昼夜节律与组织器官再生研究进展
Research Progress in Circadian Rhythm and Tissue and Organ Regeneration
DOI: 10.12677/BP.2022.124026, PDF, HTML, XML, 下载: 384  浏览: 726  国家自然科学基金支持
作者: 卢博文, 张书强*, 徐 绘*:南通大学教育部和江苏省神经再生重点实验室,江苏 南通
关键词: 组织再生昼夜节律生物钟增殖 Tissue Regeneration Circadian Rhythm Circadian Clock Proliferation
摘要: 昼夜节律是生物体适应地球的昼夜交替而形成的一种周期性的生命活动现象。形成昼夜节律的生物钟通过调节多个下游基因的表达从而影响细胞增殖、内分泌和新陈代谢等许多生物学过程。对于昼夜节律的既往研究主要集中在生理和病理方向,然而其在组织器官再生中的角色尚不清楚。近年来,人们相继发现昼夜节律在多个组织器官的再生中发挥重要作用,并且在不同的系统中昼夜节律均有独特的调控再生的机制。本文综述了昼夜节律的分子机制及其调控肠道、皮肤和肝脏再生的研究进展。
Abstract: Circadian rhythm is the cyclic life activity formed by organisms adapting to the alternation of day and night on the earth. The circadian clock influences many biological processes such as cell proliferation, endocrine and metabolism by regulating the expression of multiple downstream genes. Previous studies on circadian rhythm mainly focused on its physiological and pathological roles, but its function in tissue and organ regeneration remains poorly understood. In recent years, researchers have found that circadian rhythm plays an important role in the regeneration of multi-ple tissues and organs, with unique mechanisms in each system. Here we summarize the molecular mechanism of circadian rhythm and the recent research progress in its role in intestinal, skin and liver regeneration.
文章引用:卢博文, 张书强, 徐绘. 昼夜节律与组织器官再生研究进展[J]. 生物过程, 2022, 12(4): 224-232. https://doi.org/10.12677/BP.2022.124026

1. 引言

地球的自转形成了昼夜交替,使地表的光和热等自然因素产生周期性的昼夜变化,这对地球上的生命活动产生了显著影响。生物体所处的环境面临着与昼夜循环有关的规律性变化,例如,一天中食物的可获得性或捕食者活动的变化。为适应这些周期性的日常变化,生物体进化出了生物钟这一内部计时系统来主动协调它们的生理和行为。哺乳动物的生理(如激素分泌、体温、代谢)和行为(如睡眠/觉醒周期)的许多方面都受到相同的生物钟系统的调节,该系统几乎存在于生物体的每个细胞中。生物钟通过对基因表达和功能的节律性调节,使生物体产生行为和生理的节律性变化 [1]。这些时钟具有特殊的特征:它们的节律周期约为24 h,因此被称为“昼夜节律”(circadian rhythm,来源于拉丁语,“circa”意为“about”,“diem”意为“day”)。昼夜节律具有内源性与自我维持的特点,它可通过外部时间线索如光照、进食等进行“重置”,使生物体内时钟与环境维持同步 [2]。既往对昼夜节律的研究大多集中在生物钟在生理和病理中的作用,人们对其在组织器官再生中的作用所知不多。近年来,生物钟在组织再生中的作用逐渐得到研究者们的重视。本文就生物钟的分子组成及其在肠道、皮肤和肝脏再生中的研究进展做一综述。

2. 生物钟的组成和分子机制

哺乳动物的生物钟由中枢时钟(central clock)以及外周时钟(peripheralclock)组成,几乎存在于所有组织和细胞中。中枢时钟位于下丘脑视交叉上核(suprachiasmatic nucleus, SCN)中,是主要的昼夜节律起搏器,参与控制哺乳动物日常生活中行为和生理活动的循环 [3]。中枢时钟可控制其他组织器官中的外周时钟,能够响应光照和温度等环境因素的变化 [4],并且在外部因素发生变化的同时仍可维持SCN的昼夜节律特性 [5]。外周器官的昼夜节律受局部组织时钟和SCN产生的生理和行为节律的控制 [6]。

