TFRC在妇科肿瘤中的研究进展
Research Progress of TFRC in Gynecological Tumors
DOI: 10.12677/ACM.2022.1281014, PDF, HTML, XML, 下载: 369  浏览: 855 
作者: 杨克鑫*:青岛大学医学院妇产科学,山东 青岛;徐冠华:吉林大学第一临床医学院呼吸与危重症学,吉林 长春
关键词: TFRC妇科肿瘤研究进展TFRC Gynecologic Tumors Research Advances
摘要: 转铁蛋白受体(Transferrin Receptor, TFRC)是细胞摄取铁的重要膜蛋白,也是铁进入细胞的限制步骤,对防止细胞内铁超载至关重要。研究发现,TFRC在多种肿瘤细胞中均有异常表达,并参与肿瘤的发生和发展过程。在这篇综述中,我们讨论了TFRC在部分妇科肿瘤中的最新研究进展,并探索TFRC在妇科肿瘤中的应用前景。
Abstract: TFRC is an important membrane protein for cell uptake of iron, and it is also a restrictive step for iron to enter the cell, which is essential to prevent intracellular iron overload. The study found that TFRC is abnormally expressed in a variety of tumor cells and is involved in the occurrence and de-velopment of tumors. In this review, we discuss the latest research advances of TFRC in some gyne-cological tumors and explore the application prospects of TFRC in gynecological tumors.
文章引用:杨克鑫, 徐冠华. TFRC在妇科肿瘤中的研究进展[J]. 临床医学进展, 2022, 12(8): 7047-7052. https://doi.org/10.12677/ACM.2022.1281014

1. 引言

铁是促进细胞增殖和生长的必需营养物质,可以参与氧化还原循环和自由基的形成,促进肿瘤的发生及其恶性行为学的进展等 [1]。TFRC可以介导细胞对铁的摄取,在维持铁离子稳态中发挥关键作用。由于TFRC在细胞表面的表达量是铁进入细胞的限速步骤,并对防止铁超载至关重要,因此它的表达在多个水平上都受到精确控制 [2]。

近些年,随着人们对TFRC深入研究发现,在恶性肿瘤中TFRC通常会呈现为过表达,而这种表达的增加可能与不同类型肿瘤的不良预后相关 [3] - [8]。恶性细胞中TFRC表达水平的升高,以及其在癌症病理中的中心作用,使它成为抗体介导治疗的一个有吸引力的靶点 [9]。在本文中,我们将通过总结TFRC的结构特点、生物学功能,以及TFRC在肿瘤发生发展中的作用机理,进而来探讨TFRC在妇科肿瘤中的研究进展和前景。

2. TFRC的概述

2.1. TFRC简介

TFRC也称为CD71簇分化(Cluster of Differentiation 71, CD71),它是一个90 kDa的II型跨膜糖蛋白,由760个氨基酸组成,通常以二聚体(180 kDa)形式存在,由细胞表面的二硫键连接。TFRC由一个细胞外C端结构域(671个氨基酸,包含转铁蛋白结合位点)、一个跨膜结构域(28个氨基酸)和一个细胞内N端结构域(61个氨基酸)组成 [10]。C端胞外结构域包含3个N-连接的糖基化位点,分别位于天冬酰胺251、317和727位,以及1个O-连接的糖基化位点位于苏氨酸104位,这些都是其发挥功能所必需的 [11]。TFRC几乎在人体所有细胞均有一定表达,特别是增殖力强和代谢快的细胞表面,往往呈现出高表达状态 [12]。TFR1和TFR2是TFRC的两种表达亚型,TFR1在人体细胞表面普遍低水平表达,而TFR2在肝细胞中特异性表达 [3],因此,在一些文章中TFRC和TFR1不做特别区分。

2.2. TFRC的生物学功能

铁作为一种重要的元素,在各种生理和病理过程中都发挥着重要的作用 [13],包括氧运输、DNA合成、蛋白质功能、细胞呼吸和细胞周期等 [7]。在氧和过氧化氢存在情况下,铁可通过氧化还原循环导致活性氧(Reactive Oxygen Species, ROS)的产生,而ROS往往会导致氧化应激、脂质过氧化以及DNA损伤等,从而导致基因组不稳定,最终损害细胞活力并促进程序性细胞死亡(Programmed Cell Death, PCD) [14],铁也因此变得更具有毒性 [15]。铁的代谢主要体现在系统和细胞两个层次,通常情况下它处于一个动态平衡的状态 [1],铁代谢平衡失调会导致很多疾病的发生,包括血液病、神经退行性疾病、骨质疏松症和各种癌症等 [16] [17]。

