浅谈免疫检查点抑制剂联合放化疗治疗局限期小细胞肺癌的研究进展
The Research Progress of Immune Checkpoint Inhibitor and Chemoradiotherapy for Limited Stage Small Cell Lung Cancer
DOI: 10.12677/ACM.2022.1291173, PDF, HTML, XML, 下载: 344  浏览: 660 
作者: 红 艳:内蒙古民族大学第二临床医学院,内蒙古 牙克石;曲洪澜*:内蒙古林业总医院,内蒙古 牙克石
关键词: 局限期小细胞肺癌LS-SCLC型免疫治疗同步免疫治疗放化疗Limited Stage Small Cell Lung Cancer LS-SCLC Type Immunotherapy Synchronous Immunotherapy and Chemoradiotherapy
摘要: 局限期小细胞肺癌(LS-SCLC)是一种潜在的可治愈疾病。然而,大多数患者在最终治疗后不久出现疾病复发。一线铂/依托泊苷联合免疫疗法治疗大分期小细胞肺癌(SCLC)具有生存效益。因此,重要的是确定免疫治疗对总生存率的提高是否可以更早地转化为LS-SCLC的治疗模式。在这里,我们回顾了放射和免疫治疗联合的潜在临床前期,各自治疗方式的安全性和有效性,以及正在进行的探索LS-SCLC新治疗方法的试验。LS-SCLC的关键试验正在进行,预计将有助于了解免疫疗法与铂基放化疗并行治疗的有效性和安全性。
Abstract: Limited stage small cell lung cancer (LS-SCLC) is a potentially curable disease. However, most pa-tients develop a disease relapse shortly after the definitive treatment. First-line plati-num/etoposide combined immunotherapy has survival benefits in treating large-stage small-cell lung cancer (SCLC). Therefore, it is important to determine whether the improved overall survival achieved by immunotherapy can translate earlier into treatment modalities for LS-SCLC. Here, we review the potential preclinical phase of the combination of radiation and immunotherapy, the safety and efficacy of the respective treatment modalities, and ongoing trials exploring new thera-pies for LS-SCLC. Key trials of LS-SCLC are ongoing and are expected to help understand the efficacy and safety of immunotherapy treated in parallel with platinum-based chemoradiotherapy.
文章引用:红艳, 曲洪澜. 浅谈免疫检查点抑制剂联合放化疗治疗局限期小细胞肺癌的研究进展[J]. 临床医学进展, 2022, 12(9): 8145-8150. https://doi.org/10.12677/ACM.2022.1291173

1. 引言

小细胞肺癌(SCLC)是一种侵袭性恶性肿瘤,具有顽固性神经内分泌特征,5年总生存期较差 [1]。局限期小细胞肺癌(LS-SCLC)目前的治疗标准(SoC)是同步放化疗(CCRT) + 铂模拟物 + 依托泊苷 [2] [3] [4] [5]。虽然LS-SCLC有可能通过放化疗治愈,但预后仍很差,中位无进展生存期(PFS)和中位总生存期(OS)分别为15个月和30个月 [6]。在这里,我们回顾了联合放疗和免疫治疗的临床前证据,ICIs联合CCRT的安全性和有效性,以及正在进行的探索LS-SCLC新治疗方法的试验。

2. 免疫治疗和放射治疗的协同作用

免疫治疗、放射治疗的结合是治疗顽固性恶性肿瘤如SCLC的一种有希望的方法。1979年,Steel [7] 描述了药物与放疗联合治疗通过调节肿瘤微环境和改善预后的协同作用机制 [8]。Postow等 [9] 发现黑色素瘤患者接受CTLA-4单抗易普利姆玛治疗时病灶缓慢进展,病情进展后给予脊柱旁病灶9.5Gy3次照射,治疗后未接受照射的肺门旁淋巴结和脾脏转移灶也相继缩小。这提示局部放疗协同免疫治疗对于转移性肿瘤是非常有潜力的治疗方式。放疗与免疫治疗协同作用可显著提高抗肿瘤疗效 [10]。

