超声辅助提取杨梅渣膳食纤维工艺研究
Research on Ultrasound-Assisted Extraction of Water Soluble Dietary Fiber from Bayberry Pomace
DOI: 10.12677/hjcet.2012.22005, PDF, HTML, 下载: 3,581  浏览: 9,053 
作者: 杨菊红:浙江工商大学食品与生物工程学院,浙江医学高等专科学校基础部;周凌霄*, 韩晓祥, 陈青:浙江工商大学食品与生物工程学院
关键词: 杨梅渣水溶性膳食纤维超声提取
Bayberry Pomace; Water Soluble Dietary Fiber; Ultrasound-Assisted Extraction
摘要: 利用响应面分析法(Response Surface Method)对超声辅助提取杨梅渣水溶性膳食纤维(SDF)工艺进行优化。在单因素实验的基础上,根据中心组合(Box-Benhnken)实验设计原理,采用三因素三水平的响应面分析法,以杨梅渣SDF得率为响应值进行回归分析。结果表明杨梅渣SDF的最佳提取工艺条件为:超声功率为60 W、超声时间为20.5 min、超声温度为71℃时,杨梅渣SDF的提取率为8.4%,与模型预测值基本相符。超声波辅助提取法是一种较好提取杨梅渣膳食纤维的方法。
Abstract: Ultrasound-assisted extraction (UAE) of water soluble dietary fiber from Bayberry Pomace was studied. The effects of three factors on the yield of water soluble dietary fiber polysaccharides were investigated. Response surface methodology (RSM) was applied to optimize the process of extraction. Box-Benhnken experimental design was used for experimental design and data analysis was conducted to obtain the optimum extraction conditions. Results: The obtained optimum conditions were ultrasonic time 20.5 min, ultrasonic temperature 71˚C and ultrasonic power 60 W. Under the optimized conditions, the extraction yield of water soluble dietary fiber was up to 8.4%, in close agreement with values predicted by the mathematical model. Ultrasound-assisted extraction is a best method for extraction of wa- ter soluble dietary fiber from Bayberry Pomace.
文章引用:杨菊红, 周凌霄, 韩晓祥, 陈青. 超声辅助提取杨梅渣膳食纤维工艺研究[J]. 化学工程与技术, 2012, 2(2): 29-36. http://dx.doi.org/10.12677/hjcet.2012.22005

参考文献

[1] 郑建仙. 功能性食品(第一卷)[M]. 北京: 中国轻工业出版社, 1999: 180-187.
[2] 刘静. 膳食纤维的生理功能及其在食品工业中的应用[J]. 内蒙古科技与经济, 2007, 26(5): 54-55.
[3] 卢宏科, 王琴, 区子弁等. 膳食纤维的功能与应用[J]. 广东农业科学, 2007, 108(4): 67-69.
[4] 宋欢, 石文娟, 孟祥燕等. 膳食纤维抗肿瘤作用研究[J]. 粮食与油脂, 2006, 19(5): 46-48.
[5] 田志刚, 王勇, 马玉霞. 膳食纤维的生理功能及其在食品中的应用[J]. 农产品加工(学刊), 2007, 6(9): 94-95.
[6] 曾顺德, 张迎君, 漆巨容. 膳食纤维开发利用现状[J]. 西南园艺, 2005, 33(B5): 99-101.
[7] 潘雪峰, 杨明非, 赵长全. 柚皮提取膳食纤维[J]. 东北林业大学学报, 2005, 49(2): 110-111.
[8] M. A. Rostagno, M. Palma and C. G. Barroso. Ultra-sound-as- sisted extraction of soy isoflavones. Journal of Chromatog-raphy A, 2003, 1012: 119-128.
[9] Z. Hromádková, A. Ebringerová. Ultrasonic extraction of plant materials investigation of hemicellulose release from buckwheat hulls. Ultrasonics Sonochemistry, 2003, 10(3): 127-133.
[10] A. Tor, M. E. Aydin and S. Özcan. Ultrasonic solvent extraction of pesticides from soil. Analytica Chimica Acta, 2006, 559(2): 173-180.
[11] 杨雪. 超声波法提取玉米皮中水溶性膳食纤维的工艺研究[J]. 农产品加工(学刊), 2008, 7(11): 68-70.
[12] A. Femenia, C. Lefebvre, Y. Thebaudin, et al. Physical and sen- sory properties of model foods supplemented with cauliflower fiber. Journal of Food Science, 1997, 62(4): 635-639.
[13] 安金双, 王迪, 马士淇等. 响应面法优化灰树花中多糖超声波提取工艺的研究[J]. 食品研究与开发, 2008, 29(6): 11-15.
[14] 王允祥, 吕凤霞, 陆兆新. 杯伞发酵培养基的响应曲面法优化研究[J]. 南京农业大学学报, 2004, 27(3): 89-94.
[15] 周劭桓, 成纪予, 叶兴乾. 杨梅渣抗氧化活性及其膳食纤维功能特性研究[J]. 中国食品学报, 2009, 1(9): 52-58.
[16] M. P. Kahkonen, A. I. Hopia and M. Heinonen. Berry phenolics and their antioxidant activity. Journal of Agricultural Food Chem- istry, 2001, 49(8): 4076-4082.