TFRC的主要功能是结合转铁蛋白(Transferrin, TF),通过网格蛋白依赖性的内吞作用介导细胞内的铁摄取,这种配体–受体间的相互作用确保了能量代谢(例如呼吸链中的细胞色素和铁–硫蛋白)所需要的铁离子供应,特别是对于快速增殖的细胞 [18]。同样,细胞内铁缺乏也可以抑制细胞的正常生长,甚至最终导致死亡 [16]。为了让细胞精细地调节铁离子的储存、摄取和释放等过程,从而维持其最佳的细胞内水平,避免过量而引起毒性反应,机体会以多种组织和/或细胞水平的特异性方式来调控TFRC的表达 [19]。

2.3. TFRC在肿瘤发生发展过程中的作用机理

与良性病变细胞或分化细胞系相比,许多恶性细胞系会出现TFRC的表达增加,如甲状腺癌 [20]、胃癌 [21]、肝癌 [22]、前列腺癌 [23]、结肠癌 [6] 等,并与患者的生存、疾病状态和预后相关 [24],因此,TFRC的高表达可能构成肿瘤细胞的典型生物标志物 [18]。Suzy V. Torti提出,在癌症中,铁代谢的重新编程是肿瘤细胞生存的一个重要方面,另外,通过低氧诱导因子(Hypoxia-Inducible Factor, HIF)和WNT通路的信号转导可能有助于改变癌症中的铁代谢 [1]。Chong Xiao通过生物信息数据分析及沉默TFR1检测ROS水平、细胞活力等,证实了TFRC可通过影响铁的积累调控恶性肿瘤和肿瘤干细胞的干细胞性 [25]。但Stefano Menghini用磁菌株(Magnetospirillum magneum AMB-1)在低氧条件下与人黑色素瘤细胞建立体外共培养体系,测定了TF补充培养基中产生的铁载体,证明了随着TFRC表达增加癌细胞活力反而下降 [26]。此外,Sun等发现癌细胞可以通过TFRC介导的铁竞争驱动肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAM)的功能免疫抑制极化,TFRC被证明与肿瘤浸润的M2型巨噬细胞呈正相关,这也为铁代谢和肿瘤免疫之间的联系提供了新的见解 [27]。除此之外,TFRC可能参与的其他作用机制也在不同癌症中的到了论述 [13] [17] [28]。

3. TFRC在妇科肿瘤中研究进展

3.1. TFRC与宫颈癌

宫颈癌是最常见的妇科恶性肿瘤,虽然疫苗的出现使HPV相关的宫颈癌发病率降低,但仍未实现全面接种,针对复杂性及转移性宫颈癌的治疗手段有限且预后不佳 [29]。近年来,关于宫颈癌的研究发现,TFRC在宫颈癌中呈高表达,且分期越晚表达量越多 [30]。Xu等指出宫颈癌中TFRC的高表达与分期(P = 0.015)、肿瘤状态(P = 0.003)和淋巴结(P = 0.01)呈正相关,通过多因素分析显示TFRC是总生存期较差的独立预后变量(P = 0.012),即TFRC越高,预后越差,并可能通过HIF-1通路来发挥作用(P = 0.045) [4]。Wang等利用公共数据库分析得到TFRC可以作为宫颈癌预后相关的预测性生物标志物之一,主要参与受体-配体活性和JAK-STAT信号通路 [5]。

3.2. TFRC与卵巢癌

卵巢癌是女性生殖器官中最致命的肿瘤,尽管卵巢癌的治疗取得了无可争辩的进展,但仍存在化疗耐药及复发等问题影响治疗效果 [31]。D Basuli等人证实,在卵巢癌中的铁代谢发生了特异性改变,TFR1作为铁的输入者,在卵巢高级别浆液性癌患者的肿瘤组织中表达量增加,而且在卵巢癌肿瘤起始细胞(Tumor Initiation Cells, TICs)的遗传模型中TFR1也是上调的 [32]。Huang等人敲低TFRC验证了它在体内外均能显著抑制卵巢癌细胞(SKOV3和A2780)的增殖和转移,更重要的是,证实了TFRC是通过正向调控AXIN2的表达来发挥作用 [33]。这也为未来进一步研究TFCR在靶向治疗中的作用提供了新的思路。

