PD-1表达水平与机体免疫在肺部感染性疾病中的研究进展
Advances in PD-1 Expression Levels and Organismal Immunity in Pulmonary Infectious Diseases
DOI: 10.12677/ACM.2023.131034, PDF, HTML, XML, 下载: 377  浏览: 515  科研立项经费支持
作者: 张龙志:济宁医学院临床医学院,山东 济宁;程曼曼, 王娴玮*:济宁医学院附属医院,山东 济宁
关键词: PD-1机体免疫肺炎肺结核Programmed Death 1 Organismal Immunity Pneumonia Tuberculosis
摘要: 程序性死亡蛋白-1 (programmed death 1, PD-1)是在免疫细胞上表达的免疫抑制分子,通过参与程序性细胞凋亡过程,对活化的T淋巴细胞进行负性调控,它与程序性死亡蛋白配体1 (programmed death ligand 1, PD-L1)组成的信号通路在自身免疫调节、肿瘤免疫及慢性病毒感染中均起着重要的作用,是自身免疫性疾病和肿瘤的潜在药物治疗靶点。同时,T细胞持续性表达PD-1可使免疫耗竭,导致人体免疫功能下降,T细胞耗竭发生在许多肿瘤及慢性病毒感染中。本文综述了T细胞中PD-1表达水平在肺部感染性疾病治疗过程中的变化,并对未来肺部感染性疾病的临床评估和治疗提出展望。
Abstract: Programmed death 1 (PD-1) is an immunosuppressive molecule expressed on immune cells, which negatively regulates activated T lymphocytes by participating in the process of programmed apop-tosis, and its signaling pathway with programmed death ligand 1 (PD-L1) plays an important role in autoimmune regulation, tumor immunity and chronic viral infection, and is a potential drug target for autoimmune diseases and tumors. It is a potential therapeutic target for autoimmune diseases and tumors. At the same time, persistent expression of PD-1 in T cells can lead to immune deple-tion, resulting in a decline in human immune function, and T cell depletion occurs in many tumors and chronic viral infections. This article reviews the changes in PD-1 expression levels in T cells during the treatment of pulmonary infectious diseases and provides an outlook for the future clini-cal evaluation and treatment of pulmonary infectious diseases.
文章引用:张龙志, 程曼曼, 王娴玮. PD-1表达水平与机体免疫在肺部感染性疾病中的研究进展[J]. 临床医学进展, 2023, 13(1): 218-225. https://doi.org/10.12677/ACM.2023.131034

1. PD-1及其配体相关概述

程序性细胞死亡蛋白1 (programmed cell death protein 1, PD-1),也称为CD279,是一种重要的免疫抑制分子,广泛表达于B细胞、T细胞、自然杀伤细胞和髓系细胞 [1],但不表达静止T细胞 [2]。其有两个配体,程序性死亡蛋白配体1 (programmed death ligand 1, PD-L1)和程序性死亡蛋白配体2 (programmed death ligand 2, PD-L2)。PD-L1广泛表达于多种细胞类型,包括造血细胞(T细胞、B细胞、树突状细胞和巨噬细胞)、非造血细胞(血管内皮细胞、胰岛细胞、胎盘合体滋养层细胞和角质形成细胞) [3] 和肿瘤细胞 [4];PD-L2主要表达于树突状细胞、巨噬细胞、肥大细胞等 [5]。PD-1在免疫应答进程中,通过酪氨酸的磷酸化作用,发挥对原受体刺激信号的拮抗效应,在负性调控进程中发挥关键性功能;PD-1与其配体PD-L1/PD-L2结合,下游信号参与抑制T细胞的增殖、细胞因子的产生和细胞毒功能,从而削弱免疫反应;PD-1作用于T淋巴细胞,诱导其无反应性,但将PD/PD-L1进行阻断干预后,可实现将此类T淋巴细胞的重新活化;PD-1抑制T细胞的肿瘤杀伤活性,并下调T细胞的反应,在免疫细胞中诱导和维持外周免疫耐受 [6] [7] [8] [9] [10]。而且还可以保护组织免受免疫攻击,抑制感染和肿瘤免疫应对感染或肿瘤进展 [11] [12]。PD-L1或PD-L2可激活PD-1并诱导T细胞活性下调、细胞因子产生减少、T细胞发生裂解并诱导抗原耐受 [13] [14]。PD-1/PD-L1的异常表达可导致免疫细胞功能障碍,抑制T细胞反应,并可能通过免疫抑制作用促进肿瘤进展 [15]。因此PD-1及其配体在T细胞协同抑制和耗竭过程中发挥重要作用。