3. 免疫治疗和放射治疗联合安全性

放疗联合免疫治疗可以起到事半功倍的效果,但也应关注其不良反应。顺铂和依托泊苷联合CCRT治疗LS-SCLC仍为SoC [2] [6]。该疗法常伴有疲劳、细胞减少、食管炎和胃肠道毒性等副作用。严重的副作用,如嗜中性粒细胞减少热(18%),严重的食管炎(19%)和严重的肺炎(2%)也可能发生 [6]。Hiniker等 [11] 对转移性黑色素瘤患者的临床研究 发现放疗联合应用免疫检查点抑制剂易普利姆玛并没有增加毒性反应,并观察到在治疗失败的转移患者中T淋巴细胞对恶性组织的浸润起了重要作用。有临床试验更进一步的表明,SRS联合双药免疫检查点抑制剂治疗时,仍是安全和可耐受的,两者同步时放疗可能放大免疫治疗的区域效应 [12]。还有更加全面的临床试验表明,抗PD-1单抗序贯或同步放疗的毒性均较小,而且患者对常规分割和低分割放疗的耐受性均较好,提示该联合治疗模式是转移性病变的低风险治疗选择 [13]。然而,在LS-SCLC的治疗策略中实施的胸片放疗,以及与ICI相关的固有肺毒性(如肺炎),肺炎和肺部不良事件的理论风险可能发生的频率更高,但仍在很大程度上未知 [14]。在一项针对LS-SCLC的随机II期临床试验(NCT02046733)中,研究了CCRT后的双重ICI巩固(刺激) [15]。CCRT后78例患者接受巩固易普利姆玛 + 纳武利尤单抗治疗,75例患者单独接受CCRT治疗。CCRT后联合应用ICI与单独使用CCRT相比,严重(3/4级)不良事件发生率更高(分别为62% vs. 25%) [15]。同时,55% (n = 43/78)接受巩固性ICI治疗的患者因不良事件而停止治疗,到ICI停止治疗的中位时间为1.7个月15。报告的最常见的严重不良事件包括肺炎(9%)、疲劳(9%)和腹泻(7%) [15]。研究中有4人死亡,可能与研究药物有关,特别是肠梗阻(n = 1)和肺毒性(n = 3) [15]。这些研究之间的矛盾结果可能是因为肺癌组织学亚型(如SCLC vs. NSCLC)的潜在异质性和生物学差异。另外,这可能是由于样本量、剂量计划或使用的方案的变化。因此,在进行以肺不良事件为重点的试验中的安全性评估时,应同时考虑LS-SCLC的多模式并发和巩固策略的方法和节奏。

4. LS-SCLC的免疫治疗和放化疗

到目前为止,CCRT或巩固性ICI联合免疫治疗的临床应用仍然有限,只有两个临床试验报告了LS-SCLC的结果 [15] [16]。关于同时使用派姆单抗和CCRT然后巩固派姆单抗的初始数据是有希望的,而巩固伊匹单抗和尼鲁单抗在CCRT后与SoC观察相比并没有带来显著的益处 [15] [16]。然而,这些试验已经为ICI + CCRT建立临床优先级奠定了基础,并有助于我们在该领域进行的临床试验中对LS-SCLC生物学的理解。

一项I/II期临床试验(NCT02402920)这研究证明了在LS-SCLC患者中同时应用ICI和CCRT的安全性和有效性 [16]。本试验的I期部分采用了3 + 3设计,以确定II期部分入组的派姆单抗与CCRT同时使用的最大耐受剂量(MTD)。派姆单抗的MTD无法确定,因此根据NSCLC [17] 的研究,将剂量设定为每3周200 mg。如前所述,本研究未出现安全信号 [16]。共入组40例患者,中位随访23.1个月,PFS为19.7个月(95% CI: 8.8~30.5),中位OS为39.5个月(95% CI: 8.0~71.0) [16]。此外,在这项CCRT联合巩固性派姆单抗的I/II期试验中,67.5%的患者(n = 27)接受了PCI治疗 [16]。值得注意的是,他们的中位OS未达到,而未接受PCI的患者的中位OS为39.5个月(HR 3.9, 95% CI: 1.1~13.6; p < 0.05) [16]。这是否反映了免疫治疗和颅照射之间的协同效益,通过远距效应与选择和不朽的偏见来预防颅内转移是很难阐明的。