生物钟系统在分子水平上由核心时钟基因和蛋白质的转录/翻译反馈回路(transcription/translation feedback loop, TTFL)组成,TTFL几乎参与了每个外周组织细胞的转录后和翻译后调节过程 [7]。在哺乳动物细胞中存在两个主要的反馈回路维持分子钟的节律。第一个TTFL由两个核心时钟转录因子Clock和Bmal1组成,二者蛋白异二聚化后与靶基因增强子的E-box区域结合,驱动下游基因Period (Per1, 2, 3)和Cryptochrome (Cry1, 2)的表达;Per和Cry的表达产物形成Per/Cry蛋白复合物后返回细胞核,在夜晚至早上持续负反馈抑制Clock/Bmal1的转录。随着时间的推移,Per和Cry蛋白到第二天白天逐渐被蛋白酶降解,从而解除对Clock/Bmal1转录的抑制作用 [7]。因此,Clock和Bmal1通过激活自身转录抑制因子的表达,形成一个负反馈回路 [8],产生了24小时循环的自我维持的节律。第二个反馈回路由两组核受体组成:转录激活因子Ror (RAR‐related orphan receptor, Rorα/β)和转录抑制因子Rev-Erb (Rev-Erbα/β),二者均可被Clock:Bmal1异二聚体激活 [9] [10]。Ror和Rev-Erb [11] 在核心时钟基因如Bmal1、Cry1、E4bp4和Npas2的调控序列中竞争结合Rev-ErbA/Ror反应元件(RRE)以微调它们的转录 [12],驱动Bmal1转录的日常节律并关闭第二反馈回路 [13]。

3. 昼夜节律与组织器官再生

生物钟在胚胎发育过程中逐渐形成,胚胎干细胞和诱导多能干细胞的基因表达不具有节律性,但在分化过程中逐渐产生节律 [14]。出现生物钟的发育程序似乎与细胞分化密切相关 [15]。人们在多种胚胎和成体干细胞依赖的生理过程中观察到节律性,如造血祖细胞迁移、毛囊周期和神经发生等 [1]。在发育和生理过程之外,中枢和外周时钟的昼夜节律也会影响组织器官再生的效率,如肝再生 [16] 及皮肤再生 [17] 等。昼夜节律影响组织器官再生的途径主要源自对成体干细胞及其微环境的调节。已知功能性的时钟存在于成体干细胞中,生物钟可调节成体干细胞的代谢、增殖和分化等过程,从而促进组织稳态和再生 [8]。除了在干细胞内部发挥作用,生物钟还有助于维持外周组织有利的微环境,间接促进成体干细胞的增殖、迁移和分化等再生过程 [18]。由于组织器官再生的重要性,研究再生过程的昼夜节律及生物钟调控再生的机制具有重要的生物学和医学意义。

3.1. 昼夜节律与肠上皮再生

胃肠道系统是多细胞生物体中最复杂的发育系统之一,主要的生理功能包括:消化食物、吸收营养、分泌激素和防御病原体等 [19]。哺乳动物的肠道包括小肠、大肠和直肠三个部分,组成的细胞类型包括:1) 肠干细胞(intestinal stem cells, ISCs);2) 肠祖细胞;3) 肠上皮细胞;4) 肠内分泌细胞;5) 分泌细胞(Paneth细胞、Goblet细胞) [20] 等。生理状况下,肠道内的上皮细胞处于恒定的压力环境中,由于大多数肠上皮细胞的寿命小于5天,细胞死亡率较高,因此需要不断的自我更新 [21] [22]。哺乳动物正常的肠上皮结构包含折叠的隐窝(Crypts),其基底端存在ISCs [23] [24]。生理条件下大多数ISCs处于静息状态,因此肠上皮更新相对缓慢。肠道损伤后,作为对应激损伤的反应,ISCs在数小时内被激活和增殖,并沿肠绒毛迁移和分化从而快速再生受损的肠上皮 [25] [26]。

组织器官的细胞更新和再生对维持其正常的生理功能至关重要。昼夜节律能影响细胞周期,在细胞增殖和组织器官再生中发挥作用 [27]。在一些早期研究中,虽然当时尚未鉴定出ISCs,人们已发现生理条件下小鼠肠道的细胞数量和增殖具有节律性 [28]。在一项小鼠空肠上皮的研究中,研究人员发现空肠绒毛和隐窝的细胞数量在白天达到峰值,而增殖的细胞则在夜晚达到顶峰 [29]。后续研究发现,在啮齿类动物中ISCs的有丝分裂表现出昼夜节律性,在清晨ISCs的增殖开始减慢,而在夜间达到峰值 [30]。在体外培养的小肠类器官中,研究者也发现小肠上皮ISCs的增殖呈现以12小时为周期的节律 [31]。因此,ISCs的增殖和肠上皮的再生过程存在昼夜节律。

