医用镁合金表面电沉积制备羟基磷灰石涂层
Electrodeposition of Hydroxyapatite Coating on Magnesium Alloy for Biomaterial Application
摘要: 镁及其合金由于具有良好的生物学特性成为潜在的可生物降解的植入材料,但是其低的抗腐蚀能力会导致植入失败。在镁合金基体表面电沉积获得羟基磷灰石(HA)涂层用以改善镁合金的抗腐蚀能力。用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅立叶红外分析(FTIR)等手段对涂层进行了表征。实验结果表明:电沉积的羟基磷灰石涂层呈现片状、针状,随着电压、时间的增加,涂层变厚,涂层的主要成分为HA,具有良好的耐腐蚀性能。
Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological property. But their poor corrosion resistance may result in the sudden failure of the implants. The hydroxyapatite (HA) coating was electrodeposited on magnesium alloy surface to improve its corrosion resistance. Technique properties of coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) respectively and Fourier transform infrared spectrometry (FTIR). The results show that hydroxyapatite crystals are flakes and needles. The thickness of the coatings increases along with the increase of voltage and time. The main component of the coating is hy-droxyapatite, and shows good corrosion resistance performance.
文章引用:彭忠东, 伊跃军, 曹雁冰, 杜柯, 胡国荣. 医用镁合金表面电沉积制备羟基磷灰石涂层[J]. 化学工程与技术, 2012, 2(2): 42-47. http://dx.doi.org/10.12677/hjcet.2012.22008

参考文献

[1] 高家诚, 乔英丽. 镁基可降解硬组织生物材料的研究进展[J]. 功能材料, 2008, 39(5): 705-708.
[2] C. L. Liu, Y. C. Xin, G. Y. Tang, et al. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 mag- nesium alloy in simulated body fluid. Materials Science and En- gineering A, 2007, 456(1-2): 350-357.
[3] G. L. Song. Control of biodegradation of biocompatible magne- sium alloys. Corrosion Science, 2007, 49(4): 1696-1701.
[4] F. Wittea, J. Fischera, J. Nellesen, et al. In vitro and in vivo cor- rosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013-1018.
[5] 许鑫华, 程静, 张春怀等. 医用镁合的生物腐蚀及高分子涂层处理[J]. 稀有金属材料与工程, 2008, 37(7): 1225-1228.
[6] 颜廷亭, 谭丽丽, 熊党生等. 生物医用AZ31B镁合金表面稀土转化膜的制备及其性能研究[J]. 稀有金属材料与工程, 2009, 38(5): 918-923.
[7] L. C. Li, J. C. Gat and Y. Wang. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simu- lated body fluid. Surface and Coatings Technology, 2004, 185(1): 92-98.
[8] B.-D. Hahn, D.-S. Park, J.-J. Choi, et al. Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable mag- nesium alloy. Surface & Coatings Technology, 2001 205(8-9): 3112-3118.
[9] 蔡舒, 姚康德, 李鸿祥. 羟基磷灰石合成及高温稳定性的研究[J]. 无机材料学报, 2003, 18(4): 807-812.
[10] M. H. Fathi, A. Hanifi and V. Mortazavi. Preparation and bioac- tivity evaluation of bone-like hydroxyapatite nanopowder. Jour- nal of Materials Processing Technology, 2008, 202(1-3): 536- 542.
[11] 贺定勇, 孙旭峰, 赵力东. 微束等离子喷涂羟基磷灰石涂层[J]. 无机材料学报, 2007, 22(4): 754-758.
[12] 李宝娥, 罗宏杰. 溶胶凝胶法制备钛基体羟基磷灰石涂层[J]. 材料导报, 2004, 18(3): 243-246.
[13] 郭洁, 王欣宇, 唐舟等. 通过仿生法在镁合金表面制备羟基磷灰石涂层的研究[J]. 现代生物医学进展, 2009, 9(12): 2267- 2269.
[14] 高亚丽, 熊党生, 王存山等. 医用镁合金激光制备羟基磷灰石涂层研究[J]. 应用激光, 2009, 29(6): 526-530.
[15] Y. W. Song, D. Y. Shan and E. H. Han. Electrodeposi-tion of hydroxyapatite coating on AZ91D magnesium alloy for bioma- terial application. Materials Letters, 2008, 62(17-18): 3276- 3279.
[16] 薛若茵, 李克智, 李贺军等. 电沉积制备羟基磷灰石–碳化硅复合涂层[J]. 电镀与精饰, 2008, 30(9): 4-8.