2. 肺部感染性疾病现状

呼吸系统感染性疾病仍是当今世界严重威胁人类健康的传染性疾病。呼吸系统疾病中肺脓肿、肺结核、重症感染等疾病形势严峻,治疗漫长,经济负担重等。因此,提升慢性呼吸系统疾病整体防治水平是摆在我们面前亟待解决的问题。

2.1. 肺炎

肺炎已成为一个主要的健康问题,与其高发病率及其短期和长期死亡率有关。它也是全世界所有年龄段中导致死亡的主要传染病原因 [16] [17]。危重症患者的肺炎可表现为社区获得性肺炎(community acquired pneumonia, CAP)、医院获得性肺炎(hospital acquired pneumonia, HAP)或与机械通气相关的肺炎(ventilator associated pneumonia, VAP)。对美国CAP住院患者进行的一项基于人群的前瞻性队列研究 [18] 的二次分析发现,23%的患者需要住ICU,其中24%需要有创机械通气,20%需要非侵入性机械通气。重症肺炎与其较高的短期和长期死亡率相关,那些存活的患者往往有重要的后遗症,如肺功能改变、精神和认知功能减弱、运动功能无力和减少,以及功能自主性降低 [19] [20]。同时随着患者年龄增长、免疫功能下降、原有基础疾病等原因,导致肺部感染患者数量逐年增加。2018年一项横断面研究 [21] 显示:2003年至2015年期间,因急性呼吸道感染住院的人数大幅增加,这一增长在老年人口中更为明显。该研究报道,与年轻人口相比,85岁以上的患者入住ICU的比例是其3.3倍,90岁及以上患者入住ICU的比例是其5.8倍 [21]。正常人体存在免疫和气道防御清除功能,一般患病率较低;而肺脓肿、重症感染等患者机体状态差,全身免疫力和气道防御清除功能下降更容易继发感染,其发生与病原菌感染、支气管阻塞、全身免疫力降低等因素密切相关。目前,肺脓肿、及重症感染患者需要经长时间的抗感染和痰液引流才能使脓腔愈合,且仍有一些患者经长时间抗感染和引流后仍不能愈合,容易造成二重感染及其细菌耐药等问题,严重者形成损毁肺,则需要外科手术切除部分肺段。

2.2. 肺结核

结核病(TB)是由结核分枝杆菌引起的一种传染性疾病,是健康状况不佳的主要原因,也是全世界主要的死亡原因之一,大多数(约90%)罹患这种疾病的人是成年人,男性病例多于女性 [22] [23] [24] [25] [26]。在冠状病毒(新冠肺炎)大流行之前,结核病是单一感染源造成的主要死亡原因,排在艾滋病毒/艾滋病之上 [22],世界上三分之一的人口存在潜在的结核病感染,大约四分之一的人口感染了结核分枝杆菌 [22] [26] [27]。根据世界卫生组织(WHO)发布的《2020年全球结核病报告》 [26]:2019年全球约有1000万结核病患者,因结核病死亡超过140万人。特别是在印度和中国,这两个结核病负担前两位的国家,估计结核病发病率分别为260万和80万;《2021年全球结核病报告》 [22]:受冠状病毒(新冠肺炎)的影响,结核病诊断和治疗机会的减少导致死亡人数增加,2020年艾滋病毒阴性者中死于结核病的人数约为130万人(2019年为120万人),艾滋病毒阳性者中死于结核病的人数约增加214,000人(2019年为209,000人),两者合计总数将回到2017年的水平。结核病成为全球第13大主要死因,也是单一感染源造成的最大死因;2020年结核病成为单一感染源导致的第二大死因,仅次于新冠肺炎 [22]。大量数据显示 [28] [29] [30] [31]:结核病是肺癌发展的风险因素,在中国结核病与肺癌的共存并不罕见,在肿瘤免疫治疗的当下带来了巨大挑战。因为长期结核病是所有活动性结核病新发病例的来源,如果不解决人群中的长期结核病问题,到2035年在全球消除结核病的目标就无法实现 [32] [33]。针对耐多药结核病病例的增加和抗结核新药的短缺,开发新的疫苗接种和免疫治疗靶点是控制结核病的关键。

