PD-1抑制剂所致免疫相关不良事件的真实世界研究
Real World Study of Immune-Related Adverse Events Caused by PD-1 Inhibitors
DOI: 10.12677/ACM.2022.126856, PDF, HTML, XML, 下载: 211  浏览: 409 
作者: 陈运旺, 姜丁乙, 邓亚亚, 张馨月, 陈哲灵, 杨 柳*:青岛大学医学部,山东 青岛;浙江省人民医院肿瘤内科,浙江 杭州
关键词: 免疫相关不良事件免疫检查点抑制剂PD-1抑制剂癌症肺癌Immune-Related Adverse Events Immune Checkpoint Inhibitors PD-1 Inhibitors Cancer Lung Cancer
摘要: 背景:PD-1抑制剂通过激活自身免疫耐受往往可以发挥意想不到的抗肿瘤效果。然而,PD-1抑制剂引起的过度激活的自身免疫系统可导致免疫相关不良事件(irAEs)的产生。因此,在临床治疗中有必要关注使用PD-1抑制剂患者可能发生的irAEs。方法:本研究回顾性评估了2019.04.01至2021.04.30就诊于浙江省人民医院的288例应用PD-1抑制剂的实体瘤患者。我们就irAEs的发生率、发生时间、发生谱、疗效相关性等进行探究。同时,我们进一步探讨了PD-1抑制剂在肺癌亚组中的治疗疗效。结果:在本研究所涉及的288例患者中,irAEs的总发生率为35.07%,I~II级irAEs和III~V级irAEs的发生率分别为30.38%、4.69%。甲状腺功能减退是最常见的irAEs,其次是肝功能损伤,接下来是皮肤反应、疲乏和免疫相关性肺炎。irAEs的中位发生时间为3.15个月(平均4.09个月,95% CI [3.43, 4.74])。发生irAEs的患者与无irAEs患者相比有更长的OS、PFS (mOS:10.80个月vs 6.32个月,P = 0.01;mPFS:8.95个月vs 4.73个月,P < 0.01),irAEs发生较晚患者较早发生患者OS、PFS有显著的改善(mOS:13.51个月vs 8.24个月,P < 0.01;mPFS:11.29个月vs 6.74个月,P < 0.01),但高级别irAEs并不意味着患者可获得更好的预后。各种irAEs在各瘤种发生率的差异均无统计学意义。在小细胞肺癌、肺腺癌和肺鳞癌中,与后线治疗相比,PD-1抑制剂在一线治疗均表现出更好生存获益的趋势。在肺腺癌和肺鳞癌的一线治疗中,与PD-1抑制剂联合化疗相比,PD-1抑制剂加化疗联合抗肿瘤药物显示出更好的联合疗效。结论及意义:在使用PD-1抑制剂治疗前需要进行全面的基线测量,以警惕irAEs的发生。irAEs发生类型与肿瘤类型无关,irAEs是否发生以及发生时间早晚有助于预测PD-1抑制剂的疗效。然而,高级别irAEs的存在并不意味着更好的疗效,这可能与治疗中断有关。对已发生高级别irAEs的患者,应按指南进行规范化管理,及时足量使用糖皮质激素甚至免疫抑制剂。在肺癌患者中,PD-1抑制剂联合抗血管生成药物和化疗可能具有协同效应。我们建议PD-1抑制剂应尽可能应用于肺癌的一线治疗。
Abstract: Background: PD-1 inhibitors can often have unexpected anti-tumor effects by activating autoim-mune tolerance. However, over-activated autoimmune by PD-1 inhibitors responses can lead to immune-related adverse events (irAEs). Therefore, it is necessary to focus on the potential irAEs in patients on PD-1 inhibitors in daily clinical practice. Methods: This study retrospectively studied the case data of 288 patients with solid tumors who applied PD-1 inhibitors attending Zhejiang Pro-vincial People’s Hospital from 2019.04.01 to 2021.04.30. We analyzed the multiple aspects data of irAEs, such as the incidence, time, spectrum and efficacy correlation of it. In parallel, we further ex-plored the efficacy of PD-1 inhibitors for the lung cancer subgroup. Result: For 288 patients in our study, the total incidence of irAEs was 35.07%, and the incidence rate of grade I~II and III~V irAEs were 30.38% and 4.69% respectively. Hypothyroidism is the most common irAEs, followed by liver function injury, followed by skin reaction, weakness and immune-related pneumonia. The median onset time of irAEs was 3.15 months (mean time was 4.09 M, 95% CI [3.43, 4.74]). Compared with patients without irAEs, patients with irAEs had longer OS and PFS (mOS: 10.80 vs 6.32 months, P = 0.01; mPFS: 8.95 vs 4.73 months, P < 0.01). Patients with earlier irAEs had significantly improved OS and PFS (mOS: 13.51 vs 8.24 months, P < 0.01; mPFS: 11.29 vs 6.74 months, P < 0.01) than later irAEs, but high-level irAEs didn’t mean a better prognosis. There was no significant difference in the incidence of irAEs among tumor species. In SCLC, lung adenocarcinoma and lung squamous cell car-cinoma, PD-1 inhibitors showed a trend of better survival benefit in first-line treatment compared with later-line. In the first-line treatment of lung adenocarcinoma and lung squamous cell carcino-ma, compared with PD-1 inhibitor combined with chemotherapy, PD-1 inhibitors combined with chemotherapy and antiangiogenics show a better combined effect. Conclusion: Complete baseline measurements are required before treatment with PD-1 inhibitors to prevent the occurrence of irAEs. The irAEs was not related to the type of tumor. The presence and onset time of irAEs tends to predict the efficacy of PD-1 inhibitors. However, the presence of high-grade irAEs doesn’t indicate better outcomes. This may be related to treatment interruption. For patients with high-level irAEs, they should be standardized treat according to the guidelines and hormones and even immuno-suppressants should be used in sufficient quantities in time. In lung cancer patients, PD-1 inhibitors combined with antiangiogenics and chemotherapy may have a synergistic effect. We suggest that PD-1 inhibitors could be applied in first-line treatment of lung cancer if possible.
文章引用:陈运旺, 姜丁乙, 邓亚亚, 张馨月, 陈哲灵, 杨柳. PD-1抑制剂所致免疫相关不良事件的真实世界研究[J]. 临床医学进展, 2022, 12(6): 5913-5936. https://doi.org/10.12677/ACM.2022.126856

1. 引言

人体的T细胞免疫和免疫耐受通过共刺激和共抑制途径的精密调节达到平衡状态,在清除“异己”的同时防止过度免疫 [1]。但一些肿瘤细胞可通过阻断免疫检查点,如细胞毒性T淋巴细胞相关蛋白4 (Anti-cytotoxic T Lymphocyte-associated Antigen-4, CTLA-4)、程序性细胞死亡蛋白1/程序性细胞死亡配体1 (Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1, PD-1/PD-L1)等来逃避机体免疫,产生免疫耐受 [2] [3] [4]。在正常机体中,抗原提呈细胞上的B7-1、B7-2配体与T细胞表面的CD28结合,提供正向的刺激信号,信号通过PI3K和AKT介导向下游传递 [5] [6]。CTLA-4可通过与B7-1、B7-2配体结合来减弱CD28对T细胞激活,抑制下游信号通路 [7] [8] [9]。PD-1在T、B淋巴细胞活化时表达,PD-1与其配体结合后,通过蛋白酪氨酸磷酸酶Shp2使CD28 (而非TCR)优先去磷酸化,抑制T细胞活化 [10] [11] [12]。当机体对肿瘤细胞的免疫耐受通过阻断以上两种途径被免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)打破后,机体将产生持久抗肿瘤效应,起到治疗肿瘤的效果 [13] [14] [15]。

但过犹不及,自身免疫耐受被打破后,过度激活的免疫系统的无差别攻击将会损伤正常器官组织,导致相应器官组织的损伤,称为免疫相关不良事件(Immune-related Adverse Events, irAEs) [16] [17] [18]。与化疗副反应不同,irAEs除了表现为疲劳乏力等一般不良反应外,可以累及各个器官系统,并有其特异表现 [18]。根据CTCAE5.0标准,irAEs由轻到重可分为I~V五个等级,其中I、II级为轻度,III、IV级为重度,V级代表患者死亡。对于I级irAEs可继续ICIs治疗,予以对症治疗,密切监视病情变化;对于II级irAEs应推迟ICIs治疗,予以对症治疗,若好转则继续进行ICIs治疗;对于持续5~7天以上的II级irAEs及III、IV级irAEs应暂停ICIs治疗,予以大剂量糖皮质激素治疗(如1~2 mg/kg/day强的松)直至0或I级irAEs,并在至少1个月内逐渐减量 [18] [19] [20]。对于激素治疗无效的严重的irAEs,可应用免疫抑制剂英夫利昔单抗5 mg/kg [21]。此外,irAEs的出现往往代表患者可从ICIs中获得更好的生存益处 [22] [23] [24]。

我们通过回顾性研究分析了应用PD-1抑制剂患者irAEs的发生率、发生谱、发生时间等,探讨irAEs的发生与治疗生存效益的关系。同时,我们在肺癌亚组中对进行深度挖掘,并得到了一些有趣的结论。

