lncRNA在急性胰腺炎相关研究中的进展
Progress of lncRNA in Research Related to Acute Pancreatitis
DOI: 10.12677/ACM.2023.132297, PDF, HTML, XML, 下载: 375  浏览: 571 
作者: 卡米江·亚森:新疆医科大学研究生学院,新疆 乌鲁木齐 ;朱功兵*, 阿尔帕提·买买提:新疆医科大学第一附属医院急救创伤中心,新疆 乌鲁木齐
关键词: 急性胰腺炎lncRNAAcute Pancreatitis lncRNA
摘要: 急性胰腺炎(AP)是临床中常见的急症,可导致多脏器损害甚至衰竭。急性发作期死亡率高,炎症介质惹起的全身炎症反响是AP高死亡率的主要缘由。目前已有报道在急性胰腺炎中表达长链非编码RNA (LncRNA),对AP的早期诊断和治疗具有重要的潜在临床意义。本文将综合分析和讨论急性胰腺炎的相关lncRNA研究报告。
Abstract: Acute pancreatitis (AP) is a common clinical acute abdomen, which can lead to multi-organ damage and even failure, high mortality in acute attacks, and systemic inflammatory response caused by in-flammatory mediators is the main reason for the high mortality rate of the disease, so early diagno-sis and early intervention of AP treatment targets are urgently needed. At present, the expression of long non-coding RNA (LncRNA) in acute pancreatitis has been reported, which has important po-tential clinical significance for early diagnosis and treatment intervention of AP. This review will comprehensively analyze and discuss the relevant lncRNA research reports in acute pancreatitis.
文章引用:卡米江·亚森, 朱功兵, 阿尔帕提·买买提. lncRNA在急性胰腺炎相关研究中的进展[J]. 临床医学进展, 2023, 13(2): 2125-2130. https://doi.org/10.12677/ACM.2023.132297

1. 引言

急性胰腺炎(Acute pancreatitis, AP)是一种常见的急腹症。该病发展迅速,临床症状明显。容易使败血症复杂化,甚至导致死亡 [1] 。造成AP的主要病因有胆石症、暴饮暴食过量酗酒、高脂血症、内镜下逆行胆胰管造影术(Endoscopic retrograde cholangio-pancreatography, ERCP)及相关药物所引起的病理细胞通路和重要细胞器功能的障碍,并引起胰胰酶激活进一步导致全身性炎症反应综合征 [2] [3] [4] 。AP中的多种致病因子造成胰腺腺泡细胞的损伤,招致胰酶的释放和单个核细胞。巨噬细胞被激活,代谢产物进一步刺激中性粒细胞产生大量细胞因子,从而引发细胞因子等炎症介质的瀑布反应,形成全身性炎症反应综合征和多器官功能障碍综合征,包括白细胞介素(interleukin, IL) 6、肿瘤坏死因子(tumor necrosis factor, TNF)。白细胞介素-10 (interleukin-10, IL-10)和C反应蛋白(C-reactive protein, CRP)起主要作用。

目前AP发病机制有多种学说

胰酶消化学说:正常情况下,消化酶和溶酶体水解酶在胰腺腺泡细胞中的粗面内质网合成后被高尔基体分离,分别形成消化酶颗粒以及溶酶体。研究胰腺炎的动物模型中可以证实,消化酶和溶酶体水解酶的转运过程受损,细胞内吞噬小泡中同时出现两类酶 [5] 。白细胞过度活化–炎性因子理论:胰腺中的单核巨噬细胞被活性状态的胰酶可刺激,损坏胰腺腺泡产生大量的炎性介质和细胞因子,使白细胞过度激活炎性因子级联瀑布效应,最终导致患者全身炎症反应综合征 [6] 。此外还有氧化应激理论:AP中对胰腺损伤起重要作用物质,如有氧自由基及其衍生物;肠道细菌易位理论:当肠道常驻菌群在AP时,其肠道屏障功能减弱,肠道蠕动功能失衡,发生菌群移位,进一步加重炎症反应;胰腺腺泡内钙超载理论:胰腺腺泡细胞受损,导致钙通道异常开放,在电化学驱动力作用下改变细胞膜两侧钙浓度,使胰腺腺泡内钙浓度升高;胰腺微循环障碍的理论:早期AP常有微循环障碍的表现,如毛细血管缺血、充血、通透性增加、微血栓形成。其次,胰腺的小叶内动脉是一种终末动脉,这一解剖特征决定了这些终末动脉引解剖特异性在病变时发生痉挛、栓塞或受压迫,在神经支配区容易发生缺血坏死。