刺激试验是一项II期研究(NCT02046733),研究了CCRT后每3周强化纳武利尤单抗(1 mg/kg) + 易普利姆玛(3 mg/kg)的使用 [15]。在CCRT完成后,共有153名患者被随机分为巩固型伊匹单抗 + 尼鲁单抗,对比观察 [15]。中位随访22.4个月,两组间的中位无进展生存期(PFS)相似(10.7个月vs. 14.5个月,HR = 1.02;95%可信区间:0.6~1.58;P = 0.93,在实验臂与观察臂分别) [15]。同样,两组之间的OS也没有统计学差异(实验组和观察组的中位OS分别未达到32.1个月;Hr 0.95;95%可信区间:0.59~1.52;P = 0.82) [15]。如前所述,实验组的中位治疗时间为1.7个月,这可能反映了联合ICI与观察相比严重不良事件的高发生率(G3/G4 AEs: 62% vs 25%) [15]。有限的研究性治疗时间(1.7个月)和双重ICI方案增加的毒性可能模糊了SCLC活性的潜在疗效信号。在这种情况下评估不同ICI组合的LS-SCLC试验正在进行中,可能会为这些问题提供答案。

5. 正在进行的临床试验

这些临床试验是研究ICIs在LS-SCLC中的作用。这些试验在ICI的种类、作用机制、时机、给药计划和ICI组合方面各不相同。

1) 多机构随机II期试验ACHILES (NCT03540420)试图研究在LS-SCLC中,将阿替利珠单抗整合到CCRT后的巩固期是否有作用,患者在CCRT完成后随机接受阿替利珠单抗1200 mg,每3周,持续12个月,或观察 [18] 主要终点为2年OS。

2) III期随机ADRIATIC试验(NCT03703297)在CCRT完成后LS-SCLC患者被随机接受巩固度伐利尤单抗1500 mg + 替西利姆单抗75 mg (最多4个剂量)每4周(Arm I),度伐利尤单抗1500 mg + 安慰剂每4周(最多4个剂量) (Arm II),或联合安慰剂每4周(Arm III),随后每4周度伐利尤单抗单药(Arm I和II)或安慰剂每4周(Arm III),持续两年。本试验的主要终点是PFS和OS [19] [20]。

3) 另一个正在研究的治疗模式是放化疗期间同时使用ICI [21]。首个开放研究该治疗模式的研究是韩国的单臂II期研究(NCT03585998),所有患者均接受了度伐利尤单抗与放化疗并行治疗,其次是度伐利尤单抗巩固疗法,以PFS为主要终点。

4) NRG-LU005试验 [22] [23],该研究是一项由美国国家癌症研究所(NCI)赞助的II/III期随机试验,患者被分配接受CCRT后进行观察,而阿替利珠单抗与CCRT后进行阿替利珠单抗巩固,每3周进行一次,为期1年,以OS为主要终点的患者。

5) (DOLPHIN, NCT04602533)试验 [24] [25] II期随机、开放标签试验评估了同时使用德瓦鲁单抗与CCRT,然后使用维持德瓦鲁单抗与CCRT,然后进行观察的有效性和安全性,本研究的主要终点是18个月无进展生存期(PFS)。

6) 值得注意的是,另一项III期试验(NCT04691063)试图评估与CCRT同时存在的抗pd-l1单克隆抗体shr1316在LS-SCLC [26] 中的作用。未说明CCRT完成后是否会维持固结SHR-1316。

7) 还有一项研究评估了化疗后胸腔放射诱导ICI (NCT05034133)。第二阶段试验是将患者被分配接受诱导度伐利尤单 (1000 mg IV) + 顺铂和依托泊苷6个周期,随后接受胸椎放疗 [27]。该单组研究计划纳入20名主要终点为PFS [28] 的患者。