2. 研究对象与方法

2.1. 研究对象及研究内容

我们回顾性地收集2019.04.01至2021.04.30就诊于浙江省人民医院使用PD-1抑制剂的实体瘤患者数据。我们收集患者的性别、年龄、体力状态(ECOG评分,Eastern Cooperative Oncology Group)、瘤种及亚型、PD-1抑制剂应用状况(具体药物、使用时间、使用时机、是否联合用药)、irAEs出现状况(irAEs的出现与否、出现时间、具体类型、严重程度)、应用PD-1抑制剂后的生存效益(总生存时间(OS)、无进展生存期(PFS))。

2.2. 排除标准

年龄 ≤ 18岁或≥80岁;

PS评分 ≥ 3分;

PD-1抑制剂 ≤ 1周期;

合并严重基础疾病的患者;

合并自身免疫疾病或免疫缺陷的患者;

信息严重缺乏的患者;

非实体瘤患者。

2.3. 干预措施

本研究旨在探索真实世界中irAEs的发生状况,本研究中研究者不干预患者的任何治疗,包括PD-1抑制剂的使用与否,应用何种PD-1抑制剂,是否联合其他治疗手段等各个方面,患者的治疗方案均由主治医师根据病情与患者及家属沟通后决定。

2.4. 评价标准

研究根据(美国)国家癌症研究所CTCAE 5.0标准评估irAEs,随访至患者死亡、失访或最近日期。患者在行PD-1抑制剂治疗前均会进行原发灶及转移灶基线的测量,以备后续评估治疗疗效。在浙江省人民医院中,我们的医生根据CSCO指南的要求对患者每2个月进行一次疗效评估。值得注意的是由于新型冠状病毒肺炎疫情的影响,患者入院治疗前需常规行胸部CT平扫,因此对于肺恶性肿瘤的影像学评估会更加频繁,这也是后续我们对肺恶性肿瘤患者单独进行分析的原因之一。根据实体瘤的疗效评价标准(RECIST 1.1)进行疗效评估,分为完全缓解(Complete Response, CR)、部分缓解(Portion Response, PR)、疾病稳定(Stable Disease, SD)、疾病进展(Progressive Disease, PD)等四个等级 [25]。当所有靶病灶在影像学上完全消失且肿瘤标志物降至正常水平至少维持4周,疗效评估为CR;与基线相比,所有目标病灶直径总和下降≥30%至少维持4周,疗效评估为PR;当目标病灶变化程度介于PR和PD之间,疗效评估为SD;当所有目标病灶直径之和增加≥20% (绝对值增加至少5 mm)或出现一个及以上新发病灶,疗效评估为PD。对患者生存获益主要评估总生存时间(Overall Survival, OS)和无进展生存期(Progression-free Survival, PFS)两个指标。OS定义为自PD-1抑制剂第一周期治疗时间至患者死亡、失访或研究截止时间;PFS定义为PD-1抑制剂第一周期治疗时间至患者疾病进展或死亡、失访、研究截止时间。

2.5. 统计学分析

数据收集的截止时间为2020.04.30。通过SPSS 25.0来进行数据分析处理,OS、PFS以中位数作为主要对比标准,平均数及其95% CI作为次要对比标准,使用Log-rank检验以及比例风险回归模型(Cox回归模型)来计算HR及其95%置信区间,判断组间是否存在差别。各组之间差异用卡方检验、t检验等方法确定。P值 < 0.05有统计学差异,P值 < 0.01有显著统计学差异,P值精确至小数点后2位。应用GraphPad Prism 8.0软件绘制生存曲线。

3. 结果

3.1. 患者特征

我们的研究涉及395例就诊于浙江省人民医院的应用PD-1抑制剂的患者,其中按照预设的排除标准排除71例,其中在治疗过程中排除35例患者,最终入组288例患者进行长期随访,其中肺癌患者134例,消化道恶性肿瘤96例,其他瘤种49例。详见图1

288例患者中男性214例,女性74例,中位年龄为64岁(32~79岁),其中<65岁患者152人,≥65岁患者136人。ECOG评分0分患者43人,1分患者211人,2分患者34人。其中肺癌143例,胃癌

Figure 1. Flow diagram of included patients

图1. 入组患者流程图

29例,结直肠癌22例,食管癌15例,头颈部肿瘤15例,肝癌12例,女性生殖系统肿瘤12例,泌尿系统肿瘤11例,胰腺癌11例,胆道系统恶性肿瘤7例,乳腺癌6例,恶性黑色素瘤6例,胸腺及纵隔恶性肿瘤5例,肉瘤2例,双原发癌患者8例。在行PD-1抑制剂治疗前进行常进行基线测量,但由于医生对于irAEs认知存在差异,因此我们定义完整的基线测量包括以下影像学和实验室检查:胸部CT、心脏超声;肝肾功能、甲状腺功能、心肌酶谱、糖化血红蛋白测量和其他相关检验。进行完整基线测量的患者32例,进行不完整基线测量的患者69例,未行基线测量的患者187例。应用信迪利单抗治疗患者100例,应用特瑞普利单抗治疗患者57例,应用卡瑞丽珠单抗治疗患者49例,应用替雷利珠单抗治疗患者38例,应用帕博丽珠单抗治疗患者有23例,应用纳武利尤单抗治疗患者21例。详见表1

Table 1. Demographic data and clinical characteristics

表1. 人口统计学数据和临床特征

3.2. irAEs发生情况

3.2.1. irAEs发生率

在288例患者中,101例患者发生所有级别的irAEs 108次,其中7例患者发生两种不同类型的irAEs,187例患者未发生irAEs。关于性别、年龄、ECOG、肿瘤类型、治疗前基线检查和PD-1抑制剂类型,发生irAEs和未发生irAEs两组患者的P值均大于0.05。两组患者的基线特征没有统计学差异。详见表1

全级别irAEs发生率为35.07% (n = 101),III~V级irAEs发生率为4.86% (n = 14),1例患者死于V级免疫性肺炎(由IV级免疫性肺炎恶化所致),致死性irAEs发生率为0.35%。甲状腺功能减退是最常见的irAEs,其次是肝功能损伤,其次是皮肤反应、疲乏和免疫性肺炎。较不常见的irAEs按发病率依次为贫血、糖尿病、心肌损伤、外周神经毒性、胃肠道反应、膀胱炎、手足综合征、脑炎、肾功能不全和肾上腺功能不全。详见图2

Figure 2. Occurrence of various irAEs in all patients

图2. 所有患者中irAEs发生情况

3.2.2. irAEs的发生谱

我们详细探究各瘤种irAEs发生情况,详见图3。为进一步探寻各个系统irAEs发生与瘤种的关系,利用SPSS25.0软件对143例肺癌、96例消化道恶性肿瘤、49例其余癌种患者进行统计学分析,肺癌、消化系统恶性肿瘤患者各种irAEs的发生率和其余瘤种患者相比,无统计学差异。详见表2

Figure 3. Occurrence of various irAEs in all tumor species

图3. 所有瘤种irAEs发生情况

Table 2. The incidence of irAEs in lung cancer, gastrointestinal cancer and other tumors

表2. irAEs在肺癌、胃肠道恶性肿瘤和其他肿瘤中的发生情况

3.2.3. irAEs发生时间

所有级别irAEs发生的中位时间为3.15个月,平均时A123ZXC间为4.09个月(95% CI: 3.43~4.74)。I~II级irAEs发生的中位时间为3.20个月,平均时间为4.17个月(95% CI: 3.46~4.89)。III~V级irAEs发生的中位时间为3.20个月,平均时间为3.50个月(95% CI: 2.27~4.80)。然而,两组irAEs发生时间P = 0.15 > 0.05,两组之间的差异无统计学意义。

3.2.4. 同一患者共患两种irAEs

7例患者发生两种irAEs:肺炎合并肝功能损伤、垂体炎合并甲状腺功能减退、肝功能损伤合并疲乏、肝功能损伤合并皮肤反应、甲状腺功能减退合并肝损伤、甲状腺功能减退合并手足综合征、肾上腺功能减退合并皮肤反应。详见表3图4。两种irAEs发生时间间隔为4.44 ± 3.09个月(95% CI: 1.58~7.30)。具体为:0.5个月、5.5个月、7个月、0.1个月、8.1个月、4.1个月、5.8个月。共患两种irAEs的患者与只发生一种irAEs的患者相比,二者OS、PFS没有统计学差异(P = 0.30, P = 0.48)。详见图4

Table 3. Two irAEs in the same patient

表3. 同一患者共患两种irAEs

*分子表示在共患两种irAEs患者中,发生某一级别irAEs的次数,分母2表示表中患者发生两种irAEs。

Figure 4. Occurrence of irAEs in patients with two irAEs

图4. 共患两种irAEs发生情况

3.2.5. III~V级 irAEs

1) 14例III~IV级irAEs患者的转归

14例患者发生III~IV级irAEs。当被诊断出irAEs后,14例患者均在我们医院积极接受治疗。其中4例患者接受了糖皮质激素治疗和激素替代治疗(优甲乐或胰岛素),在irAEs恢复至0~I级后继续使用PD-1抑制剂治疗。其余9例患者接受了糖皮质激素治疗,1例患者在糖皮质激素治疗后恢复,并继续使用PD-1抑制剂治疗,直到病情进展;1例患者死于免疫性肺炎;其余7例患者在irAEs改善后停止使用PD-1抑制剂。详见图5