2. 现阶段对lncRNA认识

在人类基因组中编码蛋白质的序列少于2%。大约排除7%的非转录区,剩余91%的基因组序列可被转录用以产生非编码RNA (non-coding RNA, ncRNA) [7] 。除了知名的管家ncRNA(管家ncRNA),例tRNA和rRNA参与蛋白质翻译以及snRNA参与RNA剪接的外,目前对ncRNA的研究主要倾向在调节小分子ncRNA (如miRNA、endo-siRNA和piRNA)、中等长度的ncRNA (70~200 nt)和长链非编码RNA(长链非编码RNA,lncRNA,>200 nt)。对lncRNA的研究在国内国外皆处于起始阶段。现有研究表明,人类各种重大疾病的发生发展的机制与lncRNA的表达失控密切相关 [8] [9] [10] [11] ;研究已证实lncRNA在调控细胞活动、决定细胞凋亡方面发挥作用,进而保证生物体生殖、生长、发育等生命活动的正常进行,当lncRNA受环境或遗传因素干扰,其自身表达水平或表达产物结构发生变化时,其正常功能的发挥将受到进一步限制 [11] ,表明IncRNA在生命活动中具有重要的调节机制。对lncRNA及其相关疾病的深入研究,将在理论和临床实践中促进人们对系列疾病的认识和诊治。

3. 急性胰腺炎中相关lncRNA的研究成果

国内外许多研究表明,lncRNA在急性胰腺炎中起着重要的调节作用,并发现了lncRNA的多种机制。LncRNA H19对大鼠胰腺腺泡细胞AR42J细胞凋亡的影响长非编码RNA H19调节重症急性胰腺炎大鼠骨髓间充质干细胞的治疗作用Lnc RNA TCONS_00021785降低胰蛋白酶原的活化,促进胰腺腺泡细胞的恢复;lncRNA-PVT1促进自噬加重重症急性胰腺炎 [12] 。急性胰腺炎患者血清LncRNA-HOTAIR表达及临床意义

3.1. 长非编码RNA H19对AR42J细胞凋亡调节

LncRNA H19是印迹母体表达的转录本,是目前较少的特征良好的LncRNA之一。H19的非正常表达与很多疾病有密切关联,炎症期在相关疾病中H19的表达水平往往会较高 [13] 。王等 [14] 发现类风湿关节炎患者滑膜组织中H19的高表达,磷脂酰肌醇3激酶(P13K)可以调节H19的水平,从而降低滑膜细胞的增殖、凋亡。在乳腺癌中,下调H19还可以抑制参与细胞周期调控的p53的表达 [15] 。一些研究 [16] 用雨蛙素刺激的建立了体外AP模型。与空白对照组相比,雨蛙素刺激24 h后H19的表达增加。提示H19可能参与并调节胰腺腺泡细胞的凋亡。本研究初步探讨hl-crna H19调控胰腺腺泡细胞凋亡的分子机制。今后可进一步研究H19的靶基因,并进一步探讨H19在腺泡细胞凋亡中的具体机制,从而为临床诊断和治疗AP提供一定的理论依据。