3. 机体免疫系统及PD-1对免疫细胞的负性调控

免疫系统在病毒感染、肿瘤免疫应答等方面有重要作用 [34]。众所周知,人体免疫分为体液免疫和细胞免疫。其中,细胞免疫指T细胞介导的免疫应答,即T细胞受到抗原刺激后,分化、增殖、转化为致敏T细胞,当相同抗原再次进入机体,致敏T细胞对抗原的直接杀伤作用及致敏T细胞所释放的细胞因子的协同杀伤作用。T细胞是细胞免疫的主要细胞,在免疫应答过程中发挥中枢的作用。其中,CD4+T、CD8+T细胞分别作为人体免疫系统中重要的免疫细胞和效应细胞 [35]。CD4+T细胞主要为辅助性T细胞,通过分泌多种淋巴因子,其具有协助体液免疫和细胞免疫的功能;CD8+T细胞则主要包括抑制性T细胞和细胞毒性T细胞两大类,前者具有抑制体液免疫与细胞的功能,而后者在特异性免疫应答的效应阶段,能通过释放穿孔素、颗粒酶杀伤靶细胞或通过Fas/FasL通路介导靶细胞的凋亡 [36],表达PD-1的CD8+T细胞在急性感染过程中也会产生细胞毒性分子 [37],外周血CD8+T细胞比CD4+T细胞更具有自我反应性 [38]。

在包括癌症和慢性感染在内的病理条件下,程序性细胞死亡蛋白-1 (PD-1)/程序性死亡配体1 (PD-L1)的异常表达可导致免疫细胞功能障碍,抑制T细胞反应 [15] [39]。活化的CD4+T细胞、CD8+T细胞、自然杀伤T细胞等多种细胞都可以表达PD-1 [40],其中在抗肿瘤免疫应答中发挥主要作用的细胞为CD8+T细胞 [41],CD4+T细胞则在结核分枝杆菌感染的防御中起关键作用 [42] [43];PD-L1是PD-1的配体,存在于T细胞、肿瘤细胞等细胞中 [8]。PD-1是表达在免疫效应细胞上的负性共刺激分子,通过参与程序性细胞凋亡过程,对活化的T淋巴细胞进行负性调控,被认为是引起免疫抑制的重要原因 [44]。PD-1/PD-L1通路不仅是是健康人体免疫调节作用中重要的一环,而且影响T细胞的分化 [45]。

4. PD-1表达水平与肺部感染性疾病的关系

肿瘤免疫治疗的成功,特别是抗PD-1/PD-L1单抗可以恢复和增强T细胞的功能,引起了人们尝试免疫治疗感染性疾病的兴趣。在慢性病毒感染和肿瘤中,PD-1持续高表达与T细胞功能障碍有关 [46] [47],PD-1在T细胞上表达导致T细胞免疫耗竭,这类似于癌症免疫 [24]。在淋巴细胞性脉络从脑膜炎病毒感染、乙型肝炎病毒感染、人类免疫缺陷病毒感染等多种慢性病毒性感染疾病中,T细胞上PD-1持续高表达,导致T细胞对抗原应答降低 [48] [49] [50]。徐若楠等人 [51] 研究发现,在慢性感染疾病进展过程中,T细胞和B细胞PD-1的表达水平会维持在一个较高的水平,最终导致机体发生免疫耐受、细胞免疫功能衰竭等情况,而通过阻断PD-1和其配体之间的结合,则有助于逆转、恢复免疫功能,从而增加机体的抗感染能力。同样Zhang Y [52] 和Svabek C [53] 等人实验证明通过阻断PD-1/PD-L1增强T细胞免疫有助于改善脓毒症和免疫受损患者的病原体清除和生存。以上研究表明,PD-1的表达水平在感染性疾病发展的不同阶段是动态变化的,T淋巴细胞PD-1高表达是引起脓毒症免疫抑制状态的重要原因 [54] [55]。因为炎症的刺激可直接影响到患者的免疫功能,而细菌感染性肺炎、肺脓肿等患者,由于抗原的持续性刺激及炎症环境等因素影响,其机体状态差、全身免疫功能和气道防御清除功能下降,所以此类患者T淋巴细胞的PD-1的表达水平应该随着疾病进展维持在一个较高水平。