Figure 5. Treatment outcome of 14 cases of III~IV irAEs

图5. 14例III~IV级irAEs转归情况

2) 1例致死性的免疫性肺炎

患者男,70岁,2020年3月31日确诊为肺腺癌。患者基因检测结果回归,提示EGFR、ALK、ROS-1、BRAF、BRAS、ERBB-2、RET、MET、PIK3CA、NRAS未见突变;PD-L1阳性表达率为3%。在2020年4月25日至2020年7月24日期间,患者接受PC化疗方案联合卡瑞丽珠单抗治疗4个周期,期间对颈椎转移瘤行局部放疗(DT2000cGy/10f/2w)。患者后续住院治疗期间出现发热伴咳嗽咳痰。胸部CT平扫提示两肺散在多发网格、斑片状影,小叶间隔增厚,两肺透亮度增高及散在小囊状无肺纹理透光区。详见图6(a)。临床诊断为免疫相关性肺炎(Checkpoint Inhibitors Pneumonitis, CIP)。因此暂停卡瑞丽珠单抗免疫治疗,并给予激素治疗(甲强龙(MP) 20 mg q12h)和抗感染治疗(头孢噻肟2 g bid)。后由于CIP恶化导致代谢性碱中毒、I型呼吸衰竭,患者于2020年8月25日转移至重症监护病房(ICU)接受进一步治疗。在ICU行气管插管,患者接受激素治疗(MP 80 mg q12h)和抗感染治疗(特治星4.5 g q6h + 卡泊芬净50 mg qd)。患者血常规没有明显异常,但淋巴细胞计数减少,粒淋比持续升高。详见图6(b)。4天后,患者病情进一步恶化,重症CIP导致低氧血症、肺气肿,合并内环境紊乱和低血压休克。患者家属放弃进一步治疗,于2020年8月31日死亡。详见图6(c)。

Figure 6. A case of fatal immune pneumonia

图6. 1例致死性免疫性肺炎

3.3. PD-1抑制剂疗效

至2021.04.30数据收集截至时,仍有109例患者在院接受PD-1抑制剂治疗,49例患者死亡,84例患者因疾病进展后其他医院就诊,44例患者疾病进展后在院继续行后线治疗,1例患者达到CR后规律复查,至随访截止日期未复发,1例患者由于经济因素PR后未继续行PD-1抑制剂治疗。疾病进展是入组患者最常见的停药原因。客观有效率(ORR)为7.29%:CR 1例(0.35%),PR 20例(6.94%),SD 142例(49.31%),PD 125例(43.40%),其中无进展患者163例(56.60%),无进展患者的mPFS为6.00个月,平均值7.14个月,95% CI [6.34, 7.89]。

3.4. irAEs与疗效的相关性

在所有288例患者中,101例发生irAEs,187例未发生irAEs。发生irAEs患者的mOS和mPFS分别为9.80个月和8.30个月。未发生irAEs患者的mOS和mPFS分别为5.30个月和4.20个月。两组患者OS和PFS的差异具有统计学意义(P值分别为0.01和P < 0.01)。HR分别为0.40 (0.24, 0.68)和0.40 (0.24, 0.68)。详见图7(a)。

以所有irAEs发生的中位时间(3.15个月)为分界点,将所有irAEs分为早期和晚期irAEs。早期irAEs 52例,晚期irAEs 49例。早期irAEs患者的mOS和mPFS分别为8.20个月和7.10个月。晚期irAEs患者的mOS和mPFS分别为12.10个月和10.90个月。两组的OS和PFS差异均具有统计学意义(P值均 < 0.01)。HR分别为2.72 (1.05, 7.05)和2.80 (1.12, 7.02)。详见图7(b)。

发生irAEs的101例患者中,87例出现I~II级irAEs,14例患出现III~V级irAEs。I~II级irAEs患者的mOS和mPFS分别为9.90个月和8.70个月。III~V级irAEs患者的mOS和mPFS分别为8.15个月和5.45个月。两组的OS和PFS差异无统计学意义(P值分别为0.67和0.21)。HR分别为0.68 (0.17, 2.84)和0.45 (0.08, 2.40)。详见图7(c)。

同时,运用单因素Cox回归分析irAEs是否发生、发生时间早晚以及发生的严重程度与治疗疗效的关系,结果详见表4

Figure 7. Correlation between irAEs and treatment efficacy

图7. irAEs与治疗疗效的相关性

Table 4. Single factor Cox analysis of irAEs and therapeutic efficacy

表4. irAEs与治疗疗效单因素Cox分析

3.5. 肺癌亚组分析

3.5.1. 肺癌患者中irAEs发生情况

143例肺癌患者中,50例患者发生所有级别的irAEs 52次,其中2例患者患有两种不同类型的irAEs,83例患者未发生irAEs。irAEs的总发生率为36.36% (n = 52),III~V级irAEs发生率为3.50 (n = 5)。1例患者死于V级免疫性肺炎(由IV级免疫性肺炎恶化所致),致死性irAEs发生率为0.70%。甲状腺功能减退是最常见的irAEs,其次是肝功能损伤,其次是皮肤反应、疲乏和免疫性肺炎。较不常见的irAEs按发病率依次为贫血、糖尿病、心肌损伤、外周神经毒性、胃肠道反应、脑炎、肾功能不全。详见图8

Figure 8. Occurrence of various irAEs in lung cancer patients

图8. 肺癌患者中irAEs发生情况

3.5.2. PD-1抑制剂疗效

在143例肺癌患者中,小细胞肺癌(Small cell lung cancer, SCLC)患者30例,其余均为非小细胞肺癌(Non small cell lung cancer, NSCLC)患者,肺腺癌65例、肺鳞癌41例、大细胞肺癌5例和肺腺鳞癌2例。我们在区分肺癌病理类型后,对PD-1抑制剂使用时机分为一线治疗和后线治疗,而后根据是否合并其他治疗方案进一步分组。由于某些亚组的病例数量不足,我们分析了PD-1抑制剂在SCLC、肺腺癌和肺鳞癌患者中一线治疗和后线治疗疗效对比,在肺腺癌和肺鳞癌患者一线治疗中PD-1抑制剂联合化疗与PD-1抑制剂联合化疗和抗血管生成药物治疗疗效对比。

1) PD-1抑制剂在一线和后线疗效对比

在SCLC中,PD-1抑制剂用于一线治疗患者(n = 19) mOS和mPFS分别为8.10个月和7.30个月。后线治疗患者(n = 11) mOS和mPFS分别为5.40个月和5.30个月。上述两组SCLC患者OS差异无统计学意义(P = 0.12),PFS差异具有统计学意义(P = 0.01)。HR分别为0.28 (0.07, 1.09)和0.21 (0.05, 0.79)。详见图9(a)。

在肺腺癌中,PD-1抑制剂用于一线治疗患者(n = 33) mOS和mPFS分别为10.40个月和8.80个月。后线治疗患者(n = 32) mOS和mPFS分别为5.40个月和4.95个月。上述两组肺腺癌患者OS差异无统计学意义(P > 0.05),PFS的差异具有统计学意义(P = 0.01)。HR分别为0.29 (0.08, 1.01)和0.27 (0.08, 0.97)。详见图9(b)。

在肺鳞癌中,PD-1抑制剂用于一线治疗患者(n = 23) mOS和mPFS分别为8.40个月和7.60个月。后线治疗患者(n = 18) mOS和mPFS分别为6.60个月和5.20个月。上述两组肺鳞癌患者OS和PFS的差异具有统计学意义(P值分别为P < 0.05和0.03)。HR分别为0.24 (0.06, 0.97)和0.22 (0.05, 0.89)。详见图9(c)。

Figure 9. Comparison of treatment effects of PD-1 inhibitors between first-line and posterior-line agent in lung cancer

图9. 肺癌亚组PD-1抑制剂用于一线和后线疗效对比

2) 肺癌中PD-1抑制剂联合其他治疗方案疗效对比

在肺腺癌一线治疗中,使用PD-1抑制剂联合化疗患者(n = 16) mOS和mPFS分别为6.25个月和4.80个月。使用PD-1抑制剂联合化疗和抗血管生成药物患者(n = 11) mOS和mPFS分别为11.00个月和10.60个月。上述两组肺腺癌患者OS和PFS差异具有统计学意义(P值分别为0.02和P < 0.05)。HR分别为0.26 (0.07, 0.99)和0.27 (0.07, 0.99)。详见图10(a)。

在肺鳞癌一线治疗中,使用PD-1抑制剂联合化疗患者(n = 14) mOS和mPFS分别为7.55个月和6.75个月。使用PD-1抑制剂联合化疗和抗血管生成药物患者(n = 7) mOS和mPFS分别为9.30个月和9.30个月。上述两组肺鳞癌患者OS差异无统计学意义(P = 0.09),PFS差异具有统计学意义(P = 0.03)。HR分别为0.25 (0.05, 1.11)和0.20 (0.04, 0.86)。详见图10(b)。

Figure 10. Comparison of treatment effects of PD-1 inhibitor combined with other therapeutic agent in lung cancer