3.2. 长非编码RNA H19调节骨髓间充质干细胞的疗效

鉴于目前SAP的治疗策略,探索更有效的治疗方法势在必行。研究证明骨髓间充质干细胞移植可通过抑制自噬成功缓解重症急性胰腺炎 [17] ,并证实Wnt/β-catenin信号通路增加细胞增殖和分化 [18] 。因此,过表达的LncRNA H19可能通过该途径促进SAP中胰腺腺泡细胞的增殖。lncRNAs的功能与其在细胞中的定位密切相关 [19] 。在以下情况下,LncRNAs可以作为竞争性内源RNA发挥作用。当胰腺严重受损时,AP甚至SAP可能会损害身体,导致过度的自体同源免疫和抑制细胞增殖。间充质干细胞(mesenchymal stem cells, MSCs)是一类起源于早期中胚层,并且能够自我更新和具有多向分化潜能的成体干细胞。大量的研究证明,MSCs在再生医学领域中具有巨大潜力,未来可被用于治疗多种类型疾病,如脊髓损伤、肝损伤、肾损伤及自身免疫性疾病等 [20] 。近些年随着国内外MSCs在SAP方面深入研究,已证实骨髓间充质干细胞可用于缓解SAP [21] ,LncRNA H19可显著增强其治疗效果。在MSC处理过程中,上调LncRNA H19可以作为miRNA海绵的吸附rno-miR-138-5p和rno-miR-141-3p,促进PTK2和β-catenin的表达,从而增加FAK/PDK1/AKT/mTOR信号,抑制自噬,促进细胞增殖。因此,LncRNA H19可能会为我们提供一种新的策略,以便将来使用MSC来治疗SAP。

3.3. lncRNA TCONS_00021785促进胰腺腺泡细胞的恢复

Mareninova等人已经证实,不是自噬的过度激活而是自噬功能的破坏导致了腺泡细胞的空泡化和酶原激活 [20] 。事实上,酶原激活发生在自噬之前 [21] 。酶激活启动自噬作为细胞防御机制。有效的自噬可清除活化的酶原,对维持细胞内稳态和胰腺外分泌功能有重要作用 [22] 。最近的研究发现,在腺泡细胞损伤的早期阶段,malignant-VMP1小鼠的AP模型中的胰酶激活显著降低 [23] ;这是一种新发现的选择性自噬类型,称为吞噬作用。一些研究为调节吞噬作用的分子机制提供了一些答案,从而导致另一条Smad信号通路的激活实现了肠道损伤。一项研究表明 [24] ,当AP发生时,身体会激活吞噬作用来修复受损的胰腺。这有助于促进AP自我修复并避免恶化。当腺泡细胞被外部刺激破坏时,lncRNA TCONS_00021785可以竞争性地结合miR-21-5p上调的trim33。Trim33作为E3连接酶,可以泛素化激活的酶原,从而启动吞噬作用。Trim33作为转录介质,可以调节VMP1的表达和吞噬作用。

3.4. LncRNA-PVT1促进自噬加重重症急性胰腺炎

LncRNA通过多种功能参与基因表达调控,包括组蛋白修饰、转录因子募集和miRNA内源性竞争 [25] 。先前的研究表明,lncRNA plas-macytoma变体易位1 (lncRNA-PVT1)可以通过影响细胞增殖,凋亡,迁移和侵袭来促进各种癌症的发生和发展 [26] 。此外,lncRNA-PVT1可以通过调节各种信号通路和生物过程来影响自噬 [27] 。因此,lncRNA-PVT1可能参与SAP腺泡细胞的自噬过程。在此过程中,lncRNA-PVT1水平显着上调,并且可以靶向miR-30a-5p/Beclin-1-mediated自噬信号通路。此外,STC诱导的胰腺腺泡细胞损伤和自噬激活通过shrna在体外lncRNA-PVT1中的下调被消除。此外,我们证实ln crna-PV t1/miR-30a-5p/be clin-1轴在SAP大鼠胰腺中诱导了异常的自噬 [28] 。综上所述,ln crna-PV t1/miR-30a-5p/Bec-Lin-1轴有望成为胰腺腺泡细胞损伤的治疗靶点,对SAP病理有非常重要的影响。