在小鼠和果蝇上的研究发现,肠道中的核心时钟基因如Per和Bmal1等在一天中呈振荡表达 [32] [33] [34]。在急性辐射损伤反应测试中,Bmal1基因缺失的小鼠肠道隐窝细胞无法进行有节律的有丝分裂,从而影响肠再生的时间 [35]。在右旋葡聚糖硫酸钠诱发的肠道损伤模型中,野生型果蝇的肠道ISCs在黎明时达到有丝分裂高峰,而Per01突变果蝇的ISCs不存在该增殖高峰,并且其在所有时间点的有丝分裂均减少 [30]。这些研究结果表明ISCs的增殖受核心时钟基因Bmal1和Per的调控。

在ISCs之外,肠道潘氏细胞(Paneth cell)分泌的Wnt也是调节ISCs节律性增殖的重要信号。研究发现Paneth细胞节律性地分泌Wnt蛋白,后者可通过促进ISCs增殖进而支持肠上皮细胞再生 [31]。Wnt信号的下游基因如c-Myc等,与时钟基因也存在相互调控。在c-Myc缺失的情况下,小鼠肠上皮隐窝细胞的增殖会显著减少 [36],提示Wnt可能通过c-Myc调节ISCs的增殖节律。在果蝇上的研究显示,ISCs的增殖还受到分化的肠上皮细胞(enterocytes)的调控。来自肠上皮细胞的Wnt和Hippo信号可促进ISCs内时钟基因如PER和TIM的表达,进而调节其增殖的昼夜节律 [37]。

3.2. 昼夜节律与皮肤再生

皮肤是体表与外界直接接触的组织。作为机体的屏障,皮肤具有防止病原体入侵、水分蒸发及温度变化等功能。哺乳动物的皮肤可分为三层,即表皮层、真皮层和皮下组织,包含角质形成细胞、成纤维细胞及上皮细胞等多种细胞类型。自然环境中存在对皮肤的各种威胁,如物理损伤、生物伤害以及化学损伤等,皮肤损伤后愈合是所有高等生物适应生存环境的基本过程 [38]。哺乳动物皮肤的损伤后愈合包括炎症、凝血、细胞增殖和迁移等过程 [39]。皮肤损伤后,受损血管的信号级联反应迅速导致血小板活化和凝血;随后,炎症细胞浸润受损组织并对抗微生物感染,同时还释放氧化亚氮和活性氧(ROS)等化合物 [40]。损伤区域结痂后,附近的皮肤细胞开始逐渐闭合伤口。在表皮中,角质形成细胞和成纤维细胞以协调的方式向损伤部位迁移和增殖 [41]。损伤后不久,表皮毛囊干细胞可分化为角质形成细胞,并迁移到表面促进愈合 [42]。在真皮中,伤口处的成纤维细胞分裂并迁移,与肌成纤维细胞共同作用使伤口闭合 [40]。因此,皮肤再生是角质形成细胞、成纤维细胞、毛囊干细胞、免疫细胞、血管细胞和损伤区域附近其他细胞之间高度协调对损伤做出反应的结果。

皮肤是一个多层器官,每层绝大多数细胞的增殖与迁移等都有昼夜节律。已知小鼠皮肤中至少有1400个基因的表达呈现昼夜节律 [43],其中298个基因在表皮层中呈节律性表达 [44]。表皮干细胞和角质形成细胞等在增殖、迁移、分化及胆固醇代谢等多个生理过程中表现出昼夜节律变化 [45] [46]。正常生理状况下,表皮中角质形成细胞的增殖高峰出现在生物的活跃期 [47]。例如,夜行性动物小鼠的角质形成细胞在白天增殖率较低,而在午夜增殖率最高;与之相反,昼行性人类的角质形成细胞则在白天出现增殖高峰 [47]。在体外培养的角质形成细胞中,生物钟使表皮干细胞倾向以24小时周期的方式对增殖和分化做出不同的反应 [45]。在小鼠皮肤受损后的伤口愈合过程中,成纤维细胞的迁移受昼夜节律的调节,在夜间伤口愈合速度更快 [48]。以上研究显示,昼夜节律参与调控皮肤再生的多个过程。

表皮干细胞的增殖受核心时钟基因的调控。研究发现,Bmal1和Per1/2的缺失分别增加和减少表皮干细胞的增殖 [49],这表明节律可通过影响表皮干细胞的细胞周期调控皮肤再生。小鼠皮肤再生过程中成纤维细胞的增殖受细胞周期检查点调节因子P16的调控,而后者的表达受生物钟控制 [50]。近期有研究报道核心时钟基因Npas2参与皮肤再生 [51] [52]。Npas2是Clock的旁系同源基因,在皮肤的成纤维细胞中表达;Npas2敲除小鼠的皮肤伤口愈合速度较野生型更快,皮肤成纤维细胞的增殖、迁移和收缩能力均显著升高 [51]。