图10. 肺癌中PD-1抑制剂联合其他治疗方案疗效对比

4. 讨论

现今对现实世界irAEs的整体发生率并无确切的描述。2017年一项涉及12,808例患者、46项PD-1抑制剂临床试验的meta分析报道,全级别irAEs的发生率为26.82%,重度irAEs的发生率为6.10%,死于irAEs的比例为0.17% [26]。据2018年一项涉及多种ICIs的meta分析报道,全级别及高级别irAEs的发生率依次为:阿替丽珠单抗(66.4%, 15.1%)、纳武利尤单抗(71.8%, 14.1%)、帕博丽珠单抗(75.1%, 19.8%)、伊匹木单抗(86.8%, 28.6%) [27]。在我们的研究中,全级别irAEs发生率约为35.07%,I~II级irAEs发生率为30.38%,III~V级irAEs发生率为4.69%,死于irAEs的比例为0.35%。我们的研究聚焦于无任何干预的现实世界,数据搜集也是在此基础上进行的。与上述meta分析结果对比,我们分析了现实世界irAEs发生率与文献报道的发生率存在差距的具体原因。首先,当PD-1抑制剂与化疗或其他治疗方案联合时,使用激素、抗酸剂或止吐剂等联合方案的辅助用药在一定程度上掩盖了可能出现的irAEs;其次,由于各种原因病历系统中的临床信息记录不完整;其三,一些常见的irAEs,如恶心呕吐、疲劳乏力等,患者自觉可以耐受并未向主管医生汇报,造成信息的记录不完全;最后也是最重要的一点是,在PD-1抑制剂用于临床治疗的初期,临床医生对irAEs的认知不足导致基线测量不完全。我们定义PD-1抑制剂治疗前全面的基线检测包括以下影像学和实验室检查:胸部CT、心脏超声、肝肾功能、甲状腺功能、心肌酶谱、糖化血红蛋白等相关检查检验。在入组的288位患者中,187位患者未进行基线测量,69位患者基线测量不完全,仅32位患者进行全面的基线测量,其所占比例分别为64.93%、23.95%、11.11%。毫无疑问,由于上述原因,一些已经发生的一些irAEs,例如甲状腺功能减退症、恶心呕吐、虚弱乏力,被忽视了。

对于所有患者,发生率排在前五位的irAEs依次为甲状腺功能减退(7.99%)、肝功能损伤(6.25%)、皮肤反应(4.86%)、乏力(4.86%)、免疫性肺炎(2.78%)。在肺癌亚组中,发生率排在前五位irAEs依次为:甲状腺功能减退(9.09%)、肝损伤(8.39%)、虚弱(4.90%)、皮肤反应(4.20%)和免疫性肺炎(2.80%)。

有文章报道,在对全部瘤种患者应用帕博丽珠单抗治疗时,发生全级别和高级别免疫性肺炎的比率分别为3.4%、1.4%,而在NSCLC单药一线治疗中这一比例为8.2%、3.2% [28]。在另一meta分析中报道,相较于恶性黑色素瘤患者,NSCLC患者更易发生免疫性肺炎;相较于NSCLC患者,恶性黑色素瘤患者更易发生结肠炎、瘙痒、腹泻和皮疹;相较于恶性黑色素瘤患者,肾细胞癌患者更易发生免疫性肺炎和呼吸困难;相较于肾细胞癌患者,恶性黑色素瘤患者更易发生关节痛、甲状腺功能减退、皮疹、瘙痒和腹泻 [29]。但我们研究中并未发现各瘤种中irAEs发生谱的明显差异。由于本研究病例数有限,且各个瘤种所涉及患者数量不均平衡,我们将全部288位患者分成肺癌组(n = 143)、胃肠道恶性肿瘤组(n = 96)和其他肿瘤类型组(n = 49)。经过统计学分析发现上述3组中各种irAEs的发生率差别并无统计学意义,表明irAEs的发生类型与患者所患瘤种可能并无明显相关性。然而,由于我们没有足够病例数支持,这一结果仍需要进一步验证和探索。

现已有很多报道证明irAEs的发生与ICIs的疗效相关,irAEs的发生往往代表着患者可以从ICIs获得更好生存效益 [23] [30] [31]。我们的研究表明,应用PD-1抑制剂的患者irAEs的发生与更好疗效存在正相关。但有文章认为,irAEs的出现与更好的并不代表患者可以从PD-1抑制剂中获得更好的治疗疗效 [32]。该文章涉及帕博利珠单抗治疗晚期黑色素瘤的3项III期临床试验,以21周为分水岭对帕博利珠单抗长期安全性进行界标分析,认为无论患者是否有发生irAEs、是否应用过全身皮质类固醇激素治疗,帕博利珠单抗均表现出同样良好的疗效 [33] [34] [35]。该文章认为,之所以得出“irAEs与PD-1抑制剂疗效成正相关”此结论是因为在之前的研究中忽略了因疾病进展出组患者可能发生irAEs情况,产生了领先时间偏倚 [32]。该报道将21周作为界标时间纳入最大数量发生irAEs的患者,同时尽可能避免排除疾病进展患者,从而避免“领先时间偏倚”。但是在探讨irAEs发生与PD-1抑制剂的关系时,该报道仅关注出组患者可能会发生irAEs,而忽略疾病进展出组患者在PD-1抑制剂中获益很少这一事实,该报道的观点仍显仓促。同时,本研究还发现,irAEs发生较晚的患者与较早发生irAEs的患者相比,OS、PFS有显著改善,表示irAEs发生较晚的患者可以从PD-1抑制剂治疗中获得更多的生存效益。irAEs的发生与PD-1抑制剂的疗效正相关性可能与自身免疫系统被充分激活有关,从机制上讲,发生更高级别irAEs的患者应该拥有更高的T细胞活性从而获得更好的抗肿瘤结果,但我们的结果恰恰与其相反,发生III~V级irAEs的患者并未显示出较发生I~II级irAEs患者更好的生存获益 [36]。一项涉及51项临床试验的meta分析研究发现,高级别irAEs可致更好的ORR和更差的OS [37]。irAEs的发生程度并不能预测患者预后,反之,III级及以上的高级别irAEs的产生可能会因为PD-1抑制剂的停用而导致疾病进展,或导致其他相关疾病甚至直接导致患者死亡 [38] [39] [40]。在涉及阿替丽珠单抗的3项临床试验中,研究者评价了NSCLC一线治疗中阿替利珠单抗 + 化疗 ± 贝伐珠单抗的irAEs的发生和生存获益的关系,发现低级别irAEs患者的OS最长,高级别irAEs患者的OS最短,这可能是治疗中断导致的 [41] [42] [43]。在我们研究中的14名III~IV级irAEs患者中,5名患者接受对症治疗待irAEs降至0~I级后继续原PD-1抑制剂治疗,9名患者停用PD-1抑制剂,甚至1名患者死于免疫性肺炎。我们的结果与上述临床试验结论一致,高级别irAEs的出现虽能表示患者从PD-1抑制剂中获得更好的响应,但治疗的中断甚至irAEs的持续进展往往使得PD-1抑制剂治疗不能持续。在对一例致死性的免疫性肺炎的深入挖掘后,我们发现在2020年8月14日确诊免疫性肺炎后,患者的粒淋比持续升高,直至死亡。有相关文献报道,基线时高NLR水平和irAEs的发生成负相关,基线时和治疗后高NLR水平与较短的OS独立相关,基线时NLR < 5与更长的OS、PFS相关 [44] [45]。据报道,营养状况和炎症状态与多种癌症患者的预后相关 [46] [47]。NLR水平与患者全身营养状况和炎症状态有关,当粒淋比持续升高时,往往可以表示irAEs患者体内炎症失衡,继续导致irAEs的不断进展。因此,有必要监视接受PD-1抑制剂治疗的患者中NLR的水平,并对irAEs的发生发展进行预测。此外,本例患者并未获得规范的管理,根据ASCO、ESMO、NCCN等相关指南,当患者确诊III~IV级免疫性肺炎后应立即暂停当前的PD-1抑制剂,并及时接受糖皮质激素冲击治疗(甲强龙2~4 mg/kg/d),当糖皮质激素治疗未达到理想效果后应及时使用免疫抑制剂(如英夫利昔单抗) [39] [48] [49]。因此,高级别irAEs患者应严密监测NLR警惕病情进展,同时根据指南进行严格规范化管理。与此同时,我们还发现irAEs发生种类的数量似乎与患者的预后无关,共患两种irAEs的患者与发生1种irAEs的患者相比,二者的OS、PFS无统计学差异。

在本研究入组的288位患者中,肺癌患者143位,占比49.65%。而在最新公布GLOBOCAN2020的统计数据显示,肺癌占总体癌症发病的11.4%,估计有1,796,144人死于肺癌 [50]。在其他瘤种相比,肺癌是PD-1抑制剂治疗证据最充足、临床试验最多的瘤种,PD-1抑制剂用于肺癌治疗的许多领域和所有治疗阶段 [51] [52]。与此同时,自2019年新型冠状病毒肺炎疫情爆发以来,所有随访患者在入院前必须进行肺CT扫描以排除新冠病毒感染,肺癌患者疗效评估频率较其他瘤种患者更频繁。所以我们单独对PD-1抑制剂在肺癌中的疗效进行进一步的亚组分析。