同时,T细胞在介导宿主对结核分枝杆菌感染的防御中具有关键作用 [43],尤其CD4+T细胞 [42]。PD-1/PD-1途径在结核病的免疫反应中也发挥着重要作用 [56],一方面PD-1可以调节结核分枝杆菌的免疫反应,另一方面抗PD-1抗体通过分泌大量的肿瘤坏死因子α [57] 而加重结核感染 [58]。因此,我们认为抑制PD-1途径可以恢复宿主免疫,从而有助于活动性结核病的疾病控制 [59]。有研究表明与潜伏期结核病患者相比,活动性结核病患者具有更高的T调节细胞 [60];与健康供体相比,肺结核患者的CD4+和CD8+T细胞上PD-1的表达增加 [61],因此我们考虑结核病中T细胞增多与结核病进展有关。Basile JI [60] 等人研究发现在感染结核分枝杆菌期间,PD-1在CD4+和CD8+T细胞的表达频率增加,并在感染后期保持升高。Singh A等人 [62] 认为结核分枝杆菌利用PD-1途径逃避宿主免疫反应,改变MTB病变部位的Th1/Th2平衡,促进了结核病的进展。 CD4+T或Th1淋巴细胞中PD-1表达水平的百分比与疾病的高程度相关,这意味着PD-1表达是由结核杆菌诱导的,并且随着疾病的进展而增加 [63]。Day CL等人 [64] 证明,结核杆菌特异性的CD4+T细胞上PD-1的表达与结核病感染期间的细菌负荷有关,随着有效的抗结核药物治疗,PD-1的表达水平降低 [65],Hassan SS等人 [65] 和Day CL等人 [64] 均证实与结核病治疗前PD-1水平相比,抗结核治疗结束后PD-1水平降低。Yin W等人 [66] 实验显示,不仅在CD4+T细胞上,而且在不同的T细胞亚群上,PD-1和PD-L1的细胞频率都显著升高;经有效药物治疗后,反应性T细胞和效应性T细胞上PD-1表达均下降,该研究表明,随着结核病治疗的成功,CD8+、CD4+T细胞和NK细胞上PD-1的表达下降 [66]。Shen L等人 [64] 研究证明了PD-1途径在保护性免疫受损中的潜在作用,特别是在结核病传播形式较多的疾病部位,如粟粒结核病;通过抑制PD-1通路可以增强保护性T细胞,包括病变部位的多功能T细胞,这是阻止结核病传播的关键,同时加强了免疫恢复的可能性。

5. PD-1表达水平与机体免疫状态对肺部感染性疾病临床治疗及指导的展望

PD-1/PD-L1通路在自身免疫调节、肿瘤免疫及慢性病毒感染中均起着重要的作用,是自身免疫性疾病和肿瘤的潜在药物治疗靶点。PD-1是在免疫细胞上表达的免疫抑制分子,通过参与程序性细胞凋亡过程,对活化的T淋巴细胞进行负性调控。而持续性表达PD-1可使T细胞免疫耗竭,T细胞耗竭发生在许多肿瘤及慢性病毒感染疾病中。因此T细胞亚群PD-1的表达水平有望为肺部感染性疾病如肺脓肿、肺结核等的治疗提供新的思路。

在病情评估方面,可以通过检测外周血T淋巴细胞PD-1的表达率作为预测抗结核治疗临床疗效的候选指标;同时有助于了解患者当前的机体状态及免疫功能,为临床治疗和判断预后等方面提供实验室检测依据。

在临床治疗方面,因为T细胞在介导宿主对结核分枝杆菌感染的防御中具有关键作用,尤其CD4+T细胞;同样PD-1/PD-1途径在结核病的免疫反应中也发挥着重要作用,所以外周血T淋巴细胞PD-1的表达有望为结核病的免疫治疗提供靶点,为人类结核病的新疗法以及PD-1在结核病免疫治疗和疫苗接种中的潜在应用提供新思路。

