而增强了分析检测的灵敏度 [20] [21] 。

Figure 1. (a) Solid fluorescence emission spectrum of TPB; (b) UV-visible absorption diffuse reflection spectrum of different antibiotics

图1. (a) TPB的固体荧光发射光谱图;(b) 不同种类抗生素紫外–可见吸收漫反射光谱图

3.2. TPB结构和性质

图2为TPB的化学结构式,TPB的斯托克斯位移计算为60 nm。斯托克斯位移被认为可有效减少样品自发荧光干扰导致的检测误差以及荧光灯和激发光之间的光谱重叠。因此,预计TPB适合用作荧光探针,灵敏度和准确度高。

图3,对TPB材料进行了粉末X-射线衍射测试,该化合物显示出较好的峰形,证明该化合物为纯相。

Figure 2. Chemical structural formula of TPB

图2.TPB的化学结构式

Figure 3. XRD spectrum of solid TPB

图3. 固体TPB的XRD谱图

3.3. 抗生素猝灭TPB

为研究抗生素对TPB荧光强度的影响,本文将盐酸四环素(Tetracycline, TC)、盐酸金霉素(Chlortetracycline, CTC)、土霉素(Oxytetracycline, OTC)、强力霉素(Deoxytetracycline, DOX)、盐酸左氧氟沙星(LVX, Levofloxacin hydrochloride)、氧氟沙星(OFL, Ofloxacin)、盐酸洛美沙星(LOM, Lomefloxacin hydrochloride)、磺胺-5-甲氧嘧啶(SMD, Sulfa-5-methoxypyrimidine)、磺胺嘧啶(SD, Sulfadiazine)按上述方法配制进行荧光测试。

结果如图4所示,在TC、CTC、OTC、DOX作用下,荧光强度显著降低,猝灭效应明显,而LVX、OFL、LOM作用后,荧光强度均有变化,且波长有明显的红移,而SMD、SD作用后,荧光强度升高,增幅明显。

Figure 4. Fluorescence spectra of TPB quenched by different antibiotics

图4. 不同抗生素猝灭TPB的荧光光谱图

3.4. 溶剂效应

为探究溶剂种类对土霉素猝灭TPB的影响程度,本实验分别配制等量TPB的醋酸溶液、四氢呋喃溶液、乙醇溶液、乙腈溶液、正己烷溶液,进而按上述配制方法配制后进行荧光检测,检测结果如下图5。结果表明,在四氢呋喃水溶液和正己烷水溶剂环境下,土霉素对固体TPB的猝灭效果较好,而在冰醋酸水溶液、乙腈水溶液、乙醇水溶液环境下,土霉素对固体TPB的猝灭效果较差,但荧光强度峰值对应的波长均没有明显的红移或蓝移。因此,采用四氢呋喃水溶液体系进行土霉素猝灭TPB的探究实验较为适宜。

Figure 5. Fluorescence spectra of oxytetracycline quenching TPB affected by different solvents

图5. 不同种类溶剂影响土霉素猝灭TPB的荧光光谱图

3.5. 浓度效应

本实验配制不同浓度的土霉素溶液进行荧光检测,测试并记录数据。结果如图6所示,发现体系荧光强度与土霉素浓度成反比,即土霉素浓度的下降使体系荧光强度升高,且变化幅度愈来愈大。在土霉素浓度高于0.005 mol∙L−1时,荧光猝灭效应明显。

Figure 6. Fluorescence spectra of oxytetracycline solutions with different concentrations

图6. 不同浓度土霉素溶液后的荧光光谱图

3.6. pH效应

不同pH值水平的抗生素可以是中性的、离子的或两性离子的。由于其在分子内的不同分子功能,其物理、化学和生物特性,如能量测定、容量测定、吸收特性、光合活性、抗生素活性和毒性等都可能随着pH值的变化而改变。因此,本实验以土霉素为例进一步探究了pH对抗生素猝灭TPB的影响,本文配制了pH为1、4、5、7、8、9、12的土霉素溶液,测试并记录数据。结果如图7所示,发现在酸性和中性条件下,土霉素猝灭固体TPB的效果较好。随着pH的增加,荧光猝灭效果愈差,在弱碱性条件下,变化幅度较小,在强碱性条件下,猝灭效果显著下降。说明在土霉素的检测和定量上,应采用酸性和中性的条件较适宜。

Figure 7. Fluorescence spectra of oxytetracycline solution under different pH

图7. 不同pH土霉素溶液后的荧光光谱图

4. 结论

本文利用荧光检测技术在四氢呋喃水溶液中探究四环素类、喹诺酮类、磺胺类抗生素对TPB固体的猝灭效应;土霉素对TPB高度猝灭,而喹诺酮类和磺胺类抗生素猝灭效果较差;体系荧光强度与土霉素浓度成反比,且在浓度高于0.005 mol∙L−1时,荧光猝灭效应明显;四氢呋喃水溶液和正己烷水溶液体系下,土霉素对固体TPB高度猝灭;酸性和中性条件为适宜条件。