在真实世界中,PD-1抑制剂的使用较NCCN、ASCO、CSCO等指南更灵活,用于肺癌治疗的各个阶段。特别需要指出的是本研究随访时间涵盖2019~2020年PD-1抑制剂在SCLC治疗中适应症的变化阶段,本研究所涉及PD-1抑制剂使用均有循证医学证据。在涉及纳武利尤单抗的I/II期临床试验CheckMate-032中,接受纳武利尤单抗治疗患者完全缓解率0.9%,部分缓解率11%,整体缓解率11.9%,根据本研究结果,FDA批准纳武利尤单抗用于SCLC的三线治疗 [53]。但在后续进行的两项验证性III期临床试验CheckMate-451和CheckMate-331中,纳武利尤单抗在SCLC治疗效果中并未达到试验设计预期 [54] [55]。根据CheckMate-451结果,纳武利尤单抗联合伊匹木单抗维持治疗未延长一线化疗后SCLC患者OS [55]。CheckMate-331中纳武利尤单抗治疗组与化疗组相比,纳武利尤单抗并未改善一线铂类化疗后复发SCLC 患者的生存率 [54]。基于以上两项研究,2020年12月30日百时美施贵宝公司撤回了纳武利尤单抗用于SCLC的适应症。在KEYNOTE-028和KEYNOTE-158研究中,83例SCLC患者经帕博丽珠单抗治疗后,2例患者CR,14例患者PR,ORR19.3%,帕博丽珠单抗在复发SCLC三线治疗中的疗效得到了证实 [56]。基于以上两项研究,2019年6月帕博丽珠单抗获得FDA加速批准在SCLC治疗中的适应症。但在后续的III期验证性试验KEYNOTE-604中,帕博丽珠单抗联合化疗对比安慰剂联合化疗,mOS分别为10.8个月和9.7个月(P = 0.0164),但P值未满足预设的P = 0.0128,OS主要终点无统计学意义 [57]。基于此研究,2021年3月2日,Merck公司于2021年3月1日主动撤回了帕博利珠单抗用于SCLC适应症。本研究涉及的SCLC患者在行PD-1抑制剂治疗时均处于纳武利尤单抗和帕博丽珠单抗均被FDA授予在SCLC中有适应症的时期,患者的PD-1抑制剂的使用有循证医学依据。值得欣喜的是,III期临床试验ASTRUM-005研究结果显示,斯鲁利单抗联合化疗和安慰剂联合化疗二组的mOS分别为15.38个月和11.10个月,(HR: 0.62; P < 0.001),两组的2年总生存率分别为43.2%和8.0%。基于此研究,2022年4月7日美国FDA授予斯鲁利单抗用于治疗小细胞肺癌患者的孤儿药资格。PD-1抑制剂在SCLC的治疗中仍需进一步临床试验进行探索。因此,在SCLC、肺腺癌和肺鳞癌患者中,我们对比PD-1抑制剂用于一线和后线的疗效,发现PD-1抑制剂用于一线往往会给患者带来更好的生存获益。一项涉及6项临床试验、3144名患者的关于晚期NSCLC一线化疗与PD-1/PD-L1抑制剂联合化疗的疗效对比的meta分析结果表明PD-1/PD-L1抑制剂联合化疗与PFS、OS、ORR的改善显著相关,更重要的是,这一发现与PD-L1表达无关 [58]。这一结果表明,无论患者的PD-L1表达如何,在NSCLC一线治疗中PD-1抑制剂联合化疗可能带来更好的治疗疗效。随着基础研究的推进和临床试验的扩大,PD-1/PD-L1抑制剂在肺癌治疗中的地位逐步提升,逐渐从后线提升至到一线治疗,甚至新辅助治疗 [59] [60]。在另一项针对75岁以上晚期全部实体瘤患者的一线、二线的meta分析显示,ICIs治疗的生存获益主要在一线治疗中观察到,在二线治疗中尚不明确 [61]。在早期肿瘤患者中,免疫系统相对完整,ICIs可以更好地调动自身免疫以达到更好的治疗效果 [62] [63]。其机制可能与以下两方面有关,其一,使用PD-1抑制剂阻断PD-1时,肿瘤微环境(Tumor microenvironment, TME)内的肿瘤特异性T细胞受PD-L1和PD-L2表达的树突状细胞的驱动而“原位”扩增;其二,阻断PD-1可增强肿瘤特异性T细胞增殖或部分逆转耐受性的诱导,使得活化T细胞进入循环系统发挥效应 [60]。与后线治疗相比,PD-1抑制剂用于肺癌一线治疗中使用可能获得更多的生存益处。

肺癌治疗也常用PD-1抑制剂联合抗血管生成药物进行治疗。与EGFR/ALK/ROS1/MET-TKIs抑制剂相比,贝伐珠单抗、恩度等抗血管生成药物使用更广泛、更灵活 [51] [64] [65]。贝伐珠单抗是最早的抗血管生成药物,也是第一个获批的抗血管生成的靶向药物,它通过阻断VEGF-A与其受体VEGFR-1及VEGFR-2影响肿瘤组织新生血管生成 [66] [67]。恩度(重组人血管内皮抑制素)抑制肿瘤血管发生,阻断营养供应,抑制肿瘤细胞增殖及远处转移 [68] [69] [70]。贝伐珠单抗广泛应用于NSCLC的各个基因分型、病理分型和各线治疗,恩度在III/IV期NSCLC治疗中具有重要地位 [71] [72] [73] [74] [75]。在肺腺癌和肺鳞癌的一线治疗中,我们分析了PD-1抑制剂与其他治疗方案结合后疗效的对比。在肺腺癌中,与PD-1抑制剂联合化疗相比,PD-1抑制剂联合化疗和抗血管生成药物(贝伐单抗和恩度)改善了患者OS和PFS(P值分别为0.0168、0.0478)。同样的在肺鳞状癌中,与PD-1抑制剂联合化疗相比,PD-1抑制剂联合化疗和抗血管生成药物改善了患者PFS (P = 0.0261)。这一结果表明抗血管生成药物联合PD-1抑制剂可能具有协同作用,与Impower-150研究结果不谋而合。在IMpower150研究中,研究者纳入1202例初治的IV期或复发转移的非鳞状NSCLC患者,按1:1:1随机分配至ACP组(阿特丽珠单抗 + 卡铂 + 紫杉醇治疗组402例),ABCP组(阿特丽珠单抗 + 贝伐珠单抗 + 卡铂 + 紫杉醇治疗组400例),或BCP组(贝伐珠单抗 + 卡铂 + 紫杉醇治疗组400例),相较于BCP组,ABCP组PFS和OS显著获益(mPFS:8.3个月vs 6.8个月,HR = 0.62,P < 0.001;mOS:19.5个月vs 14.7个月,HR = 0.80,P = 0.01) [41]。由此可见,PD-1抑制剂、抗血管生成药物和化疗三者是可以协同起效的,也证明了抗血管生成药物对增强免疫治疗疗效有重要价值。这一现象可能与TME有关,即肿瘤细胞生活的环境。TME包括肿瘤细胞本身、肿瘤周围成纤维细胞和炎症细胞等各种细胞、细胞间质、微血管以及各种生物分子等,TME与肿瘤是“你中有我,我中有你”不可分割的整体 [76] - [81]。TME具有低氧、pH降低、血管生成、炎症反应、免疫抑制等特点 [76] [79] - [87]。肿瘤细胞在生长阶段借助TME独特的条件获得较正常细胞更强的生长优势。与正常血管相比,由于血管生成调节因子的失衡,肿瘤组织中血管高度紊乱,迂曲扩张结构异常,内皮细胞连接松散,血管易渗漏;肿瘤血管异常导致肿瘤组织灌注不足,造成TME中缺氧及酸性环境 [83] [84] [88] [89]。在肿瘤微环境调节过程中VEGF/VEGFR通路起到重要作用,该通路产生或诱导Treg、TAMs和MDSCs等免疫抑制相关细胞,促进免疫抑制;当阻断VEGF/VEGFR通路,异常的肿瘤血管正常化,肿瘤特异性T细胞和其他免疫因子可以更便捷地输送到肿瘤组织,从而逆转TME的免疫抑制 [90] [91]。在临床前试验和临床试验中抗血管生成药物与ICIs的协同作用都得到验证。在涉及结肠癌、肾癌、乳腺癌等的前临床试验中均发现抗血管生成药物与ICIs的协同作用 [90] [92] - [97]。在肝癌、肾癌的相关临床试验中,阿替利珠单抗与抗血管生成药物的疗效和协同作用得到充分的验证 [97] [98] [99] [100]。在涉及肺癌的临床试验中,Impower-150已显示出抗血管靶向药物联合ICIs的协同效果,NCT02366143、NCT03647956、NCT03386929等研究也在肺癌中探寻抗血管靶向药与ICIs的协同作用 [41] [96]。因此,我们推测在肺癌中联合抗血管生成药物增强了PD-1抑制剂和化疗的治疗效果。

5. 结论

在这项研究中,irAEs的总发生率为35.07%,III~V级irAEs的发生率为4.69%。irAEs多发生在PD-1抑制剂治疗后3.15个月(4~6个周期)左右。irAEs发生类型与肿瘤类型无关。irAEs的存在往往预示着患者可以从PD-1抑制剂治疗中获得更好的治疗疗效。irAEs发生较晚的患者可能会有更好的治疗疗效。然而irAEs发生的数量似乎与患者的预后无关,高级别irAEs的存在并不意味着患者可以获得更好的治疗结果,这可能与治疗中断有关。对于发生高级别irAEs患者,应在对肺癌患者的亚组分析中,我们发现与后线治疗相比一线使用PD-1抑制剂患者可能获得更好的生存效益,抗血管生成药物的联合使用可能会提高PD-1抑制剂联合化疗的治疗疗效。因此,我们建议在PD-1抑制剂联合化疗的基础上加用抗血管生成药物,并在可能的情况下尽早应用PD-1抑制剂。