基金项目

济宁医学院附属医院“苗圃”科研计划(MP-MS-2021-004)。

NOTES

*通讯作者。

参考文献

[1] Quezada, S.A. and Peggs, K.S. (2013) Exploiting CTLA-4, PD-1 and PD-L1 to Reactivate the Host Immune Response against Cancer. British Journal of Cancer, 108, 1560-1565.
https://doi.org/10.1038/bjc.2013.117
[2] Schütz, F., Stefanovic, S., Mayer, L., et al. (2017) PD-1/PD-L1 Pathway in Breast Cancer. Oncology Research and Treatment, 40, 294-297.
https://doi.org/10.1159/000464353
[3] Wu, X., Gu, Z., Chen, Y., et al. (2019) Application of PD-1 Blockade in Cancer Immunotherapy. Computational and Structural Biotechnology Journal, 17, 661-674.
https://doi.org/10.1016/j.csbj.2019.03.006
[4] Juneja, V.R., Mcguire, K.A., Manguso, R.T., et al. (2017) PD-L1 on Tumor Cells Is Sufficient for Immune Evasion in Immunogenic Tumors and Inhibits CD8 T Cell Cytotoxicity. The Journal of Experimental Medicine, 214, 895-904.
https://doi.org/10.1084/jem.20160801
[5] Ohaegbulam, K.C., Assal, A., Lazar-Molnar, E., et al. (2015) Human Cancer Immunotherapy with Antibodies to the PD-1 and PD-L1 Pathway. Trends in Molecular Medicine, 21, 24-33.
https://doi.org/10.1016/j.molmed.2014.10.009
[6] Kwiecien, I., Skirecki, T., Polubiec-Kownacka, M., et al. (2019) Immunophenotype of T Cells Expressing Programmed Death-1 and Cytotoxic T Cell Antigen-4 in Early Lung Cancer: Local vs. Systemic Immune Response. Cancers (Basel), 11, 567.
https://doi.org/10.3390/cancers11040567
[7] Sharpe, A.H., Wherry, E.J., Ahmed, R., et al. (2007) The Function of Programmed Cell Death 1 and Its Ligands in Regulating Autoimmunity and Infection. Nature Immunology, 8, 239-245.
https://doi.org/10.1038/ni1443
[8] Keir, M.E., Butte, M.J., Freeman, G.J., et al. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704.
https://doi.org/10.1146/annurev.immunol.26.021607.090331
[9] Jurado, J.O., Alvarez, I.B., Pasquinelli, V., et al. (2008) Programmed Death (PD)-1: PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. Journal of Immunology (Baltimore, Md: 1950), 181, 116-125.
https://doi.org/10.4049/jimmunol.181.1.116
[10] Alvarez, I.B., Pasquinelli, V., Jurado, J.O., et al. (2010) Role Played by the Programmed Death-1-Programmed Death Ligand Pathway during Innate Immunity against Mycobacterium tuberculosis. The Journal of Infectious Diseases, 202, 524-532.
https://doi.org/10.1086/654932
[11] Peng, W., Liu, C., Xu, C., et al. (2012) PD-1 Blockade Enhances T-Cell Migration to Tumors by Elevating IFN-γ Inducible Chemokines. Cancer Research, 72, 5209-5218.
https://doi.org/10.1158/0008-5472.CAN-12-1187
[12] He, J., Hu, Y., Hu, M., et al. (2015) Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Scientific Reports, 5, Article No. 13110.
https://doi.org/10.1038/srep13110
[13] Zinselmeyer, B.H., Heydari, S., Sacristán, C., et al. (2013) PD-1 Promotes Immune Exhaustion by Inducing Antiviral T Cell Motility Paralysis. The Journal of Experimental Medicine, 210, 757-774.
https://doi.org/10.1084/jem.20121416
[14] Yao, H., Wang, H., Li, C., et al. (2018) Cancer Cell-Intrinsic PD-1 and Implications in Combinatorial Immunotherapy. Frontiers in Immunology, 9, Article No. 1774.
https://doi.org/10.3389/fimmu.2018.01774
[15] Ghoneum, A., Afify, H., Salih, Z., et al. (2018) Role of Tumor Microenvironment in the Pathobiology of Ovarian Cancer: Insights and Therapeutic Opportunities. Cancer Medicine, 7, 5047-5056.
https://doi.org/10.1002/cam4.1741
[16] (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet (London, England), 396, 1204-1222.