除了核心时钟基因,人类表皮中表达的一种与抑制增殖相关的转录因子Kruppel样因子9 (KLF9)在时钟的下游发挥作用,驱动角质形成细胞的增殖呈昼夜节律性 [46]。研究发现CLOCK/BMAL1可以与KLF9启动子中的E-box序列结合 [46],引起皮肤中KLF9的振荡表达。KLF9的表达受糖皮质激素调控,白天皮质醇水平升高 [53],诱导KLF9的表达,从而抑制角质形成细胞的增殖。

3.3. 节律与肝脏再生

肝脏作为重要的消化器官,其细胞亚群包括实质细胞(肝细胞)和非实质细胞(枯否细胞、胆管细胞、肝窦内皮细胞、肝星状细胞、自然杀伤细胞和自然杀伤T细胞等)。枯否细胞是肝脏中最大的细胞群 [54],与巨噬细胞相互作用并分泌TNF-α和IL-6,诱导多个基因在肝脏中的表达,促进肝细胞的增殖 [55]。肝脏具有高度的再生能力,能在受损后恢复其质量和功能。部分肝切除术(PHx)后的肝再生可分为三个阶段:起始、增殖和终止。首先,静息的肝细胞面对多重刺激(起始期)时,启动细胞周期G0向G1转化;其次,在有丝分裂原的帮助下,肝细胞越过限制点进入G1期,然后进入有丝分裂期(增殖期);最后,肝细胞在负性因子如转化生长因子β和激活素等的控制下终止增殖(终止期) [56]。在这三个阶段中,各种细胞因子或生长因子通过多种信号通路发挥重要的作用。

研究发现,小鼠每个器官中都具有昼夜节律表达的蛋白质编码基因,而肝脏的节律基因最多(3186个) [57]。在肝脏内部存在一个生物钟,与SCN内的中央时钟同步,调节肝脏的生理活动与昼夜周期。肝脏的代谢活动,如葡萄糖、胆汁酸和胆固醇的代谢均受到昼夜节律的控制 [58]。

一项在小鼠上的早期研究发现,PHx36小时后进入S期的肝细胞数量达到峰值。然而,肝细胞进入有丝分裂的时间与PHx在一天中的时间有关:在ZT0进行PHx的肝细胞进入分裂的时间(48 h)比在ZT8进行同样手术的肝细胞(40 h)要晚8个小时 [59]。2012年的一项研究发现,PHx诱导的小鼠肝再生是由连续四次肝细胞增殖驱动的,其中前三次表现出昼夜节律性 [60]。近期一项研究也发现,在一天的不同时间进行PHx,其结果会不同:与早晨相比,在晚上进行PHx会延迟肝再生 [61]。以上研究证实了PHx后的肝再生受昼夜节律的调节。

早期研究发现,核心时钟基因Bmal1在肝脏再生过程中的表达模式与肝细胞的增殖高峰有关 [60],提示Bmal1在肝脏再生过程中可能起着重要作用。近期,有研究报道在小鼠肝脏条件性敲除Bmal1可显著影响肝细胞的增殖:失去Bmal1的肝细胞会延迟进入S期且无法进入M期 [62]。在分子水平,最近的一项研究发现PHx后肝细胞中许多原本节律表达的基因会失去节律性,部分这些基因的表达受Bmal1直接调控;PHx后Bmal1与许多节律基因的染色质结合位点发生改变,导致这些节律基因表达下调 [61]。在Bmal1之外,核心时钟基因Cry也参与调节肝脏再生 [59]。Cry敲除的小鼠在PHx后72小时其肝脏重量恢复显著低于野生型小鼠,提示Cry可调控肝细胞的增殖。

小鼠肝再生过程中,肝细胞的有丝分裂受一个G2-M检查点蛋白激酶Wee1的调控 [59]。Wee1的表达受核心时钟基因Bmal1和Clock直接控制,Wee1蛋白可磷酸化Cdc2激酶使其失活,从而抑制肝细胞进入M期。在肝细胞中,细胞周期抑制物p21的表达也受生物钟调控 [63]。p21蛋白在正常成人肝脏中不表达,但在PHx后被强烈诱导,参与调节肝细胞的细胞周期进程 [64]。在Wee1和p21之外,一个组蛋白去乙酰化酶SIRT1也被报道调节肝脏再生和肝细胞昼夜节律 [65]。在肝脏中,SIRT1参与调节生物钟下游基因的节律性表达;在PHx后,条件敲除SIRT1的小鼠肝细胞的G1-S期转换以及节律基因表达受到显著影响,并伴随异常的脂质代谢 [65]。这些研究结果表明,肝细胞的多个细胞周期阶段处于时钟下游,生物钟可以在包括G1期和 G2/M 转换等多个阶段调控肝细胞增殖。