基金项目

国家级大学生创新创业训练计划资助项目(202210166012),沈阳师范大学大学生创新创业训练计划资助项目(X202210166247)资助。

参考文献

[1] Aminov, R.I. (2009) The Role of Antibiotics and Antibiotic Resistance in Nature. Environmental Microbiology, 11, 2970-2988.
https://doi.org/10.1111/j.1462-2920.2009.01972.x
[2] Li, S. and Hu, J. (2016) Photolytic and Photocatalytic Degradation of Tetracycline: Effect of Humic Acid on Degradation Kinetics and Mechanisms. Journal of Hazardous Materials, 318, 134-144.
https://doi.org/10.1016/j.jhazmat.2016.05.100
[3] Gothwal, R. and Shashidhar, T. (2015) Antibiotic Pollution in the Environment: A Review. Clean—Soil, Air, Water, 43, 479-489.
https://doi.org/10.1002/clen.201300989
[4] Trovo, A.G., Nogueira, R.F.P., Agüera, A., et al. (2011) Degradation of the Antibiotic Amoxicillin by Photo-Fenton Process—Chemical and Toxicological Assessment. Water Research, 45, 1394-1402.
https://doi.org/10.1016/j.watres.2010.10.029
[5] Li, S., Shi, W., Li, H., et al. (2018) Antibiotics in Water and Sediments of Rivers and Coastal Area of Zhuhai City, Pearl River Estuary, South China. Science of the Total Environment, 636, 1009-1019.
https://doi.org/10.1016/j.scitotenv.2018.04.358
[6] Li, S. and Hu, J. (2018) Transformation Products Formation of Ciprofloxacin in UVA/LED and UVA/LED/TiO2 Systems: Impact of Natural Organic Matter Characteristics. Water Research, 132, 320-330.
https://doi.org/10.1016/j.watres.2017.12.065
[7] Li, S., Huang, T., Du, P., et al. (2020) Photocatalytic Transformation Fate and Toxicity of Ciprofloxacin Related to Dissociation Species: Experimental and Theoretical Evidences. Water Research, 185, Article ID: 116286.
https://doi.org/10.1016/j.watres.2020.116286
[8] Huang, Y., Chen, J., Duan, Q., et al. (2022) A Fast Antibiotic Detection Method for Simplified Pretreatment through Spectra-Based Machine Learning. Frontiers of Environmental Science & Engineering, 16, Article No. 38.
https://doi.org/10.1007/s11783-021-1472-9
[9] Li, C., Yang, W., Zhang, X., et al. (2020) A 3D Hierarchical Dual-Metal-Organic Framework Heterostructure Up- Regulating the Pre-Concentration Effect for Ultrasensitive Fluorescence Detection of Tetracycline Antibiotics. Journal of Materials Chemistry C, 8, 2054-2064.
https://doi.org/10.1039/C9TC05941E
[10] Wan, Y., Cui, Y., Yang, Y., et al. (2021) Nonlinear Optical Metal-Organic Frameworks for Ratiometric Temperature Sensing in Physiological Range. Chinese Chemical Letters, 32, 1511-1514.
https://doi.org/10.1016/j.cclet.2020.10.015
[11] Ding, D., Li, K., Liu, B., et al. (2013) Bioprobes Based on AIE Fluorogens. Accounts of Chemical Research, 46, 2441- 2453.
https://doi.org/10.1021/ar3003464
[12] Würthner, F. (2020) Aggregation-Induced Emission (AIE): A Historical Perspective. Angewandte Chemie International Edition, 59, 14192-14196.
https://doi.org/10.1002/anie.202007525
[13] Hu, R., Qin, A. and Tang, B.Z. (2020) AIE Polymers: Synthesis and Applications. Progress in Polymer Science, 100, Article ID: 101176.
https://doi.org/10.1016/j.progpolymsci.2019.101176
[14] Niu, G., Zhang, R., Shi, X., et al. (2020) AIE Luminogens as Fluorescent Bioprobes. TrAC Trends in Analytical Chemistry, 123, Article ID: 115769.
https://doi.org/10.1016/j.trac.2019.115769
[15] Wang, H., Zhao, E., Lam, J.W.Y., et al. (2015) AIE Luminogens: Emission Brightened by Aggregation. Materials Today, 18, 365-377.
https://doi.org/10.1016/j.mattod.2015.03.004
[16] Liu, H., Xiong, L.H., Kwok, R.T.K., et al. (2020) AIE Bioconjugates for Biomedical Applications. Advanced Optical Materials, 8, Article ID: 2000162.
https://doi.org/10.1002/adom.202000162
[17] He, Z., Ke, C. and Tang, B.Z. (2018) Journey of Aggregation-Induced Emission Research. ACS Omega, 3, 3267-3277.
https://doi.org/10.1021/acsomega.8b00062
[18] Zhang, Y., Xu, H., Xu, W., et al. (2019) Conformational Sensitivity of Tetraphenyl-1,3-Butadiene Derivatives with Aggregation-Induced Emission Characteristics. Science China Chemistry, 62, 1393-1397.
https://doi.org/10.1007/s11426-019-9576-7
[19] Panigrahi, S.K. and Mishra, A.K. (2019) Inner Filter Effect in Fluorescence Spectroscopy: As a Problem and as a Solution. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 41, Article ID: 100318.
https://doi.org/10.1016/j.jphotochemrev.2019.100318
[20] Chen, S., Yu, Y.L. and Wang, J.H. (2018) Inner Filter Effect-Based Fluorescent Sensing Systems: A Review. Analytica Chimica Acta, 999, 13-26.
https://doi.org/10.1016/j.aca.2017.10.026
[21] Zhang, J., Zhou, R., Tang, D., et al. (2019) Optically-Active Nanocrystals for Inner Filter Effect-Based Fluorescence Sensing: Achieving Better Spectral Overlap. TrAC Trends in Analytical Chemistry, 110, 183-190.
https://doi.org/10.1016/j.trac.2018.11.002