6. 局限性

本研究为真实世界研究,不可避免地具有自身的局限性。首先,临床上PD-1抑制剂的使用是临床医生根据患者病情、实际情况和医生的经验与患者及家属沟通后指定的综合性和个性化的治疗方案,可能不同于NCCN、ASCO、ESMO和CSCO等公认的治疗指南。其次,由于所有数据都是通过病历文案系统进行回顾性收集,有可能对重要的检测结果和患者症状记录不足导致偏差。第三,由于PD-1抑制剂使用初期临床医生对irAEs认识不足,导致治疗前基线测量不足,临床医生可能会错过一些irAEs,例如甲状腺功能减退。令人高兴地是,随着对irAEs的认识不断提高,我们医院临床医生会在治疗期间定期监测患者的胸部CT、心脏超声、肝肾功能、甲状腺功能、心肌酶、糖化血红蛋白和其他相关影像和实验室检查。第四,PD-1抑制剂治疗过程中由于联合化疗或其他治疗手段经常使用抗酸剂、止吐药和小剂量激素,以防止常见的不良反应,如恶心、疲劳、呕吐。第五,由于各种原因失访的患者比例很高。第六,由于所有患者在开始治疗时间差距很大,到研究时间截止时仍有一些患者未达到治疗终点。

NOTES

*通讯作者。

参考文献

[1] O’Neill, R.E. and Cao, X. (2019) Co-Stimulatory and Co-Inhibitory Pathways in Cancer Immunotherapy. Advances in Cancer Research, 143, 145-194.
https://doi.org/10.1016/bs.acr.2019.03.003
[2] Salmaninejad, A., Valilou, S.F., Shabgah, A.G., et al. (2019) PD-1/PD-L1 Pathway: Basic Biology and Role in Cancer Immunotherapy. Journal of Cel-lular Physiology, 234, 16824-16837.
https://doi.org/10.1002/jcp.28358
[3] Baumeister, S.H., Freeman, G.J., Dranoff, G., et al. (2016) Coinhibitory Pathways in Immunotherapy for Cancer. Annual Review of Immunology, 34, 539-573.
https://doi.org/10.1146/annurev-immunol-032414-112049
[4] Hosseini, A., Gharibi, T., Marofi, F., et al. (2020) CTLA-4: From Mechanism to Autoimmune Therapy. International Immunopharmacology, 80, Article ID: 106221.
https://doi.org/10.1016/j.intimp.2020.106221
[5] Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fun-damental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086.
https://doi.org/10.1158/2159-8290.CD-18-0367
[6] Hargadon, K.M., Johnson, C.E. and Williams, C.J. (2018) Immune Checkpoint Blockade Therapy for Cancer: An Overview of FDA-Approved Immune Checkpoint Inhibitors. In-ternational Immunopharmacology, 62, 29-39.
https://doi.org/10.1016/j.intimp.2018.06.001
[7] Chen, R., Ganesan, A., Okoye, I., et al. (2020) Targeting B7-1 in Immunotherapy. Medicinal Research Reviews, 40, 654-682.
https://doi.org/10.1002/med.21632
[8] Pentcheva-Hoang, T., Egen, J.G., Wojnoonski, K., et al. (2004) B7-1 and B7-2 Selectively Recruit CTLA-4 and CD28 to the Immunological Synapse. Immunity, 21, 401-413.
https://doi.org/10.1016/j.immuni.2004.06.017
[9] Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67.
https://doi.org/10.1182/blood-2017-06-741033
[10] Hui, E., Cheung, J., Zhu, J., et al. (2017) T Cell Costimulatory Receptor CD28 Is a Primary Target for PD-1-Mediated Inhibition. Science, 355, 1428-1433.
https://doi.org/10.1101/086652
[11] Kamphorst, A.O., Wieland, A., Nasti, T., et al. (2017) Rescue of Exhausted CD8 T Cells by PD-1-Targeted Therapies Is CD28-Dependent. Science, 355, 1423-1427.
https://doi.org/10.1126/science.aaf0683
[12] Bhatia, A. and Kumar, Y. (2014) Cellular and Molecular Mechanisms in Cancer Immune Escape: A Comprehensive Review. Expert Review of Clinical Immunology, 10, 41-62.
https://doi.org/10.1586/1744666X.2014.865519
[13] Demaria, O., Cornen, S., Daeron, M., et al. (2019) Harness-ing Innate Immunity in Cancer Therapy. Nature, 574, 45-56.
https://doi.org/10.1038/s41586-019-1593-5
[14] Yang, Y. (2015) Cancer Immunotherapy: Harnessing the Immune System to Battle Cancer. Journal of Clinical Investigation, 125, 3335-3337.
https://doi.org/10.1172/JCI83871
[15] Winograd, R., Byrne, K.T., Evans, R.A., et al. (2015) Induction of T-Cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carci-noma. Cancer Immunology Research, 3, 399-411.
https://doi.org/10.1158/2326-6066.CIR-14-0215
[16] Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104.
https://doi.org/10.3322/caac.21596
[17] Ramos-Casals, M., Brahmer, J.R., Callahan, M.K., et al. (2020) Immune-Related Adverse Events of Checkpoint Inhibitors. Nature Reviews Disease Primers, 6, 38.
https://doi.org/10.1038/s41572-020-0160-6
[18] Liu, Y.H., Zang, X.Y., Wang, J.C., et al. (2019) Diagnosis and Management of Immune Related Adverse Events (irAEs) in Cancer Immunotherapy. Biomedicine & Pharmacotherapy, 120, Article ID: 109437.
https://doi.org/10.1016/j.biopha.2019.109437
[19] Weber, J.S., Postow, M., Lao, C.D., et al. (2016) Management of Adverse Events Following Treatment with Anti-Programmed Death-1 Agents. Oncologist, 21, 1230-1240.
https://doi.org/10.1634/theoncologist.2016-0055
[20] Darnell, E.P., Mooradian, M.J., Baruch, E.N., et al. (2020) Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Current Oncology Reports, 22, 39.
https://doi.org/10.1007/s11912-020-0897-9
[21] Friedman, C.F., Proverbs-Singh, T.A. and Postow, M.A. (2016) Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review. JAMA Oncology, 2, 1346-1353.
https://doi.org/10.1001/jamaoncol.2016.1051
[22] Das, S. and Johnson, D.B. (2019) Immune-Related Adverse Events and Anti-Tumor Efficacy of Immune Checkpoint Inhibitors. Journal for ImmunoTherapy of Cancer, 7, 306.
https://doi.org/10.1186/s40425-019-0805-8
[23] Sugano, T., Seike, M., Saito, Y., et al. (2020) Immune Check-point Inhibitor-Associated Interstitial Lung Diseases Correlate with Better Prognosis in Patients with Advanced Non-Small-Cell Lung Cancer. Thoracic Cancer, 11, 1052-1060.
https://doi.org/10.1111/1759-7714.13364
[24] Shankar, B., Zhang, J., Naqash, A.R., et al. (2020) Multisystem Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors for Treatment of Non-Small Cell Lung Cancer. JAMA Oncology, 6, 1952-1956.
https://doi.org/10.1001/jamaoncol.2020.5012
[25] Eisenhauer, E.A., Therasse, P., Bogaerts, J., et al. (2009) New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). European Journal of Cancer, 45, 228-247.
https://doi.org/10.1016/j.ejca.2008.10.026
[26] Wang, P.F., Chen, Y., Song, S.Y., et al. (2017) Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis. Frontiers in Phar-macology, 8, Article No. 730.
https://doi.org/10.3389/fphar.2017.00730
[27] Xu, C., Chen, Y.P., Du, X.J., et al. (2018) Comparative Safety of Immune Checkpoint Inhibitors in Cancer: Systematic Review and Network Meta-Analysis. British Medical Journal, 363, k4226.
https://doi.org/10.1136/bmj.k4226
[28] Ja, L.G. and Sher, A. (2020) Anti-PD-1-Related Exacerbation of Interstitial Lung Disease in a Patient with Non-Small Cell Lung Cancer: A Case Presentation and Review of the Literature. Cancer Investigation, 38, 365-371.
https://doi.org/10.1080/07357907.2020.1783677
[29] Khoja, L., Day, D., Chen, T.W.W., et al. (2017) Tumour- and Class-Specific Patterns of Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Systematic Review. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28, 2377-2385.
https://doi.org/10.1093/annonc/mdx286
[30] Rogado, J., Sanchez-Torres, J.M., Romero-Laorden, N., et al. (2019) Immune-Related Adverse Events Predict the Therapeutic Efficacy of Anti-PD-1 Antibodies in Cancer Patients. European Journal of Cancer, 109, 21-27.
https://doi.org/10.1016/j.ejca.2018.10.014
[31] Akamatsu, H., Murakami, E., Oyanagi, J., et al. (2020) Im-mune-Related Adverse Events by Immune Checkpoint Inhibitors Significantly Predict Durable Efficacy Even in Re-sponders with Advanced Non-Small Cell Lung Cancer. Oncologist, 25, e679-e683.
https://doi.org/10.1634/theoncologist.2019-0299
[32] Robert, C., Hwu, W.J., Hamid, O., et al. (2021) Long-Term Safety of Pembrolizumab Monotherapy and Relationship with Clinical Outcome: A Landmark Analysis in Patients with Advanced Melanoma. European Journal of Cancer, 144, 182-191.
https://doi.org/10.1016/j.ejca.2020.11.010
[33] Robert, C., Ribas, A., Wolchok, J.D., et al. (2014) An-ti-Programmed-Death-Receptor-1 Treatment with Pembrolizumab in Ipilimumab-Refractory Advanced Melanoma: A Randomised Dose-Comparison Cohort of a Phase 1 Trial. The Lancet, 384, 1109-1117.
https://doi.org/10.1016/S0140-6736(14)60958-2
[34] Ribas, A., Puzanov, I., Dummer, R., et al. (2015) Pem-brolizumab versus Investigator-Choice Chemotherapy for Ipilimumab-Refractory Melanoma (KEYNOTE-002): A Ran-domised, Controlled, Phase 2 Trial. The Lancet Oncology, 16, 908-918.