4. 总结与展望

综上所述,近几十年来人们对组织器官再生的研究在细胞和分子水平上已经取得很大进展,但对于再生过程的昼夜节律以及生物钟在再生中的作用尚不够了解。目前,关于节律与再生的研究主要集中在肠道、皮肤和肝脏这三个器官,节律在其他组织和器官如神经系统再生中可能的作用尚不清楚。对于节律调控再生的机制方面的研究,现有报道大多聚焦在生物钟对细胞周期的影响这一方向。然而,考虑所有可能的因素是必要的,包括新陈代谢、激素、免疫反应和外界环境等,这些因素都会影响再生的进程和结果并可能存在某些未知的作用。在进行节律与再生关系的分子机制方面的研究时,需要进一步将生物钟与再生信号途径及相关基因进行分子链接的结合。

在哺乳动物中存在细胞内自主时钟与中枢和外周时钟之间的关联,然而,它们在机制上是否基本相似,它们是如何在不同的细胞环境及外界干扰中发挥作用的尚不清楚。此外,位于下丘脑SCN的中枢生物钟如何调控节律从而影响外周器官的发育与再生的相关生理过程都亟待进一步研究。多层次地综合分析这些因素对昼夜节律的影响是一个具有挑战性的研究领域,这些研究有望使昼夜节律与组织器官再生这一研究领域向前跃进一大步。