这些正在进行的试验提供了我们在LS-SCLC治疗领域的了解打下了一定的基础,并有助于我们在该领域进行的临床试验中对LS-SCLC生物学的理解。

6. 结论

以上的临床前数据表明,ICI和放疗之间存在协同效益 [28] [29] [30]。这些发现导致了对LS-SCLC和其他恶性肿瘤的早期研究,具有一般可耐受的安全性。CCRT联合合并巩固性派姆单抗在LS-SCLC中具有良好的耐受性和活性 [16]。然而,II期刺激试验并未达到PFS的主要终点,而纳武利尤单抗合并的易普利姆玛的耐受性不佳 [15]。考虑到这些混合数据,正在进行的试验评估了免疫疗法、CCRT和新型药物(如PARP抑制剂或抗tigit抗体)对LS-SCLC的安全性和有效性,将作为一种催化剂来定义ICIs在胸部肿瘤领域的作用。肿瘤PD-L1表达的影响和CCRT给予ICI对患者预后的时机等关键问题仍有待解答。总之,这些试验继续向前推进基准,并为改善局限期SCLC患者的治疗方法提供了希望。

NOTES

*通讯作者。

参考文献

[1] Rudin, C.M., Brambilla, E., Faivre-Finn, C. and Sage, J. (2021) Small-Cell Lung Cancer. Nature Reviews Disease Pri-mers, 7, Article No. 3.
https://doi.org/10.1038/s41572-020-00235-0
[2] Waqar, S.N. and Morgensztern, D. (2017) Treatment Advances in Small Cell Lung Cancer (SCLC). Pharmacology & Therapeutics, 180, 16-23.
https://doi.org/10.1016/j.pharmthera.2017.06.002
[3] Salem, A., Mistry, H., Hatton, M., Locke, I., Monnet, I., Blackhall, F. and Faivre-Finn, C. (2019) Association of Chemoradiotherapy with Outcomes Among Patients with Stage I to II vs Stage III Small Cell Lung Cancer: Secondary Analysis of a Randomized Clinical Trial. JAMA Oncology, 5, Arti-cle ID: e185335.
https://doi.org/10.1001/jamaoncol.2018.5335
[4] Simone II, C.B., Bogart, J.A., Cabrera, A.R., Daly, M.E., De-Nunzio, N.J., Detterbeck, F., et al. (2020) Radiation Therapy for Small Cell Lung Cancer: An ASTRO Clinical Practice Guideline. Practical Radiation Oncology, 10, 158-173.
https://doi.org/10.1016/j.prro.2020.02.009
[5] Ganti, A.K.P., Loo, B.W., Bassetti, M., Blakely, C., Chiang, A., D’Amico, T.A., et al. (2021) Small Cell Lung Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 19, 1441-1464.
https://doi.org/10.6004/jnccn.2021.0058
[6] Faivre-Finn, C., Snee, M., Ashcroft, L., Appel, W., Barlesi, F., Bhatnagar, A., Bezjak, A., Cardenal, F., Fournel, P., Harden, S., Le Pechoux, C., McMenemin, R., Moham-med, N., O’Brien, M., Pantarotto, J., Surmont, V., Van Meerbeeck, J., Woll, P.J., Lorigan, P., et al. (2017) Concurrent Once-Daily versus Twice-Daily Chemoradiotherapy in Patients with Limited-Stage Small-Cell Lung Cancer (CONVERT): An Lung Cancer (TA Leal and N Sethakorn, Section Editors) Open-Label, Phase 3, Randomised, Superi-ority Trial. The Lancet Oncology, 18, 1116-1125.
https://doi.org/10.1016/S1470-2045(17)30318-2
[7] Steel, G.G. (1979) Terminology in the Description of Drugradiation Interactions. International Journal of Radiation Oncology, Biology, Physics, 5, 1145-1150.
https://doi.org/10.1016/0360-3016(79)90634-5
[8] Donlon, N.E., Power, R., Hayes, C., Reynolds, J.V. and Lysaght, J. (2021) Radiotherapy, Immunotherapy, and the Tumour Microenvironment: Turning an Immunosuppressive Milieu into a Therapeutic Opportunity. Cancer Letters, 502, 84-96.
https://doi.org/10.1016/j.canlet.2020.12.045
[9] Postow, M.A., Callahan, M.K., Barker, C.A., Yamada, Y., Yuan, J., Kitano, S., et al. (2012) Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. New England Journal of Medicine, 366, 925-931.
https://doi.org/10.1056/NEJMoa1112824
[10] Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., et al. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377.