3.5. lncRNA-EPS通过NF-xB信号通路触发炎症反应

Incrna在健康和病理条件下在细胞或器官中差异表达,这意味着它们可能具有重要的生物学功能。在一项研究中 [29] ,研究人员分析了Cer-AP期间胰腺中所有转录本的表达谱,并确定了lincRNA-EPS与AP相关的典型炎症基因之间的负相关。lincRNA-EPS最初被鉴定为具有抗凋亡活性的红细胞特异性IncRNA,这是红细胞分化所必需的 [30] 。最近的研究表明,lincRNA-EPS还可以抑制炎症反应并保护内毒素休克模型中的小鼠 [31] 。在细菌感染期间,lincRNA-EPS抑制宿主保护性NO表达,并削弱宿主对致死剂量单核细胞增生李斯特菌感染的防御 [32] 。除了incRNA-EPS在控制炎症和细菌感染性疾病中的作用外,研究人员还表明lincRNA-EPS可以缓解局部和全身性疾病。我们目前的研究不仅描述了lincRNA-EPS在调节HMGB1-NF-XB-dependent炎症中的新功能,而且还为AP和SAP提供了潜在的治疗靶标。

目前,已经发现暴露于TLR配体(包括Pam3CSK4 (TLR2/1)和LPS)的巨噬细胞中lincRNA-EPS的表达受到抑制(TLR4)和polyl:C (TLR3) [31] 。单核细胞增生李斯特菌和仙台病毒等微生物也会抑制lincRNA-EPS的表达 [32] 。此外,与健康个体相比,活动性肺结核(PTB)患者单核细胞中lincRNA-EPS表达下调 [33] 。34阻断NF-xB的激活会削弱lincRNA-EPS对TLR4-activated单核细胞和巨噬细胞的抑制作用 [31] 。16在本研究中,与对照组相比,lincRNA-EPS在Cer-AP和NaTc-SAP早期表达下调,而在两种AP模型的后期,其表达明显上调。进一步研究调节lincRNA-EPS表达的分子机制,特别是在晚期AP中诱导lincRNA-EPS转录的信号通路是很有趣的。多种lncrna可用作人类疾病的诊断生物标志物。生物制剂和治疗靶点 [34] [35] [36] 。考虑到AP进展过程中lincRNA-EPS表达的显着和动态变化,lincRNA-EPS有望成为AP和SAP的敏感诊断生物标志物。促炎细胞因子TNF-a和IL-6是诱导全身性炎症和细胞因子风暴的关键介质 [37] [38] [39] 。lincRNA-EPS可有效抑制实验性AP小鼠血清淀粉酶和脂肪酶的诱导,减轻胰腺损伤,包括水肿,出血,炎性细胞浸润和腺泡坏死。除了这些胰腺内作用外,lincRNA-EPS还主要通过抑制血清促炎细胞因子和趋化因子的产生来保护NaTc-SAP小鼠模型中的外部胰腺器官,例如肺,肝和肠。

4. 展望

分子生物学技术的在不断发展,然而需要更深入的研究来揭示lncRNA与AP发生发展的相关性,更准确了解AP发生机制从而为AP的临床诊断以及早期干预靶向治疗提供新的思路。从先前的研究中获得的见解可以进一步推动SAP未来疗法的发展。