基金项目

国家自然科学基金面上项目(81970820)。

NOTES

*通讯作者。

参考文献

[1] Weger, M., Diotel, N. and Dorsemans, A.C. (2017) Stem Cells and the Circadian Clock. Developmental Biology, 431, 111-123.
https://doi.org/10.1016/j.ydbio.2017.09.012
[2] Roenneberg, T., Kantermann, T. and Juda, M. (2013) Light and the Human Circadian Clock. In: Kramer, A. and Merrow, M., Eds., Handbook of Experimental Pharmacology, Vol. 217, Springer, Berlin, 311-331.
https://doi.org/10.1007/978-3-642-25950-0_13
[3] Hastings, M.H., Maywood, E.S. and Brancaccio, M. (2018) Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nature Reviews Neuroscience, 19, 453-469.
https://doi.org/10.1038/s41583-018-0026-z
[4] Ko, C.H. and Takahashi, J.S. (2006) Molecular Components of the Mammalian Circadian Clock. Human Molecular Genetics, 15, R271-R277.
https://doi.org/10.1093/hmg/ddl207
[5] Vitaterna, M.H., Ko, C.H. and Chang, A.M. (2006) The Mouse Clock Mutation Reduces Circadian Pacemaker Amplitude and Enhances Efficacy of Resetting Stimuli and Phase-Response Curve Amplitude. Proceedings of the National Academy of Sciences of the United States of America, 103, 9327-9332.
https://doi.org/10.1073/pnas.0603601103
[6] Zhang, S., Dai, M. and Wang, X. (2020) Signalling Entrains the Pe-ripheral Circadian Clock. Cellular Signalling, 69, Article ID: 109433.
https://doi.org/10.1016/j.cellsig.2019.109433
[7] Tahara, Y. and Shibata, S. (2016) Circadian Rhythms of Liver Physiology and Disease: Experimental and Clinical Evidence. Nature Reviews Gastroenterology & Hepatology, 13, 217-226.
https://doi.org/10.1038/nrgastro.2016.8
[8] Dierickx, P., Van Laake, L.W. and Geijsen, N. (2018) Cir-cadian Clocks: From Stem Cells to Tissue Homeostasis and Regeneration. EMBO Reports, 19, 18-28.
https://doi.org/10.15252/embr.201745130
[9] Sato, T.K., Panda, S. and Miraglia, L.J. (2004) A Functional Ge-nomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock. Neuron, 43, 527-537.
https://doi.org/10.1016/j.neuron.2004.07.018
[10] Preitner, N., Damiola, F. and Lopez-Molina, L. (2002) The Or-phan Nuclear Receptor REV-ERBalpha Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator. Cell, 110, 251-260.
https://doi.org/10.1016/S0092-8674(02)00825-5
[11] Harding, H.P. and Lazar, M.A. (1993) The Orphan Receptor Rev-ErbA Alpha Activates Transcription via a Novel Response Element. Molecular and Cellular Biology, 13, 3113-3121.
https://doi.org/10.1128/MCB.13.5.3113
[12] Zhang, Y., Fang, B. and Emmett, M.J. (2015) Gene Regulation. Dis-crete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock. Science (New York, NY), 348, 1488-1492.
https://doi.org/10.1126/science.aab3021
[13] Mcmahon, D.G., Iuvone, P.M. and Tosini, G. (2014) Circadian Or-ganization of the Mammalian Retina: From Gene Regulation to Physiology and Diseases. Progress in Retinal and Eye Research, 39, 58-76.
https://doi.org/10.1016/j.preteyeres.2013.12.001
[14] Umemura, Y., Koike, N. and Ohashi, M. (2017) Involvement of Posttranscriptional Regulation of Clock in the Emergence of Circadian Clock Oscillation during Mouse Development. Proceedings of the National Academy of Sciences of the United States of America, 114, E7479-E7488.
https://doi.org/10.1073/pnas.1703170114
[15] Tsuchiya, Y., Umemura, Y. and Yagita, K. (2020) Circadian Clock and Cancer: From a Viewpoint of Cellular Differentiation. International Journal of Urology: Official Journal of the Jap-anese Urological Association, 27, 518-524.
https://doi.org/10.1111/iju.14231
[16] Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55.
https://doi.org/10.1038/s41575-020-0342-4
[17] Gonzales, K.A.U. and Fuchs, E. (2017) Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 43, 387-401.
https://doi.org/10.1016/j.devcel.2017.10.001
[18] Elkhenany, H., Alokda, A. and El-Badawy, A. (2018) Tissue Regeneration: Impact of Sleep on Stem Cell Regenerative Capacity. Life Sciences, 214, 51-61.
https://doi.org/10.1016/j.lfs.2018.10.057
[19] Karmakar, S., Deng, L. and He, X.C. (2020) Intestinal Epithelial Re-generation: Active versus Reserve Stem Cells and Plasticity Mechanisms. American Journal of Physiology Gastrointes-tinal and Liver Physiology, 318, G796-G802.
https://doi.org/10.1152/ajpgi.00126.2019
[20] Parasram, K. and Karpowicz, P. (2020) Time after Time: Circadian Clock Regulation of Intestinal Stem Cells. Cellular and Molecular Life Sciences: CMLS, 77, 1267-1288.
https://doi.org/10.1007/s00018-019-03323-x
[21] Darwich, A.S., Aslam, U. and Ashcroft, D.M. (2014) Me-ta-Analysis of the Turnover of Intestinal Epithelia in Preclinical Animal Species and Humans. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42, 2016-2022.
https://doi.org/10.1124/dmd.114.058404