3.3. TFRC与乳腺癌

在恶性肿瘤中,乳腺癌是女性癌症死亡的主要原因,且发病率最高 [34]。虽然乳腺癌患者的生存率明显提高,但由于晚期转移及放化疗耐药,仍有大量患者死于乳腺癌 [8]。Sara Pizzamiglio用酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay, ELISA)或反相蛋白阵列(Array of Reversed-Phase Proteins, RPPA)等方法,检测了24例正常组织和56例乳腺肿瘤组织中铁相关的20种蛋白的表达,证实了在乳腺癌中TFRC的表达水平升高,并与其增殖状态呈正比 [35]。而YU等在探究雌激素受体(Estrogen Receptors, ER)与TFRC的关系时,发现ER可以抑制TFRC的表达,从而降低了柳氮磺胺吡啶诱导的乳腺癌细胞铁死亡 [36]。

3.4. TFRC与子宫内膜癌

子宫内膜癌是发达国家主要的妇科肿瘤,在我国,随着出生率的下降和肥胖人数的上涨,其发病率显著上升 [37]。然而目前关于TFRC在子宫内膜癌中的研究及报道极少,但GC Kabat等人指出过量的铁摄入或铁储存水平升高可能与子宫内膜癌有关 [38]。因此,TFRC在子宫内膜癌中的表达情况及其可能的作用机制仍需进一步研究。

4. TFRC在妇科肿瘤疾病的诊疗中面临的挑战

以上,我们综述了TFRC在妇科肿瘤发生和发展中的作用,其可能的作用通路和对肿瘤微环境的影响,以及靶向TFRC的癌症治疗的潜力。尽管人们对其进行了大量研究,但仍然存在几个关键问题。首先,TFRC在细胞水平上与其他信号通路或蛋白质相互作用机理尚无定论,这可能是开发基于TFRC的治疗方法的关键;其次,作为铁摄取的重要门户,TFRC在铁死亡中的作用机制及铁死亡对癌症的促进或抑制作用尚不明确;此外,TFRC不同癌症中的表达并不一致,其参与肿瘤进展的机制存在差异。

5. 展望

妇科恶性肿瘤一直是威胁全世界女性健康和安全最大的问题,而针对这类疾病尚无特效药,我们竭力于早发现,提高治疗手段,减少复发,改善预后,而由于TFRC在恶性细胞中的过表达和及其在肿瘤发生发展过程中的中心作用,近些年针对TFRC的抗体一直是人们研究的热点的抗癌靶点,但目前仍无定论,我们相信,随着基因工程的进步,针对TFRC的治疗策略将变得更加明确,更加安全有效,为临床试验奠定良好的基础。