https://doi.org/10.1016/S1470-2045(15)00083-2
[35] Schachter, J., Ribas, A., Long, G.V., et al. (2017) Pem-brolizumab versus Ipilimumab for Advanced Melanoma: Final Overall Survival Results of a Multicentre, Randomised, Open-Label Phase 3 Study (KEYNOTE-006). The Lancet, 390, 1853-1862.
https://doi.org/10.1016/S0140-6736(17)31601-X
[36] Ng, K.Y.Y., Tan, S.H., Tan, J.J.E., et al. (2022) Impact of Immune-Related Adverse Events on Efficacy of Immune Checkpoint Inhibitors in Patients with Advanced Hepatocellular Carcinoma. Liver Cancer, 11, 9-21.
https://doi.org/10.1159/000518619
[37] Hussaini, S., Chehade, R., Boldt, R.G., et al. (2021) Association between Immune-Related Side Effects and Efficacy and Benefit of Immune Checkpoint Inhibitors—A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 92, Article ID: 102134.
https://doi.org/10.1016/j.ctrv.2020.102134
[38] Khan, S. and Gerber, D.E. (2020) Autoimmunity, Checkpoint In-hibitor Therapy and Immune-Related Adverse Events: A Review. Seminars in Cancer Biology, 64, 93-101.
https://doi.org/10.1016/j.semcancer.2019.06.012
[39] Haanen, J., Carbonnel, F., Robert, C., et al. (2017) Man-agement of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 28, iv119-iv142.
https://doi.org/10.1093/annonc/mdx225
[40] Teufel, A., Zhan, T., Hartel, N., et al. (2019) Management of Immune Related Adverse Events Induced by Immune Checkpoint Inhibition. Cancer Letters, 456, 80-87.
https://doi.org/10.1016/j.canlet.2019.04.018
[41] Reck, M., Mok, T.S.K., Nishio, M., et al. (2019) Atezolizumab Plus Bevacizumab and Chemotherapy in Non-Small- Cell Lung Cancer (IMpower150): Key Subgroup Analyses of Pa-tients with EGFR Mutations or Baseline Liver Metastases in a Randomised, Open-Label Phase 3 Trial. The Lancet Res-piratory Medicine, 7, 387-401.
https://doi.org/10.1016/S2213-2600(19)30084-0
[42] West, H., Mccleod, M., Hussein, M., et al. (2019) Atezoli-zumab in Combination with Carboplatin Plus Nab-Paclitaxel Chemotherapy Compared with Chemotherapy Alone as First-Line Treatment for Metastatic Non-Squamous Non-Small-Cell Lung Cancer (IMpower130): A Multicentre, Ran-domised, Open-Label, Phase 3 Trial. The Lancet Oncology, 20, 924-937.
https://doi.org/10.1016/S1470-2045(19)30167-6
[43] Nishio, M., Barlesi, F., West, H., et al. (2021) Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results from the Randomized Phase 3 IMpow-er132 Trial. Journal of Thoracic Oncology, 16, 653-664.
https://doi.org/10.1016/j.jtho.2020.11.025
[44] Lee, P.Y., Oen, K.Q.X., Lim, G.R.S., et al. (2021) Neutrophil-to-Lymphocyte Ratio Predicts Development of Immune-Related Ad-verse Events and Outcomes from Immune Checkpoint Blockade: A Case-Control Study. Cancers, 13, Article No. 1308.
https://doi.org/10.3390/cancers13061308
[45] Peng, L., Wang, Y., Liu, F., et al. (2020) Peripheral Blood Markers Predictive of Outcome and Immune-Related Adverse Events in Advanced Non-Small Cell Lung Cancer Treated with PD-1 Inhibitors. Cancer Immunology, Immunotherapy, 69, 1813-1822.
https://doi.org/10.1007/s00262-020-02585-w
[46] Kos, F.T., Hocazade, C., Kos, M., et al. (2015) Assessment of Prognostic Value of “Neutrophil to Lymphocyte Ratio” and “Prognostic Nutritional Index” as a Sytemic Inflammatory Marker in Non-Small Cell Lung Cancer. Asian Pacific Journal of Cancer Prevention, 16, 3997-4002.
https://doi.org/10.7314/APJCP.2015.16.9.3997
[47] Miyazaki, T., Sakai, M., Sohda, M., et al. (2016) Prognostic Significance of Inflammatory and Nutritional Parameters in Patients with Esophageal Cancer. Anticancer Research, 36, 6557-6562.
https://doi.org/10.21873/anticanres.11259
[48] Thompson, J.A., Schneider, B.J., Brahmer, J., et al. (2020) NCCN Guidelines Insights: Management of Immunotherapy-Related Toxicities, Version 1.2020. Journal of the National Comprehensive Cancer Network, 18, 230-241.
https://doi.org/10.6004/jnccn.2020.0012
[49] Haanen, J., Carbonnel, F., Robert, C., et al. (2018) Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 29, iv264-iv266.
https://doi.org/10.1093/annonc/mdy162
[50] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statis-tics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Can-cer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[51] Kalemkerian, G.P., Loo, B.W., Akerley, W., et al. (2018) NCCN Guide-lines Insights: Small Cell Lung Cancer, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 1171-1182.
https://doi.org/10.6004/jnccn.2018.0079
[52] Ettinger, D.S., Wood, D.E., Aisner, D.L., et al. (2021) NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 19, 254-266.
[53] Antonia, S.J., López-Martin, J.A., Bendell, J., et al. (2016) Nivolumab Alone and Nivolumab Plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label, Phase 1/2 Trial. The Lancet Oncology, 17, 883-895.
https://doi.org/10.1016/S1470-2045(16)30098-5
[54] Spigel, D.R., Vicente, D., Ciuleanu, T.E., et al. (2021) Second-Line Nivolumab in Relapsed Small-Cell Lung Cancer: CheckMate 331. Annals of Oncology, 32, 631-641.
https://doi.org/10.1016/j.annonc.2021.01.071
[55] Owonikoko, T.K., Park, K., Govindan, R., et al. (2021) Nivolumab and Ipilimumab as Maintenance Therapy in Extensive-Disease Small-Cell Lung Cancer: CheckMate 451. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 39, 1349-1359.
[56] Chung, H.C., Piha-Paul, S.A., Lopez-Martin, J., et al. (2020) Pembrolizumab after Two or More Lines of Previous Therapy in Patients with Recurrent or Metastatic SCLC: Results from the KEYNOTE-028 and KEYNOTE-158 Studies. Journal of Thoracic Oncology, 15, 618-627.
https://doi.org/10.1016/j.jtho.2019.12.109
[57] Rudin, C.M., Awad, M.M., Navarro, A., et al. (2020) Pembroli-zumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Ran-domized, Double-Blind, Phase III KEYNOTE-604 Study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 38, 2369-2379.
[58] Zhou, Y., Chen, C., Zhang, X., et al. (2018) Immune-Checkpoint In-hibitor Plus Chemotherapy versus Conventional Chemotherapy for First-Line Treatment in Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-Analysis. Journal for ImmunoTherapy of Cancer, 6, 155.
https://doi.org/10.1186/s40425-018-0477-9
[59] O’Donnell, J.S., Hoefsmit, E.P., Smyth, M.J., et al. (2019) The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clinical Cancer Research, 25, 5743-5751.
https://doi.org/10.1158/1078-0432.CCR-18-2641
[60] Topalian, S.L., Taube, J.M. and Pardoll, D.M. (2020) Ne-oadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science, 367, eaax0182.
https://doi.org/10.1126/science.aax0182
[61] Landre, T., Des Guetz, G., Chouahnia, K., et al. (2020) Immune Checkpoint Inhibitors for Patients Aged ≥75 Years with Advanced Cancer in First- and Second-Line Settings: A Me-ta-Analysis. Drugs & Aging, 37, 747-754.
https://doi.org/10.1007/s40266-020-00788-5
[62] Liu, J., Blake, S.J., Yong, M.C., et al. (2016) Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discovery, 6, 1382-1399.
https://doi.org/10.1158/2159-8290.CD-16-0577
[63] Provencio, M., Nadal, E., Insa, A., et al. (2020) Neoadjuvant Chemotherapy and Nivolumab in Resectable Non-Small-Cell Lung Cancer (NADIM): An Open-Label, Multicentre, Sin-gle-Arm, Phase 2 Trial. The Lancet Oncology, 21, 1413-1422.
https://doi.org/10.1016/S1470-2045(20)30453-8
[64] Kalemkerian, G.P., Narula, N., Kennedy, E.B., et al. (2018) Molecular Testing Guideline for the Selection of Patients with Lung Cancer for Treatment with Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36, 911-919.
[65] Park, K., Vansteenkiste, J., Lee, K.H., et al. (2020) Pan-Asian Adapted ESMO Clinical Practice Guidelines for the Management of Patients with Locally-Advanced Unresectable Non-Small-Cell Lung Cancer: A KSMO-ESMO Initiative Endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS. Annals of Oncology, 31, 191-201.