[22] Li, B., Lee, C. and Cadete, M. (2019) Impaired Wnt/β-Catenin Path-way Leads to Dysfunction of Intestinal Regeneration during Necrotizing Enterocolitis. Cell Death & Disease, 10, Article No. 743.
https://doi.org/10.1038/s41419-019-1987-1
[23] Van der Flier, L.G. and Clevers, H. (2009) Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium. Annual Review of Physiology, 71, 241-260.
https://doi.org/10.1146/annurev.physiol.010908.163145
[24] Barker, N. (2014) Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nature Reviews Molecular Cell Biology, 15, 19-33.
https://doi.org/10.1038/nrm3721
[25] Jasper, H. (2020) Intestinal Stem Cell Aging: Origins and Interventions. An-nual Review of Physiology, 82, 203-226.
https://doi.org/10.1146/annurev-physiol-021119-034359
[26] Sancho, E., Batlle, E. and Clevers, H. (2003) Live and Let Die in the Intestinal Epithelium. Current Opinion in Cell Biology, 15, 763-770.
https://doi.org/10.1016/j.ceb.2003.10.012
[27] Borgs, L., Beukelaers, P. and Vandenbosch, R. (2009) Cell “Circa-dian” Cycle: New Role for Mammalian Core Clock Genes. Cell Cycle (Georgetown, Tex), 8, 832-837.
https://doi.org/10.4161/cc.8.6.7869
[28] Qiu, J.M., Roberts, S.A. and Potten, C.S. (1994) Cell Migration in the Small and Large Bowel Shows a Strong Circadian Rhythm. Epithelial Cell Biology, 3, 137-148.
[29] Al-Nafussi, A.I. and Wright, N.A. (1982) Circadian Rhythm in the Rate of Cellular Proliferation and in the Size of the Functional Com-partment of Mouse Jejunal Epithelium. Virchows Archiv B, Cell Pathology Including Molecular Pathology, 40, 71-79.
https://doi.org/10.1007/BF02932852
[30] Karpowicz, P., Zhang, Y. and Hogenesch, J.B. (2013) The Circadian Clock Gates the Intestinal Stem Cell Regenerative State. Cell Reports, 3, 996-1004.
https://doi.org/10.1016/j.celrep.2013.03.016
[31] Matsu-Ura, T., Dovzhenok, A. and Aihara, E. (2016) Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Molecular Cell, 64, 900-912.
https://doi.org/10.1016/j.molcel.2016.10.015
[32] Hoogerwerf, W.A., Hellmich, H.L. and Cornélissen, G. (2007) Clock Gene Expression in the Murine Gastrointestinal Tract: Endogenous Rhythmicity and Effects of a Feeding Regimen. Gastroenterology, 133, 1250-1260.
https://doi.org/10.1053/j.gastro.2007.07.009
[33] Hardin, P.E., Hall, J.C. and Rosbash, M. (1990) Feedback of the Drosophila Period Gene Product on Circadian Cycling of Its Messenger RNA Levels. Nature, 343, 536-540.
https://doi.org/10.1038/343536a0
[34] Peyric, E., Moore, H.A. and Whitmore, D. (2013) Circadian Clock Regula-tion of the Cell Cycle in the Zebrafish Intestine. PLOS ONE, 8, e73209.
https://doi.org/10.1371/journal.pone.0073209
[35] Stokes, K., Cooke, A. and Chang, H. (2017) The Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration. Cellular and Molecular Gastroenterology and Hepatology, 4, 95-114.
https://doi.org/10.1016/j.jcmgh.2017.03.011
[36] Muncan, V., Sansom, O.J. and Tertoolen, L. (2006) Rapid Loss of Intestinal Crypts upon Conditional Deletion of the Wnt/Tcf-4 Target Gene c-Myc. Molecular and Cellular Biology, 26, 8418-8426.
https://doi.org/10.1128/MCB.00821-06
[37] Parasram, K., Bernardon, N. and Hammoud, M. (2018) Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports, 11, 1287-1301.
https://doi.org/10.1016/j.stemcr.2018.10.010
[38] Takeo, M., Lee, W. and Ito, M. (2015) Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 5, a023267.
https://doi.org/10.1101/cshperspect.a023267
[39] Seifert, A.W., Monaghan, J.R. and Voss, S.R. (2012) Skin Re-generation in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates. PLOS ONE, 7, e32875.
https://doi.org/10.1371/journal.pone.0032875
[40] Shaw, T.J. and Martin, P. (2009) Wound Repair at a Glance. Journal of Cell Science, 122, 3209-3213.
https://doi.org/10.1242/jcs.031187
[41] Pastar, I., Stojadinovic, O. and Yin, N.C. (2014) Epithelialization in Wound Healing: A Comprehensive Review. Advances in Wound Care, 3, 445-464.
https://doi.org/10.1089/wound.2013.0473
[42] Ito, M., Liu, Y. and Yang, Z. (2005) Stem Cells in the Hair Follicle Bulge Contribute to Wound Repair but Not to Homeostasis of the Epidermis. Nature Medicine, 11, 1351-1354.
https://doi.org/10.1038/nm1328
[43] Geyfman, M., Kumar, V. and Liu, Q. (2012) Brain and Muscle Arnt-Like Protein-1 (BMAL1) Controls Circadian Cell Proliferation and Susceptibility to UVB-Induced DNA Damage in the Epi-dermis. Proceedings of the National Academy of Sciences of the United States of America, 109, 11758-11763.
https://doi.org/10.1073/pnas.1209592109
[44] Wu, G., Ruben, M.D. and Schmidt, R.E. (2018) Population-Level Rhythms in Human Skin with Implications for Circadian Medicine. Proceedings of the National Academy of Sciences of the United States of America, 115, 12313-12318.
https://doi.org/10.1073/pnas.1809442115