NOTES

*通讯作者。

参考文献

[1] 芦波, 钱家鸣. 重症急性胰腺炎病因及发病机制研究进展[J]. 中国实用外科杂志, 2012, 32(7): 590-592.
[2] Zhao, Q., Tang, X., Huang, J., et al. (2018) Melatonin Attenuates Endoplasmic Reticulum Stress in Acute Pancreatitis. Pancreas, 47, 884-891.
https://doi.org/10.1097/MPA.0000000000001082
[3] Stenwall, A., Ingvast, S., Skog, O. and Korsgren, O. (2019) Characterization of Host Defense Molecules in the Human Pancreas. Islets, 11, 89-101.
https://doi.org/10.1080/19382014.2019.1585165
[4] 田泽敏, 高青. 复发性急性胰腺炎相关危险因素及治疗分析[J]. 胃肠病学和肝病学杂志, 2018, 27(1): 22-24.
https://doi.org/10.3969/j.issn.1006-5709.2018.01.004
[5] Petersen, O.H. (2008) Ca2+-Induced Pancreatic Cell Death: Roles of the Endoplasmic Reticulum, Zymogen Granules, Lysosomes and Endosomes. Journal of Gastroenterol-ogy and Hepatology, 23, S31-S36.
https://doi.org/10.1111/j.1440-1746.2007.05281.x
[6] 霍晓霞, 李辉, 张晓岚. 急性胰腺炎治疗研究进展[J]. 临床荟萃, 2019, 34(11): 1030-1033.
[7] The ENCODE Project Consortium (2007) Identification and Analysis of Functional Elements in l% of the Human Genome by the ENCODE Pilot Project. Nature, 447, 799-816.
https://doi.org/10.1038/nature05874
[8] Spizzo, R., Almeida, M.I., Colombatti, A. and Calin, G.A. (2012) Long Non-Coding RNAs and Cancer: A New Frontier of Translational Research? Oncogene, 31, 4577-4587.
https://doi.org/10.1038/onc.2011.621
[9] Tsai, M.-C., Spitale, R.C. and Chang, H.Y. (2011) Long Intergenic Noncoding RNAs: New Links in Cancer Progression. Cancer Research, 71, 3-7.
https://doi.org/10.1158/0008-5472.CAN-10-2483
[10] McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D.R., Hinds, D.A., Pennacchio, L.A., Tybjaerg-Hansen, A., Folsom, A.R., Boerwinkle, E., Hobbs, H.H. and Cohen, J.C. (2007) A Common Allele on Chromosome 9 Associated with Coronary Heart Disease. Science, 316, 1488-1491.
https://doi.org/10.1126/science.1142447
[11] Johnson, R. (2012) Long Non-Coding RNAs in Huntington’s Disease Neurodegeneration. Neurobiology of Disease, 46, 245-254.
https://doi.org/10.1016/j.nbd.2011.12.006
[12] Zhu, J., Fu, H., Wu, Y. and Zheng, X. (2013) Function of lncRNAs and Approaches to lncRNA-Protein Interactions. Science China Life Sciences, 56, 876-85.
https://doi.org/10.1007/s11427-013-4553-6
[13] Zhou, Q., Liu, Z.-Z., Wu, H. and Kuang, W.-L. (2022) LncRNA H19 Promotes Cell Proliferation, Migration, and Angiogenesis of Glioma by Regulating Wnt5a/β-Catenin Pathway via Targeting miR-342. Cellular and Molecular Neurobiology, 42, 1065-1077.
https://doi.org/10.1007/s10571-020-00995-z
[14] Wang, B., Suen, C.W., Ma, H., et al. (2020) The Roles of H19 in Regulating Inflammation and Aging. Frontiers in Immunology, 11, Article 579687.
https://doi.org/10.3389/fimmu.2020.579687
[15] Wang, J., Zhao, H., Fan, Z., et al. (2017) Long Noneoding RNA H19 Promotes Neuroinflammation in Ischemic Stroke by Driving Histone Deacetylase 1-Dependent M1 Micmglial Po-larization. Stroke, 48, 2211-2221.
https://doi.org/10.1161/STROKEAHA.117.017387
[16] 王小蝶, 余维丽, 王福贵, 孙昀. LncRNA H19对大鼠胰腺腺泡细胞AR42J细胞凋亡的影响[J]. 安徽医科大学学报, 2021, 56(8): 1273-1276.