https://doi.org/10.1038/nature14292
[11] Hiniker, S.M., Reddy, S.A., Maecker, H.T., Subrahmanyam, P.B., Ros-enberg-Hasson, Y., Swetter, S.M., et al. (2016) A Prospective Clinical Trial Combining Radiation Therapy with System-ic Immunotherapy in Metastatic Melanoma. International Journal of Radiation Oncology, Biology, Physics, 96, 578-588.
https://doi.org/10.1016/j.ijrobp.2016.07.005
[12] Murphy, B., Walker, J., Bassale, S., Monaco, D., Jaboin, J.J., Ciporen, J., et al. (2017) Concurrent Radiosurgery and Immunotherapy Is Associated with Improved Intracranial Tumor Control in Patients with Metastatic Melanoma. International Journal of Radiation Oncology, Biology, Physics, 99, E523-E524.
https://doi.org/10.1016/j.ijrobp.2017.06.1857
[13] Arnett, A.L.H., Kottschade, L., Wilhite, T.J., Youland, R.S., Hocum, C., Whitaker, T.J., et al. (2017) Toxicity of Concurrent and Sequential PD-1 Immune Check Point Inhibitors with Conventional and Hypofractionated Radiation Therapy in Patients with Metastatic Disease. International Journal of Radiation Oncology, Biology, Physics, 99, E749.
https://doi.org/10.1016/j.ijrobp.2017.06.2402
[14] Jie, Y., Gu, A., Fu, P. and Kong, F.M.S. (2020) Does Radiation Increase the Risk of Immunotherapy Related Pneumonitis in Cancer Patients with Thorax Radiotherapy Combined Im-mune Checkpoint Inhibitors: A Meta-Analysis. Journal of Clinical Oncology, 38, e15099.
https://doi.org/10.1200/JCO.2020.38.15_suppl.e15099
[15] Peters, S., Pujol, J.L., Dafni, U., Dómine, M., Popat, S., Reck, M., et al. (2022) Consolidation Nivolumab and Ipilimumab Versus Observation in Limited-Disease Small-Cell Lung Cancer after Chemo-Radiotherapy—Results from the Randomised Phase II ETOP/IFCT 4-12 STIMULI Trial. An-nals of Oncology, 33, 67-79.
https://doi.org/10.1016/j.annonc.2021.09.011
[16] Welsh, J.W., Heymach, J.V., Guo, C., Menon, H., Klein, K., Cushman, T.R., et al. (2020) Phase 1/2 Trial of Pembrolizumab and Concurrent Chemoradiation Therapy for Lim-ited-Stage SCLC. Journal of Thoracic Oncology, 15, 1919-1927.
https://doi.org/10.1016/j.jtho.2020.08.022
[17] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., O’Brien, M., Rao, S., Hotta, K., Leiby, M.A., Lubiniecki, G.M, Shentu, Y., Rangwala, R., Brahmer, J.R. and KEYNOTE-024 Investigators (2016) Pembrolizumab versus Chem-otherapy for PD-L1-Positive Non-Small-Cell Lung Cancer Clinical Trial. New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/NEJMoa1606774
[18] U.S. National Library of Medicine (2018) Atezolizumab after Concurrent Chemo-Radiotherapy versus Chemo-Radiotherapy alone in Limited Disease Small-Cell Lung Can-cer.
[19] U.S. National Library of Medicine (2018) Study of Durvalumab Tremelimumab, Durvalumab, and Placebo in Limited Stage Small-Cell Lung Cancer in Patients Who Have Not Progressed Following Concurrent Chemoradiation Therapy.