[17] Torres, A., Cilloniz, C., Niederman, M.S., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, 25.
https://doi.org/10.1038/s41572-021-00259-0
[18] Cavallazzi, R., Furmanek, S., Arnold, F.W., et al. (2020) The Burden of Community-Acquired Pneumonia Requiring Admission to ICU in the United States. Chest, 158, 1008-1016.
https://doi.org/10.1016/j.chest.2020.03.051
[19] Bein, T., Weber-Carstens, S. and Apfelbacher, C. (2018) Long-Term Outcome after the Acute Respiratory Distress Syndrome: Different from General Critical Illness? Current Opinion in Critical Care, 24, 35-40.
https://doi.org/10.1097/MCC.0000000000000476
[20] Sangla, F., Legouis, D., Marti, P.E., et al. (2020) One Year after ICU Admission for Severe Community-Acquired Pneumonia of Bacterial, Viral or Unidentified Etiology. What Are the Outcomes? PLOS ONE, 15, e0243762.
https://doi.org/10.1371/journal.pone.0243762
[21] Laporte, L., Hermetet, C., Jouan, Y., et al. (2018) Ten-Year Trends in Intensive Care Admissions for Respiratory Infections in the Elderly. Annals of Intensive Care, 8, 84.
https://doi.org/10.1186/s13613-018-0430-6
[22] World Health Organization (2021) Global Tuberculosis Report 2021. World Health Organization, Geneva.
[23] Walzl, G., Mcnerney, R., Du Plessis, N., et al. (2018) Tuberculosis: Advances and Challenges in Development of New Diagnostics and Biomarkers. The Lancet Infectious Diseases, 18, e199-e210.
https://doi.org/10.1016/S1473-3099(18)30111-7
[24] World Health Organization (2018) Global Tuberculosis Re-port 2018. World Health Organization, Geneva.
[25] World Health Organization (2019) Global Tuberculosis Report 2019. World Health Organization, Geneva.
[26] World Health Organization (2020) Global Tuberculosis Report 2020. World Health Organization, Geneva.
[27] Zwerling, A., Van Den Hof, S., Scholten, J., et al. (2012) Interferon-Gamma Release Assays for Tuberculosis Screening of Healthcare Workers: A Systematic Review. Thorax, 67, 62-70.
https://doi.org/10.1136/thx.2010.143180
[28] Liang, H.Y., Li, X.L., Yu, X.S., et al. (2009) Facts and Fiction of the Relationship between Preexisting Tuberculosis and Lung Cancer Risk: A Systematic Review. International Journal of Cancer, 125, 2936-2944.
https://doi.org/10.1002/ijc.24636
[29] Yu, Y.H., Liao, C.C., Hsu, W.H., et al. (2011) Increased Lung Cancer Risk among Patients with Pulmonary Tuberculosis: A Population Cohort Study. Journal of Thoracic Oncology: Official Pub-lication of the International Association for the Study of Lung Cancer, 6, 32-37.
https://doi.org/10.1097/JTO.0b013e3181fb4fcc
[30] Brenner, D.R., Boffetta, P., Duell, E.J., et al. (2012) Previous Lung Diseases and Lung Cancer Risk: A Pooled Analysis from the International Lung Cancer Consortium. American Journal of Epidemiology, 176, 573-585.
https://doi.org/10.1093/aje/kws151
[31] Leung, C.C., Hui, L., Lee, R.S., et al. (2013) Tuberculosis Is Associated with Increased Lung Cancer Mortality. The International Journal of Tuberculosis and Lung Disease: The Official Jour-nal of the International Union against Tuberculosis and Lung Disease, 17, 687-692.
https://doi.org/10.5588/ijtld.12.0816
[32] Getahun, H., Matteelli, A., Chaisson, R.E., et al. (2015) Latent Mycobac-terium tuberculosis Infection. The New England Journal of Medicine, 372, 2127-2135.
https://doi.org/10.1056/NEJMra1405427
[33] Rangaka, M.X., Cavalcante, S.C., Marais, B.J., et al. (2015) Con-trolling the Seedbeds of Tuberculosis: Diagnosis and Treatment of Tuberculosis Infection. The Lancet (London, England), 386, 2344-2353.
