|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cao, M., Li, H., Sun, D. and Chen, W. (2020) Cancer Burden of Major Cancers in China: A Need for Sustainable Actions. Cancer Communications (London), 40, 205-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedi-cal Applications of Exosomes. Science, 367, 640. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hussen, B.M., Hi-dayat, H.J., Salihi, A., Sabir, D.K., Taheri, M. and Ghafouri-Fard, S. (2021) MicroRNA: A Signature for Cancer Pro-gression. Biomedicine & Pharmacotherapy, 138, Article ID: 111528. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ali Syeda, Z., Langden, S., Munkhzul, C., Lee, M. and Song, S.J. (2020) Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, 21, 1723. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sun, Z., Shi, K., Yang, S., et al. (2018) Effect of Exosomal miRNA on Cancer Biology and Clinical Applications. Molecular Cancer, 17, Article No. 147. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Elewaily, M.I. and Elsergany, A.R. (2021) Emerging Role of Ex-osomes and Exosomal microRNA in Cancer: Pathophysiology and Clinical Potential. Journal of Cancer Research and Clinical Oncology, 147, 637-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Trams, E.G., Lauter, C.J., Salem, N. and Heine, U. (1981) Exfo-liation of Membrane Ecto-Enzymes in the Form of Micro-Vesicles. Biochimica et Biophysica Acta, 645, 63-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Harding, C., Heuser, J. and Stahl, P. (1983) Recep-tor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes. Journal of Cell Biology, 97, 329-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, Q.W., He, Y. and Xu, W.W. (2022) Molecular Functions and Therapeutic Applications of Exosomal Noncoding RNAs in Cancer. Experimental & Molecular Medicine, 54, 216-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Raposo, G., Nijman, H.W., Stoorvogel, W., et al. (1996) B Lymphocytes Secrete Antigen-Presenting Vesicles. Journal of Experimental Medicine, 183, 1161-1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ortiz-Bonilla, C.J., Uccello, T.P., Gerber, S.A., et al. (2022) Bladder Cancer Extracellular Vesicles Elicit a CD8 T Cell-Mediated Antitumor Immunity. International Journal of Molecular Sciences, 23, Article No. 2904. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Akers, J.C., Gonda, D., Kim, R., Carter, B.S. and Chen, C.C. (2013) Biogenesis of Extracellular Vesicles (EV): Exosomes, Microvesicles, Retrovirus-Like Vesicles, and Apoptotic Bodies. Journal of Neuro-Oncology, 113, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Michlewski, G. and Caceres, J.F. (2019) Post-Transcriptional Control of miRNA Biogenesis. RNA, 25, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Larios, J., Mercier, V., Roux, A. and Gruenberg, J. (2020) ALIX- and ESCRT-III-Dependent Sorting of Tetraspanins to Exosomes. Journal of Cell Biology, 219, e201904113. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
杨秋玲, 刘朝奇, 李倩, 李志英. 外泌体介导的miRNAs对恶性肿瘤调控作用研究的新进展[J]. 生命的化学, 2020, 40(2): 243-249.
|
|
[17]
|
Kulkarni, B., Kirave, P., Gondaliya, P., et al. (2019) Exosomal miRNA in Chemoresistance, Immune Evasion, Metastasis and Progression of Cancer. Drug Discovery Today, 24, 2058-2067. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mathieu, M., Martin-Jaular, L., Lavieu, G. and Théry, C. (2019) Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nature Cell Biology, 21, 9-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bae, S., Brumbaugh, J. and Bonavida, B. (2018) Exosomes De-rived from Cancerous and Non-Cancerous Cells Regulate the Anti-Tumor Response in the Tumor Microenvironment. Genes Cancer, 9, 87-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Guo, Y., Ji, X., Liu, J., et al. (2019) Effects of Exosomes on Pre-Metastatic Niche Formation in Tumors. Molecular Cancer, 18, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Maacha, S., Bhat, A.A., Jimenez, L., et al. (2019) Extracellular Vesicles-Mediated Intercellular Communication: Roles in the Tumor Microenvironment and Anti-Cancer Drug Resistance. Molecular Cancer, 18, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, S., Mi, Y., Guan, B., et al. (2020) Tumor-Derived Exoso-mal miR-934 Induces Macrophage M2 Polarization to Promote Liver Metastasis of Colorectal Cancer. Journal of Hema-tology & Oncology, 13, Article No. 156. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, D., Wang, X., Si, M., et al. (2020) Exo-some-Encapsulated miRNAs Contribute to CXCL12/CXCR4-Induced Liver Metastasis of Colorectal Cancer by Enhanc-ing M2 Polarization of Macrophages. Cancer Letters, 474, 36-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zeng, Z., Li, Y., Pan, Y., et al. (2018) Cancer-Derived Exosomal miR-25-3p Promotes Pre-Metastatic Niche Formation by Inducing Vascular Permeability and Angiogenesis. Nature Communications, 9, Article No. 5395. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shang, A., Wang, X., Gu, C., et al. (2020) Exosomal miR-183-5p Promotes Angiogenesis in Colorectal Cancer by Regulation of FOXO1. Aging (Albany NY), 12, 8352-8371. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yan, S., Ren, X., Yang, J., Wang, J., et al. (2020) Exosomal miR-548c-5p Regulates Colorectal Cancer Cell Growth and Invasion through HIF1A/CDC42 Axis. OncoTargets and Therapy, 13, 9875-9885. [Google Scholar] [CrossRef]
|
|
[27]
|
Carney, R.P., Hazari, S., Rojalin, T., et al. (2017) Targeting Tu-mor-Associated Exosomes with Integrin-Binding Peptides. Advanced Biosystems, 1, Article ID: 1600038. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Min, L., Zhu, S., Chen, L., et al. (2019) Evaluation of Circulating Small Extracellular Vesicles Derived miRNAs as Biomarkers of Early Colon Cancer: A Comparison with Plasma Total miRNAs. Journal of Extracellular Vesicles, 8, Article ID: 1643670. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Karimi, N., Ali Hosseinpour Feizi, M., Safaralizadeh, R., et al. (2019) Serum Overexpression of miR-301a and miR-23a in Patients with Colorectal Cancer. Journal of the Chinese Medical Association, 82, 215-220. [Google Scholar] [CrossRef]
|
|
[30]
|
Sun, L., Liu, X., Pan, B., et al. (2020) Serum Exosomal miR-122 as a Potential Diagnostic and Prognostic Biomarker of Colorectal Cancer with Liver Metastasis. Journal of Cancer, 11, 630-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shi, Y., Zhuang, Y., Zhang, J., et al. (2021) Four Circulating Exosomal miRNAs as Novel Potential Biomarkers for the Early Diagnosis of Human Colorectal Cancer. Tissue and Cell, 70, Article ID: 101499. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xiao, Y., Zhong, J., Zhong, B., et al. (2020) Exosomes as Potential Sources of Biomarkers in Colorectal Cancer. Cancer Letters, 476, 13-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
陈军歌. 外泌体作为结直肠癌诊断标志物的研究进展[J]. 现代肿瘤医学, 2020, 28(17): 3089-3092.
|
|
[34]
|
Zhou, H., Zhu, L., Song, J., et al. (2022) Liquid Biopsy at the Frontier of Detection, Prognosis and Progression Monitoring in Colorectal Cancer. Molecular Cancer, 21, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tovar-Camargo, O.A., Toden, S. and Goel, A. (2016) Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Review of Molecular Diag-nostics, 16, 553-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kosaka, N., Iguchi, H., Yoshioka, Y., et al. (2010) Secretory Mechanisms and Intercellular Transfer of microRNAs in Living Cells. Journal of Biological Chemistry, 285, 17442-17452. [Google Scholar] [CrossRef]
|
|
[37]
|
Wang, B., Wang, Y., Yan, Z., Sun, Y. and Su, C. (2019) Colorectal Cancer Cell-Derived Exosomes Promote Proliferation and Decrease Apoptosis by Activating the ERK Pathway. International Journal of Clinical and Experimental Pathology, 12, 2485-2495.
|
|
[38]
|
Kosgodage, U.S., Mould, R., Henley, A.B., et al. (2018) Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Frontiers in Pharmacology, 9, Article No. 889. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Colombo, M., Moita, C., van Niel, G., et al. (2013) Analysis of ESCRT Functions in Exosome Biogenesis, Composition and Secretion Highlights the Heterogeneity of Extracellular Vesicles. Journal of Cell Science, 126, 5553-5565. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Asadirad, A., Baghaei, K., Hashemi, S.M., et al. (2022) Dendritic Cell Immunotherapy with miR-155 Enriched Tumor-Derived Exosome Suppressed Cancer Growth and Induced Antitumor Immune Responses in Murine Model of Colorectal Cancer Induced by CT26 Cell Line. International Immunopharma-cology, 104, Article ID: 108493. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guo, D., Chen, Y., Wang, S., et al. (2018) Exosomes from Heat-Stressed Tumour Cells Inhibit Tumour Growth by Converting Regulatory T Cells to Th17 Cells via IL-6. Immu-nology, 154, 132-143. [Google Scholar] [CrossRef] [PubMed]
|