[45] Janich, P., Toufighi, K. and Solanas, G. (2013) Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations. Cell Stem Cell, 13, 745-753.
https://doi.org/10.1016/j.stem.2013.09.004
[46] Spörl, F., Korge, S. and Jürchott, K. (2012) Krüppel-Like Factor 9 Is a Circadian Transcription Factor in Human Epidermis That Controls Proliferation of Keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 109, 10903-10908.
https://doi.org/10.1073/pnas.1118641109
[47] Lyons, A.B., Moy, L. and Moy, R. (2019) Circadian Rhythm and the Skin: A Review of the Literature. The Journal of Clinical and Aesthetic Dermatology, 12, 42-45.
[48] Hoyle, N.P., Seinkmane, E. and Putker, M. (2017) Circadian Actin Dynamics Drive Rhythmic Fibroblast Mobilization during Wound Healing. Science Translational Medicine, 9, Article No. 415.
https://doi.org/10.1126/scitranslmed.aal2774
[49] Janich, P., Pascual, G. and Merlos-Suárez, A. (2011) The Circa-dian Molecular Clock Creates Epidermal Stem Cell Heterogeneity. Nature, 480, 209-214.
https://doi.org/10.1038/nature10649
[50] Kowalska, E., Ripperger, J.A. and Hoegger, D.C. (2013) NONO Couples the Circadian Clock to the Cell Cycle. Proceedings of the National Academy of Sciences of the United States of America, 110, 1592-1599.
https://doi.org/10.1073/pnas.1213317110
[51] Sasaki, H., Hokugo, A. and Wang, L. (2020) Neuronal PAS Do-main 2 (Npas2)-Deficient Fibroblasts Accelerate Skin Wound Healing and Dermal Collagen Reconstruction. Anatomical Record (Hoboken, NJ: 2007), 303, 1630-1641.
https://doi.org/10.1002/ar.24109
[52] Shibuya, Y., Hokugo, A. and Okawa, H. (2022) Therapeutic Downregulation of Neuronal PAS Domain 2 (Npas2) Promotes Surgical Skin Wound Healing. eLife, 11, Article No. 71074.
https://doi.org/10.7554/eLife.71074
[53] Adam, E.K., Quinn, M.E. and Tavernier, R. (2017) Diurnal Cortisol Slopes and Mental and Physical Health Outcomes: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology, 83, 25-41.
https://doi.org/10.1016/j.psyneuen.2017.05.018
[54] Bonnardel, J., T’jonck, W. and Gaublomme, D. (2019) Stel-late Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Mac-rophage Niche. Immunity, 51, 638-654.e9.
https://doi.org/10.1016/j.immuni.2019.08.017
[55] Shi, J.H. and Line, P.D. (2020) Hallmarks of Postoperative Liver Regeneration: An Updated Insight on the Regulatory Mechanisms. Journal of Gastroenterology and Hepatology, 35, 960-966.
https://doi.org/10.1111/jgh.14944
[56] Tao, Y., Wang, M. and Chen, E. (2017) Liver Regeneration: Analysis of the Main Relevant Signaling Molecules. Mediators of Inflammation, 2017, Article ID: 4256352.
https://doi.org/10.1155/2017/4256352
[57] Zhang, R., Lahens, N.F. and Balance, H.I. (2014) A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proceedings of the National Academy of Sciences of the United States of America, 111, 16219- 16224.
https://doi.org/10.1073/pnas.1408886111
[58] Ferrell, J.M. and Chiang, J.Y. (2015) Circadian Rhythms in Liver Metabolism and Disease. Acta Pharmaceutica Sinica B, 5, 113-122.
https://doi.org/10.1016/j.apsb.2015.01.003
[59] Matsuo, T., Yamaguchi, S. and Mitsui, S. (2003) Control Mecha-nism of the Circadian Clock for Timing of Cell Division in Vivo. Science (New York, NY), 302, 255-259.
https://doi.org/10.1126/science.1086271
[60] Zou, Y., Bao, Q. and Kumar, S. (2012) Four Waves of Hepatocyte Proliferation Linked with Three Waves of Hepatic Fat Accumulation during Partial Hepatectomy-Induced Liver Regener-ation. PLOS ONE, 7, e30675.
https://doi.org/10.1371/journal.pone.0030675
[61] Wei, S., Zheng, Q. and Pan, Y. (2022) Interplay between Liver Circadian Rhythm and Regeneration after PHx. Genomics, 114, 1-8.
https://doi.org/10.1016/j.ygeno.2021.11.023
[62] Jiang, H., Garcia, V. and Yanum, J.A. (2021) Circadian Clock Core Component Bmal1 Dictates Cell Cycle Rhythm of Proliferating Hepatocytes during Liver Regeneration. American Journal of Physiology Gastrointestinal and Liver Physiology, 321, G389-G399.
https://doi.org/10.1152/ajpgi.00204.2021
[63] Gréchez-Cassiau, A., Rayet, B. and Guillaumond, F. (2008) The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation. The Journal of Biological Chemistry, 283, 4535-4542.
https://doi.org/10.1074/jbc.M705576200
[64] Ilyin, G.P., Glaise, D. and Gilot, D. (2003) Regulation and Role of p21 and p27 Cyclin-Dependent Kinase Inhibitors during Hepato-cyte Differentiation and Growth. American Journal of Physiology Gastrointestinal and Liver Physiology, 285, G115-G127.
https://doi.org/10.1152/ajpgi.00309.2002
[65] Bellet, M.M., Masri, S. and Astarita, G. (2016) His-tone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. The Journal of Biological Chemistry, 291, 23318-23329.
https://doi.org/10.1074/jbc.M116.737114