[17] Song, G., Liu, D., Geng, X., Ma, Z., Wang, Y., Xie, W., Qian, D., Meng, H., Zhou, B. and Song, Z. (2019) Bone Marrow-Derived Mes-enchymal Stem Cells Alleviate Severe Acute Pancreatitis-Inducedmultiple-Organ Injury in Rats via Suppression of Au-tophagy. Experimental Cell Research, 385, Article ID: 111674.
https://doi.org/10.1016/j.yexcr.2019.111674
[18] Janda, C.Y., Dang, L.T., You, C., Chang, J., de Lau, W., Zhong, Z.A., Yan, K.S., Marecic, O., Siepe, D., Li, X., Moody, J.D., Williams, B.O., Clevers, H., Piehler, J., Baker, D., Kuo, C.J. and Garcia, K.C. (2017) Surrogate Wnt Agonists That Phenocopy Canonical Wnt and β-Catenin Signalling. Nature, 545, 234-237.
https://doi.org/10.1038/nature22306
[19] Miao, H., Wang, L., Zhan, H., Dai, J., Chang, Y., Wu, F., Liu, T., Liu, Z., Gao, C., Li, L. and Song, X. (2019) A Long Noncoding RNA Distributed in Both Nucleus and Cyto-plasm Operates in the PYCARD-Regulated Apoptosis by Coordinating the Epigenetic and Translational Regulation. PLOS Genetics, 15, e1008144.
https://doi.org/10.1371/journal.pgen.1008144
[20] Solé, C., Nadal-Ribelles, M., de Nadal, E. and Posas, F. (2015) A Novel Role for lncRNAs in Cell Cycle Control during Stress Adaptation. Current Genetics, 61, 299-308.
https://doi.org/10.1007/s00294-014-0453-y
[21] 王锋. 重症急性胰腺炎肺毛细血管渗漏机制及同种异体骨髓间充质干细胞移植治疗效果评价的实验研究[D]: [博士学位论文]. 福州: 福建医科大学, 2011.
[22] Mareninova, O.A., Hermann, K., French, S.W., O’Konski, M.S., Pandol, S.J., Webster, P., et al. (2009) Impaired Autophagic Flux Mediates Acinar Cell Vacuole Formation and Trypsinogen Activation in Rodent Models of Acute Pancreatitis. Journal of Clinical Investigation, 119, 3340-3355.
https://doi.org/10.1172/JCI38674
[23] Grasso, D., Ropolo, A., Lo Ré, A., Boggio, V., Molejón, M.I., Iovanna, J.L., et al. (2011) Zymophagy, a Novel Selective Autophagy Pathway Mediated by VMP1-USP9x-p62, Prevents Pancreatic Cell Death. Journal of Biological Chemistry, 286, 8308-8324.
https://doi.org/10.1074/jbc.M110.197301
[24] Wang, Q., Yu, J., Gao, W., Sun, Y., Liu, X., Lv, Z., Li, L. and Xue, D. (2022) The lncRNA TCONS_00021785/ miR-21-5p/Trim33 Axis Regulates VMP1-Mediated Zymophagy, Reduces the Activation of Trypsinogen, and Promotes Acinar Cell Recovery. Cell Death Discovery, 8, Article 65.
https://doi.org/10.1038/s41420-022-00862-4
[25] Quinn, J.J. and Chang, H.Y. (2016) Unique Features of Long Non-Coding RNA Biogenesis and Function. Nature Reviews Genetics, 17, 47-62.
https://doi.org/10.1038/nrg.2015.10
[26] Pan, X., Zheng, G. and Gao, C. (2018) LncRNA PVT1: A Novel Thera-peutic Target for Cancers. Clinical Laboratory, 64, 655-662.
https://doi.org/10.7754/Clin.Lab.2018.171216
[27] Huang, F., Chen, W., Peng, J., Li, Y., Zhuang, Y., Zhu, Z., Shao, C., Yang, W., Yao, H. and Zhang, S. (2018) LncRNA PVT1 Triggers Cyto-Protective Autophagy and Promotes Pancreatic Ductal Adenocarcinoma Development via the miR-20a-5p/ULK1 AXIS. Molecular Cancer, 17, Article No. 98.
https://doi.org/10.1186/s12943-018-0845-6