https://doi.org/10.1016/S0140-6736(15)00323-2
[34] 韩鹏勇, 塔娜, 等. 人CD8~+T细胞基因调控网络研究[J]. 西北农业学报, 2019, 28(6): 861-867.
[35] 吴荷宁, 彭民. CD4~+T、CD8~+T淋巴细胞在新型冠状病毒肺炎中的研究进展[J]. 天津医科大学学报, 2021, 27(6): 658-660+664.
[36] 安健, 孙蓬明. T淋巴细胞亚群检测在子宫内膜癌中的应用价值[J], 中国妇产科临床杂志, 2020, 21(4): 428-431.
[37] Westmeier, J., Paniskaki, K., Karaköse, Z., et al. (2020) Impaired Cytotoxic CD8(+) T Cell Response in Elderly COVID-19 Patients. mBio, 11, e02243-20.
https://doi.org/10.1128/mBio.02805-20
[38] Horkova, V., Drobek, A., Mueller, D., et al. (2020) Dynamics of the Coreceptor-LCK Interactions during T Cell Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. Cell Reports, 30, 1504-1514.e7.
https://doi.org/10.1016/j.celrep.2020.01.008
[39] Bardhan, K., Anagnostou, T. and Boussiotis, V.A. (2016) The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Frontiers in Immunology, 7, 550.
https://doi.org/10.3389/fimmu.2016.00550
[40] Trefny, M.P., Kaiser, M., Stanczak, M.A., et al. (2020) PD-1(+) Natural Killer Cells in Human Non-Small Cell Lung Cancer Can Be Activated by PD-1/PD-L1 Blockade. Cancer Im-munology, Immunotherapy: CII, 69, 1505-1517.
https://doi.org/10.1007/s00262-020-02558-z
[41] Cooper, W.A., Tran, T., Vilain, R.E., et al. (2015) PD-L1 Ex-pression Is a Favorable Prognostic Factor in Early Stage Non-Small Cell Carcinoma. Lung Cancer (Amsterdam, Nether-lands), 89, 181-188.
https://doi.org/10.1016/j.lungcan.2015.05.007
[42] Lindestam Arlehamn, C.S., Lewinsohn, D., Sette, A., et al. (2014) Antigens for CD4 and CD8 T Cells in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 4, a018465.
https://doi.org/10.1101/cshperspect.a018465
[43] Kauffman, K.D., Sallin, M.A., Sakai, S., et al. (2018) Defective Positioning in Granulomas but Not Lung-Homing Limits CD4 T-Cell Interactions with Mycobacterium tuberculo-sis-Infected Macrophages in Rhesus Macaques. Mucosal Immunology, 11, 462-473.
https://doi.org/10.1038/mi.2017.60
[44] 袁洁铭, 李理. 老年人T淋巴细胞PD-1高表达在炎症状态下对其功能的影响[J]. 免疫学杂志, 2017, 33(6): 519-524.
[45] Efremova, M., Rieder, D., Klepsch, V., et al. (2018) Targeting Immune Checkpoints Potentiates Immunoediting and Changes the Dynamics of Tumor Evolution. Nature Communica-tions, 9, Article No. 32.
https://doi.org/10.1038/s41467-017-02424-0
[46] Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science (New York, NY), 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[47] Wykes, M.N. and Lewin, S.R. (2018) Immune Checkpoint Blockade in Infectious Diseases. Nature Reviews Immunology, 18, 91-104.
https://doi.org/10.1038/nri.2017.112
[48] Larbi, A., Franceschi, C., Mazzatti, D., et al. (2008) Aging of the Immune System as a Prognostic Factor for Human Longevity. Physiology (Bethesda, Md), 23, 64-74.
https://doi.org/10.1152/physiol.00040.2007
[49] Chinai, J.M., Janakiram, M., Chen, F., et al. (2015) New Immunotherapies Targeting the PD-1 Pathway. Trends in Pharmacological Sciences, 36, 587-595.
https://doi.org/10.1016/j.tips.2015.06.005
[50] Attanasio, J. and Wherry, E.J. (2016) Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity, 44, 1052-1068.
https://doi.org/10.1016/j.immuni.2016.04.022
[51] 徐若楠, 孙国鹏, 等. PD-1基因的表达调控分子机制研究进展[J]. 中国免疫学杂志, 2020, 36(20): 2540-2546.
[52] Zhang, Y., Zhou, Y., Lou, J., et al. (2010) PD-L1 Blockade Improves Survival in Experimental Sepsis by Inhibiting Lymphocyte Apoptosis and Reversing Monocyte Dysfunction. Critical Care (London, England), 14, R220.