[20] Senan, S., Okamoto, I., Lee, G.W., Chen, Y., Niho, S., Mak, G., Yao, W., Shire, N., Jiang, H. and Cho, B.C. (2020) Design and Rationale for a Phase III, Randomized, Placebo-Controlled Trial of Durvalumab with or without Tremelimumab after Concurrent Chemoradiotherapy for Patients with Limited-Stage Small-Cell Lung Cancer: The ADRIATIC Study. Clinical Lung Cancer, 21, E84-E88.
https://doi.org/10.1016/j.cllc.2019.12.006
[21] U.S. Na-tional Library of Medicine (2018) Chemoradiation with Durvalumab Followed by Durvalumab Maintenance for Limited Disease Small Cell Lung Cancer.
[22] U.S. National Library of Medicine (2019) Testing the Addition of a New Immu-notherapy Drug, Atezolizumab (MPDL3280A), to the Usual Chemoradiation (CRT) Therapy Treatment for Limited Stage Small Cell Lung Cancer (LS-SCLC).
[23] Ross, H.J., Hu, C., Higgins, K.A., Jabbour, S.K., Kozono, D.E., Owonikoko, T.K., et al. (2020) NRG Oncology/Alliance LU005: A Phase II/III Randomized Clinical Trial of Chemora-diation versus Chemoradiation plus Atezolizumab in Limited Stage Small Cell Lung Cancer. Journal of Clinical Oncology, 38, TPS9082.
[24] Tachihara, M., Tsujino, K., Ishihara, T., Hayashi, H., Sato, Y., Kurata, T., Sugawara, S., Okamoto, I., Teraoka, S., Azuma, K., Daga, H., Yamaguchi, M., Kodaira, T., Satouchi, M., Shimokawa, M., Yamamoto, N., Nak-agawa, K. and Members of the West Japan Oncology Group (WJOG) (2021) Rationale and Design for a Multicenter, Phase II Study of Durvalumab Plus Concurrent Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer: The DOLPHIN Study (WJOG11619L). Cancer Management and Research, 13, 9167-9173.
https://doi.org/10.2147/cmar.s336262
[25] U.S. National Library of Medicine (2020) Efficacy and Safety of Standard of Care plus Durvalumab in Patients with Limited Disease Small Cell Lung Cancer (DOLPHIN).
[26] Efficacy and Safety of SHR-1316 in Combination with Chemo-Radiotherapy in Patients with LS-SCLC.
https://clinicaltrials.gov/ct2/show/NCT04691063
[27] U.S. National Library of Medicine (2021) Durvalumab with Chemotherapy Followed By Sequential Radiotherapy for Limited Stage Small Cell Lung Cancer.
[28] Jagodinsky, J.C., Harari, P.M. and Morris, Z.S. (2020) The Promise of Combining Radiation Therapy with Immunotherapy. Interna-tional Journal of Radiation Oncology, Biology, Physics, 108, 6-16.
https://doi.org/10.1016/j.ijrobp.2020.04.023
[29] Deng, L., Liang, H., Xu, M., Yang, X., Burnette, B., Arina, A., Li, X.D., Mauceri, H., Beckett, M., Darga, T., Huang, X., Gajewski, T.F., Chen, Z.J., Fu, Y.X. and Weichselbaum, R.R. (2014) STINGdependent Cytosolic DNA Sensing Promotes Radiationinduced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 41, 843-852.
https://doi.org/10.1016/j.immuni.2014.10.019
[30] Reits, E.A., Hodge, J.W., Herberts, C.A., Groothuis, T.A., Chakraborty, M., Wansley, E.K., Camphausen, K., Luiten, R.M., De Ru, A.H., Neijssen, J., Griekspoor, A., Mesman, E., Verreck, F.A., Spits, H., Schlom, J., Van Veelen, P. and Neefjes, J.J. (2006) Radiation Modulates the Peptide Repertoire, Enhances MHC Class I Expression, and Induces Successful Antitumor Immunotherapy. Journal of Experimental Medi-cine, 203, 1259-1271.
https://doi.org/10.1084/jem.20052494