NOTES

*通讯作者。

参考文献

[1] Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355.
https://doi.org/10.1038/nrc3495
[2] Gammella, E., Buratti, P., Cairo, G., et al. (2017) The Transferrin Receptor: The Cellular Iron Gate. Metallomics, 9, 1367-1375.
https://doi.org/10.1039/C7MT00143F
[3] Shen, Y., Li, X., Dong, D., et al. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931.
[4] Xu, X., Liu, T., Wu, J., et al. (2019) Transferrin Receptor-Involved HIF-1 Signaling Path-way in Cervical Cancer. Cancer Gene Therapy, 26, 356-365.
https://doi.org/10.1038/s41417-019-0078-x
[5] Wang, Q., Vattai, A., Vilsmaier, T., et al. (2021) Immunoge-nomic Identification for Predicting the Prognosis of Cervical Cancer Patients. International Journal of Molecular Scienc-es, 22, Article No. 2442.
https://doi.org/10.3390/ijms22052442
[6] Tang, M., Zeng, L., Zeng, Z., et al. (2021) Proteomics Study of Colo-rectal Cancer and Adenomatous Polyps Identifies TFR1, SAHH, and HV307 as Potential Biomarkers for Screening. Journal of Proteomics, 243, Article ID: 104246.
https://doi.org/10.1016/j.jprot.2021.104246
[7] Huang, N., Zhan, L., Cheng, Y., et al. (2020) TfR1 Extensively Regulates the Expression of Genes Associated with Ion Transport and Immunity. Current Medical Science, 40, 493-501.
https://doi.org/10.1007/s11596-020-2208-y
[8] Chen, F., Fan, Y., Hou, J., et al. (2021) Integrated Analysis Iden-tifies TfR1 as a Prognostic Biomarker Which Correlates with Immune Infiltration in Breast Cancer. Aging, 13, 21671-21699.
https://doi.org/10.18632/aging.203512
[9] Candelaria, P., Leoh, L., Penichet, M., et al. (2021) An-tibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-Cancer Agents. Frontiers in Immunology, 12, Article ID: 607692.
https://doi.org/10.3389/fimmu.2021.607692
[10] Kleven, M., Jue, S. and Enns, C.J.B. (2018) Trans-ferrin Receptors TfR1 and TfR2 Bind Transferrin through Differing Mechanisms. Biochemistry, 57, 1552-1559.
https://doi.org/10.1021/acs.biochem.8b00006
[11] Daniels, T., Delgado, T., Rodriguez, J., et al. (2006) The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clinical Im-munology, 121, 144-158.
https://doi.org/10.1016/j.clim.2006.06.010
[12] 赵充. 转铁蛋白受体TFRC调节鼻咽癌放射敏感性的作用和机制以及化疗联合靶向治疗提高转移鼻咽癌疗效的临床试验[D]: [博士学位论文]. 武汉: 武汉大学, 2019.
[13] Xue, X., Ramakrishnan, S., Weisz, K., et al. (2016) Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. Cell Metabolism, 24, 447-461.
https://doi.org/10.1016/j.cmet.2016.07.015
[14] Gozzelino, R. and Arosio, P. (2015) The Importance of Iron in Pathophysiologic Conditions. Frontiers in Pharmacology, 6, Article No. 26.
https://doi.org/10.3389/fphar.2015.00026
[15] Jomova, K. and Valko, M.J.T. (2011) Advances in Metal-Induced Oxidative Stress and Human Disease. Toxicology, 283, 65-87.
https://doi.org/10.1016/j.tox.2011.03.001
[16] Hentze, M., Muckenthaler, M. and Andrews, N.J.C. (2004) Bal-ancing Acts: Molecular Control of Mammalian Iron Metabolism. Cell, 117, 285-297.
https://doi.org/10.1016/S0092-8674(04)00343-5
[17] Zhang, J., Hu, W., Ding, C., et al. (2019) Deferoxamine In-hibits Iron-Uptake Stimulated Osteoclast Differentiation by Suppressing Electron Transport Chain and MAPKs Signaling. Toxicology Letters, 313, 50-59.
https://doi.org/10.1016/j.toxlet.2019.06.007
[18] Laube, F. and Glanz, D. (2017) Modulation of Melanotransferrin and Transferrin Receptor 1 (TFRC)- and CD44-Based Signaling for TFRC Up-Regulation in Human Melanoma Cells. Anticancer Research, 37, 3001-3007.
https://doi.org/10.21873/anticanres.11654
[19] Testi, C., Boffi, A. and Montemiglio, L.C. (2019) Structural Anal-ysis of the Transferrin Receptor Multifaceted Ligand(s) Interface. Biophysical Chemistry, 254, Article ID: 106242.
https://doi.org/10.1016/j.bpc.2019.106242
[20] Shi, J., Wu, P., Sheng, L., et al. (2021) Ferroptosis-Related Gene Signature Predicts the Prognosis of Papillary Thyroid Carcinoma. Cancer Cell International, 21, 669.
https://doi.org/10.1186/s12935-021-02389-7