https://doi.org/10.1186/cc9354
[53] Chang, K., Svabek, C., Vazquez-Guillamet, C., et al. (2014) Targeting the Pro-grammed Cell Death 1: Programmed Cell Death Ligand 1 Pathway Reverses T Cell Exhaustion in Patients with Sepsis. Critical Care (London, England), 18, R3.
https://doi.org/10.1186/cc13176
[54] Guignant, C., Lepape, A., Huang, X., et al. (2011) Programmed Death-1 Levels Correlate with Increased Mortality, Nosocomial Infection and Immune Dysfunctions in Septic Shock Patients. Critical Care (London, England), 15, R99.
https://doi.org/10.1186/cc10112
[55] Bermejo-Martin, J.F. andaluz-Ojeda, D., Almansa, R., et al. (2016) Defining Immunological Dysfunction in Sepsis: A Requisite Tool for Precision Medicine. The Journal of Infection, 72, 525-536.
https://doi.org/10.1016/j.jinf.2016.01.010
[56] Wherry, E.J. and Kurachi, M. (2015) Molecular and Cellular In-sights into T Cell Exhaustion. Nature Reviews Immunology, 15, 486-499.
https://doi.org/10.1038/nri3862
[57] Tezera, L.B., Bielecka, M.K., Ogongo, P., et al. (2020) Anti-PD-1 Immuno-therapy Leads to Tuberculosis Reactivation via Dysregulation of TNF-α. eLife, 9, e52668.
https://doi.org/10.7554/eLife.52668
[58] Day, C.L., Abrahams, D.A., Bunjun, R., et al. (2018) PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is Associated with Bacterial Load in Human Tuberculosis. Fron-tiers in Immunology, 9, Article No. 1995.
https://doi.org/10.3389/fimmu.2018.01995
[59] Hassan, S.S., Akram, M., King, E.C., et al. (2015) PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Pro-tein during the Intensive Phase of Tuberculosis Treatment. PLOS ONE, 10, e0137646.
https://doi.org/10.1371/journal.pone.0137646
[60] Basile, J.I., Liu, R., Mou, W., et al. (2020) Mycobacte-ria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection with Mycobacterium tuberculosis. Frontiers in Immunology, 11, Article ID: 566319.
https://doi.org/10.3389/fimmu.2020.566319
[61] Pathakumari, B., Devasundaram, S. and Raja, A. (2018) Altered Expression of Antigen-Specific Memory and Regulatory T-Cell Subsets Differentiate Latent and Active Tuberculosis. Immunology, 153, 325-336.
https://doi.org/10.1111/imm.12833
[62] Singh, A., Mohan, A., Dey, A.B., et al. (2017) Programmed Death-1 (+) T Cells Inhibit Effector T Cells at the Pathological Site of Miliary Tuberculosis. Clinical and Experimental Immunology, 187, 269-283.
https://doi.org/10.1111/cei.12871
[63] Singh, A., Dey, A.B., Mohan, A., et al. (2014) Programmed Death-1 Re-ceptor Suppresses γ-IFN Producing NKT Cells in Human Tuberculosis. Tuberculosis (Edinburgh, Scotland), 94, 197-206.
https://doi.org/10.1016/j.tube.2014.01.005
[64] Shen, L., Shi, H., Gao, Y., et al. (2016) The Characteris-tic Profiles of PD-1 and PD-L1 Expressions and Dynamic Changes during Treatment in Active Tuberculosis. Tuberculo-sis (Edinburgh, Scotland), 101, 146-150.
https://doi.org/10.1016/j.tube.2016.10.001
[65] Singh, A., Mohan, A., Dey, A.B., et al. (2013) Inhibiting the Pro-grammed Death 1 Pathway Rescues Mycobacterium tuberculosis-Specific Interferon γ-Producing T Cells from Apopto-sis in Patients with Pulmonary Tuberculosis. The Journal of Infectious Diseases, 208, 603-615.
https://doi.org/10.1093/infdis/jit206
[66] Yin, W., Tong, Z.H., Cui, A., et al. (2014) PD-1/PD-Ls Pathways be-tween CD4 (+) T Cells and Pleural Mesothelial Cells in Human Tuberculous Pleurisy. Tuberculosis (Edinburgh, Scot-land), 94, 131-139.
https://doi.org/10.1016/j.tube.2013.10.007