https://doi.org/10.1016/j.annonc.2019.10.026
[66] Garcia, J., Hurwitz, H.I., Sandler, A.B., et al. (2020) Bevaci-zumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treatment Reviews, 86, Article ID: 102017.
https://doi.org/10.1016/j.ctrv.2020.102017
[67] Assoun, S., Brosseau, S., Steinmetz, C., et al. (2017) Bevaci-zumab in Advanced Lung Cancer: State of the Art. Future Oncology, 13, 2515-2535.
https://doi.org/10.2217/fon-2017-0302
[68] Abdollahi, A., Hlatky, L. and Huber, P.E. (2005) Endostatin: The Logic of Antiangiogenic Therapy. Drug Resistance Updates, 8, 59-74.
https://doi.org/10.1016/j.drup.2005.03.001
[69] Folkman, J. (2006) Antiangiogenesis in Cancer Thera-py—Endostatin and Its Mechanisms of Action. Experimental Cell Research, 312, 594-607.
https://doi.org/10.1016/j.yexcr.2005.11.015
[70] Poluzzi, C., Iozzo, R.V. and Schaefer, L. (2016) Endostatin and Endorepellin: A Common Route of Action for Similar Angiostatic Cancer Avengers. Advanced Drug Delivery Reviews, 97, 156-173.
https://doi.org/10.1016/j.addr.2015.10.012
[71] Montanino, A., Manzo, A., Carillio, G., et al. (2021) Angiogene-sis Inhibitors in Small Cell Lung Cancer. Frontiers in Oncology, 11, Article ID: 655316.
[72] Sun, Y., Wang, J.W., Liu, Y.Y., et al. (2013) Long-Term Results of a Randomized, Double-Blind, and Placebo-Controlled Phase III Trial: Endostar (rh-Endostatin) versus Placebo in Combination with Vinorelbine and Cisplatin in Advanced Non-Small Cell Lung Cancer. Thoracic Cancer, 4, 440-448.
https://doi.org/10.1111/1759-7714.12050
[73] Li, Y., Yi, Y., Lin, A., et al. (2020) A Comparison of the Efficacy of Antiangiogenic Agents Combined with Chemotherapy for the Treatment of Non-Small Cell Lung Cancer: A Network Meta-Analysis. Cancer Cell International, 20, 548.
https://doi.org/10.1186/s12935-020-01639-4
[74] Wang, P.L., Fang, X.Z., Yin, T.W., et al. (2021) Efficacy and Safety of Anti-PD-1 Plus Anlotinib in Patients with Advanced Non-Small-Cell Lung Cancer after Previous Systemic Treatment Failure—A Retrospective Study. Frontiers in Oncology, 11, Article ID: 628124.
https://doi.org/10.3389/fonc.2021.628124
[75] Proto, C., Ferrara, R., Signorelli, D., et al. (2019) Choosing Wisely First Line Immunotherapy in Non-Small Cell Lung Cancer (NSCLC): What to Add and What to Leave out. Cancer Treatment Reviews, 75, 39-51.
https://doi.org/10.1016/j.ctrv.2019.03.004
[76] Arneth, B. (2019) Tumor Microenvironment. Medicina, 56, Article No. 15.
https://doi.org/10.3390/medicina56010015
[77] Vitale, I., Manic, G., Coussens, L.M., et al. (2019) Mac-rophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 30, 36-50.
https://doi.org/10.1016/j.cmet.2019.06.001
[78] Denton, A.E., Roberts, E.W. and Fearon. D.T. (2018) Stromal Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 1060, 99-114.
https://doi.org/10.1007/978-3-319-78127-3_6
[79] Labani-Motlagh, A., Ashja-Mahdavi, M. and Loskog, A. (2020) The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 11, Article No. 940.
https://doi.org/10.3389/fimmu.2020.00940
[80] Greten, F.R. and Grivennikov, S.I. (2019) Inflammation and Can-cer: Triggers, Mechanisms, and Consequences. Immunity, 51, 27-41.
https://doi.org/10.1016/j.immuni.2019.06.025
[81] Lim, A.R., Rathmell, W.K. and Rathmell, J.C. (2020) The Tu-mor Microenvironment as a Metabolic Barrier to Effector T Cells and Immunotherapy. eLife, 9, e55185.
https://doi.org/10.7554/eLife.55185
[82] Binnewies, M., Roberts, E.W., Kersten, K., et al. (2018) Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nature Medicine, 24, 541-550.
https://doi.org/10.1038/s41591-018-0014-x
[83] Shi, R., Liao, C.H. and Zhang, Q. (2021) Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells, 10, Article No. 678.
https://doi.org/10.3390/cells10030678
[84] Boedtkjer, E. and Pedersen, S.F. (2020) The Acidic Tumor Microen-vironment as a Driver of Cancer. Annual Review of Physiology, 82, 103-126.
https://doi.org/10.1146/annurev-physiol-021119-034627
[85] Estrella, V., Chen, T., Lloyd, M., et al. (2013) Acid-ity Generated by the Tumor Microenvironment Drives Local Invasion. Cancer Research, 73, 1524-1535.
https://doi.org/10.1158/0008-5472.CAN-12-2796
[86] Nakamura, K. and Smyth, M.J. (2017) Targeting Can-cer-Related Inflammation in the Era of Immunotherapy. Immunology & Cell Biology, 95, 325-332.
https://doi.org/10.1038/icb.2016.126
[87] Shimizu, K., Iyoda, T., Okada, M., et al. (2018) Immune Suppression and Reversal of the Suppressive Tumor Microenvironment. International Immunology, 30, 445-454.
https://doi.org/10.1093/intimm/dxy042
[88] Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseases. Nature: International Weekly Journal of Science, 407, 249-257.
https://doi.org/10.1038/35025220
[89] Schito, L. and Semenza, G.L. (2016) Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends in Cancer, 2, 758-770.
https://doi.org/10.1016/j.trecan.2016.10.016
[90] Fukumura, D., Kloepper, J., Amoozgar, Z., et al. (2018) En-hancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nature Reviews Clinical Oncolo-gy, 15, 325-340.
https://doi.org/10.1038/nrclinonc.2018.29
[91] Schmittnaegel, M., Rigamonti, N., Kadioglu, E., et al. (2017) Dual Angiopoietin-2 and VEGFA Inhibition Elicits Antitumor Immunity that Is Enhanced by PD-1 Checkpoint Blockade. Science Translational Medicine, 9.
https://doi.org/10.1126/scitranslmed.aak9670
[92] Yasuda, S., Sho, M., Yamato, I., et al. (2013) Simultaneous Blockade of Programmed Death 1 and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Induces Synergistic Anti-Tumour Effect in Vivo. Clinical & Experimental Immunology, 172, 500-506.
https://doi.org/10.1111/cei.12069
[93] Wu, F.T.H., Xu, P., Chow, A., et al. (2019) Pre- and Post-Operative an-ti-PD-L1 Plus Anti-Angiogenic Therapies in Mouse Breast Or Renal Cancer Models of Micro- or Macro-Metastatic Disease. British Journal of Cancer, 120, 196-206.
https://doi.org/10.1038/s41416-018-0297-1
[94] Wang, Q., Gao, J., Di, W., et al. (2020) Anti-Angiogenesis Therapy Overcomes the Innate Resistance to PD-1/PD-L1 Blockade in VEGFA-Overexpressed Mouse Tumor Models. Cancer Immunology, Immunotherapy, 69, 1781-1799.
https://doi.org/10.1007/s00262-020-02576-x
[95] Jain, R.K. (2014) Antiangiogenesis Strategies Revisited: From Starving Tumors to Alleviating Hypoxia. Cancer Cell, 26, 605-622.
https://doi.org/10.1016/j.ccell.2014.10.006
[96] Yi, M., Jiao, D., Qin, S., et al. (2019) Synergistic Effect of Im-mune Checkpoint Blockade and Anti-Angiogenesis in Cancer Treatment. Molecular Cancer, 18, Article No. 60.
https://doi.org/10.1186/s12943-019-0974-6
[97] Mcdermott, D.F., Huseni, M.A., Atkins, M.B., et al. (2018) Clinical Activity and Molecular Correlates of Response to Atezolizumab Alone or in Combination with Bevacizumab versus Sunitinib in Renal Cell Carcinoma. Nature Medicine, 24, 749-757.
https://doi.org/10.1038/s41591-018-0053-3
[98] Rini, B.I., Powles, T., Atkins, M.B., et al. (2019) Atezolizumab Plus Bevacizumab versus Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma (IMmo-tion151): A Multicentre, Open-Label, Phase 3, Randomised Controlled Trial. The Lancet, 393, 2404-2415.
https://doi.org/10.1016/S0140-6736(19)30723-8
[99] Finn, R.S., Qin, S., Ikeda, M., et al. (2020) Atezolizumab Plus Bevacizumab in Unresectable Hepatocellular Carcinoma. The New England Journal of Medicine, 382, 1894-1905.
https://doi.org/10.1056/NEJMoa1915745
[100] Lee, M.S., Ryoo, B.Y., Hsu, C.H., et al. (2020) Atezolizumab with or without Bevacizumab in Unresectable Hepatocellular Carcinoma (GO30140): An Open-Label, Multicentre, Phase 1b Study. The Lancet Oncology, 21, 808-820.
https://doi.org/10.1016/S1470-2045(20)30156-X