[21] Lin, T., Peng, W., Mai, P., et al. (2021) Human Gastric Cancer Stem Cell (GCSC) Markers Are Prognostic Factors Correlated with Immune Infiltration of Gastric Cancer. Frontiers in Molecular Biosciences, 8, Article ID: 626966.
https://doi.org/10.3389/fmolb.2021.626966
[22] Fillebeen, C., Charlebois, E., Wagner, J., et al. (2019) Transferrin Receptor 1 Controls Systemic Iron Homeostasis by Fine-Tuning Hepcidin Expression to Hepatocellular Iron Load. Blood, 133, 344-355.
https://doi.org/10.1182/blood-2018-05-850404
[23] Johnson, I., Parkinson-Lawrence, E., Shandala, T., et al. (2014) Altered Endosome Biogenesis in Prostate Cancer Has Biomarker Potential. Molecular Cancer Research, 12, 1851-1862.
https://doi.org/10.1158/1541-7786.MCR-14-0074
[24] Shen, Y., Li, X., Zhao, B., et al. (2018) Iron Metabolism Gene Expression and Prognostic Features of Hepatocellular Carcinoma. Journal of Cellular Biochemistry, 119, 9178-9204.
https://doi.org/10.1002/jcb.27184
[25] Xiao, C., Fu, X., Wang, Y., et al. (2020) Transferrin Re-ceptor Regulates Malignancies and the Stemness of Hepatocellular Carcinoma-Derived Cancer Stem-Like Cells by Af-fecting Iron Accumulation. PLOS ONE, 15, e0243812.
https://doi.org/10.1371/journal.pone.0243812
[26] Menghini, S., Ho, P., Gwisai, T., et al. (2021) Magnetospiril-lum magneticum as a Living Iron Chelator Induces TfR1 Upregulation and Decreases Cell Viability in Cancer Cells. In-ternational Journal of Molecular Sciences, 22, Article No. 498.
https://doi.org/10.1101/2020.05.28.121574
[27] Sun, J., Zhang, N., Xu, R., et al. (2021) Tumor Cell-Imposed Iron Restriction Drives Immunosuppressive Polarization of Tumor-Associated Macrophages. Journal of Translational Medi-cine, 19, 347.
https://doi.org/10.1186/s12967-021-03034-7
[28] Xiong, Q., Li, X., Li, W., et al. (2021) WDR45 Mutation Im-pairs the Autophagic Degradation of Transferrin Receptor and Promotes Ferroptosis. Frontiers in Molecular Biosciences, 8, Article ID: 645831.
https://doi.org/10.3389/fmolb.2021.645831
[29] 刘佩佩, 杨冬梅, 夏琼, 等. 转铁蛋白受体1与早期生长反应因子4在宫颈癌组织中的表达及其临床意义[J]. 现代免疫学, 2019, 39(4): 302-306.
[30] 陈媛媛, 王斌俏, 兰霄霄, 等. 转铁蛋白受体在子宫颈癌中的表达及其临床意义[J]. 温州医科大学学报, 2017, 47(4): 254-257+262.
[31] Wilczyński, J., Wilczyński, M. and Paradowska, E. (2022) Cancer Stem Cells in Ovarian Can-cer—A Source of Tumor Success and a Challenging Target for Novel Therapies. International Journal of Molecular Sciences, 23, Article No. 2496.
https://doi.org/10.3390/ijms23052496
[32] Basuli, D., Tesfay, L., Deng, Z., et al. (2017) Iron Addiction: A Novel Therapeutic Target in Ovarian Cancer. Oncogene, 36, 4089-4099.
https://doi.org/10.1038/onc.2017.11
[33] Huang, Y., Huang, J., Huang, Y., et al. (2020) TFRC Promotes Epitheli-al Ovarian Cancer Cell Proliferation and Metastasis via Up-Regulation of AXIN2 Expression. American Journal of Cancer Research, 10, 131-147.
[34] Maruthanila, V., Elancheran, R., Kunnumakkara, A., et al. (2017) Recent Devel-opment of Targeted Approaches for the Treatment of Breast Cancer. Breast Cancer, 24, 191-219.
https://doi.org/10.1007/s12282-016-0732-1
[35] Pizzamiglio, S., De Bortoli, M., Taverna, E., et al. (2017) Ex-pression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors. International Journal of Molecular Sciences, 18, Article No. 410.
https://doi.org/10.3390/ijms18020410
[36] Yu, H., Yang, C., Jian, L., et al. (2019) Sulfasalazine-Induced Ferrop-tosis in Breast Cancer Cells Is Reduced by the Inhibitory Effect of Estrogen Receptor on the Transferrin Receptor. On-cology Reports, 42, 826-838.
https://doi.org/10.3892/or.2019.7189
[37] Yin, W.J., Liao, F.C., Chen, M.J., et al. (2021) Immune Infiltration and a Ferroptosis-Associated Gene Signature for Predicting the Prognosis of Patients with Endometrial Cancer. Aging, 13, 16713-16732.
https://doi.org/10.18632/aging.203190
[38] Kabat, G., Miller, A., Jain, M., et al. (2008) Dietary Iron and Haem Iron Intake and Risk of Endometrial Cancer: A Prospective Cohort Study. British Journal of Cancer, 98, 194-198.
https://doi.org/10.1038/sj.bjc.6604110