[28] Hu, F., Tao, X., Zhao, L., Guo, F., Zhou, Q., Song, H., Xiang, H. and Shang, D. (2020) LncRNA-PVT1 Aggravates Severe Acute Pancreatitis by Promoting Autophagy via the miR-30a-5p/Beclin-1 Axis. American Journal of Translational Research, 12, 5551-5562.
[29] Chen, S., Zhu, J., Sun, L.-Q., Liu, S., Zhang, T., Jin, Y., Huang, C., Li, D., Yao, H., Huang, J., Qin, Y., Zhou, M., Chen, G., Zhang, Q. and Ma, F. (2021) LincRNA-EPS Alleviates Severe Acute Pancreatitis by Suppressing HMGB1-Triggered Inflammation in Pan-creatic Macrophages. Immunology, 163, 201-219.
https://doi.org/10.1111/imm.13313
[30] Hu, W., Yuan, B., Flygare, J. and Lodish, H.F. (2011) Long Noncoding RNA-Mediated Antiapoptotic Activity in Murine Erythroid Termi-nal Differentiation. Genes & Development, 25, 2573-2578.
https://doi.org/10.1101/gad.178780.111
[31] Atianand, M.K., Hu, W., Satpathy, A.T., Shen, Y., Ricci, E.P., Alva-rez-Dominguez, J.R., et al. (2016) A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflflammation. Cell, 165, 1672-1685.
https://doi.org/10.1016/j.cell.2016.05.075
[32] Agliano, F., Fitzgerald, K.A., Vella, A.T., Rathinam, V.A. and Medvedev, A.E. (2019) Long Non-Coding RNA LincRNA- EPS Inhibits Host Defense against Listeria monocytogenes Infection. Frontiers in Cellular and Infection Microbiology, 9, Article 481.
https://doi.org/10.3389/fcimb.2019.00481
[33] Ke, Z., Lu, J., Zhu, J., Yang, Z., Jin, Z. and Yuan, L. (2020) Down-Regulation of lincRNA-EPS Regulates Apoptosis and Autophagy in BCG-Infected RAW264.7 Macrophages via JNK/MAPK Signaling Pathway. Infection, Genetics and Evolution, 77, Article ID: 104077.
https://doi.org/10.1016/j.meegid.2019.104077
[34] Sánchez, Y. and Huarte, M. (2013) Long Non-Coding RNAs: Challenges for Diagnosis and Therapies. Nucleic Acid Therapeutics, 23, 15-20.
https://doi.org/10.1089/nat.2012.0414
[35] Dong, P., Xiong, Y., Yue, J., Hanley, S.J.B., Kobayashi, N., Todo, Y., et al. (2018) Long NON-CODing RNA NEAT1: A Novel Target for Diagnosis and Therapy in Human Tumors. Fron-tiers in Genetics, 9, Article 471.
https://doi.org/10.3389/fgene.2018.00471
[36] Pandya, G., Kirtonia, A., Sethi, G., Pandey, A.K. and Garg, M. (2020) The Implication of Long Non-Coding RNAs in the Diagnosis, Pathogenesis and Drug Resistance of Pancreatic Ductal Adenocarcinoma and Their Possible Therapeutic Potential. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1874, Article ID: 188423.
https://doi.org/10.1016/j.bbcan.2020.188423
[37] Makhija, R. and Kingsnorth, A. (2002) Cytokine Storm in Acute Pancreatitis. Journal of Hepato-Biliary-Pancreatic Surgery, 9, 401-410.
https://doi.org/10.1007/s005340200049
[38] Tanaka, T., Narazaki, M. and Kishimoto, T. (2014) IL-6 in Inflflam-mation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology, 6, Article ID: a016295
https://doi.org/10.1101/cshperspect.a016295
[39] Tisoncik, J.R., Korth, M.J., Simmons, C.P., Farrar, J., Martin, T.R. and Katze, M.G. (2012) Into the Eye of the Cytokine Storm. Microbiology and Molecular Biology Reviews, 76, 16-32.
https://doi.org/10.1128/MMBR.05015-11