阻塞性睡眠呼吸暂停低通气综合征免疫功能的研究进展
Advances in the Study of Immune Function in Obstructive Sleep Apnea-Hypopnea Syndrome
DOI: 10.12677/ACM.2022.126814, PDF, HTML, XML, 下载: 184  浏览: 324 
作者: 姜新新*:青海大学研究生院,青海 西宁;冯恩志:中国人民解放军联勤保障部队第941医院,青海 西宁
关键词: 阻塞性睡眠呼吸暂停低通气间歇性缺氧白介素6肿瘤坏死因子α细胞免疫体液免疫 炎症指标 Obstructive Sleep Apnea-Hypopnea Intermittent Hypoxia Interleukin 6 Tumor Necrosis Factor α Cellular Immunity Humoral Immunity Inflammatory Indicators
摘要: 阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是一种呼吸性睡眠障碍,主要表现为睡眠时,上呼吸道有时被部分,有时被完全阻塞,并且反复发生的夜间打鼾,白天困倦,甚至有时出现夜间憋醒等情况,引起低通气或者呼吸暂停等症状。在低通气或呼吸暂停事件中,肺泡通气不良导致动脉血氧饱和度(SaO2)降低和二氧化碳动脉分压(PaCO2)逐渐升高,从而引起一系列并发症,如:高血压、胰岛素抵抗、冠心病等多器官、多系统损伤。此间歇性缺氧必然引起机体免疫功能及多种炎症指标发生改变,本文就OSAHS患者免疫及炎症指标做出综述,以增加对OSAHS免疫的了解,提高对OSAHS重视。
Abstract: Sleep apnea-hypopnea syndrome (OSAHS) is a respiratory sleep disorder, which is mainly mani-fested by partially or completely blocked upper respiratory tract during sleep, recurring nocturnal snoring, daytime sleepiness, and sometimes even nocturnal awakening, causing symptoms such as hypopnea or apnea. In hypopnea or apnea events, poor alveolar ventilation leads to decreased arte-rial oxygen saturation (SaO2) and a gradual increase in arterial partial pressure (PaCO2) of carbon dioxide, resulting in a series of complications such as hypertension, insulin resistance, coronary heart disease and other multi-organ and multi-system injuries. This intermittent hypoxia will inev-itably cause changes in the body’s immune function and a variety of inflammatory indicators. This paper reviews the immune and inflammatory indicators of OSAHS patients to increase the under-standing of OSAHS immunity and improve the attention to OSAHS.
文章引用:姜新新, 冯恩志. 阻塞性睡眠呼吸暂停低通气综合征免疫功能的研究进展[J]. 临床医学进展, 2022, 12(6): 5627-5632. https://doi.org/10.12677/ACM.2022.126814

1. 引言

阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是一种临床症状,其主要特征是在睡眠中反复出现上气道部分或完全的塌陷,导致肺泡通气改变,间歇性低氧血症伴随呼吸强度增加和胸腔内负压波动,并出现高碳酸血症,从而出现夜间憋醒、睡眠结构紊乱等,继而导致一系列并发症。阻塞性睡眠呼吸暂停低通气综合征这种反复的缺氧及复氧,导致全身炎症反应及免疫功能异常。

2. 细胞因子水平变化与OSAHS

1) 白细胞介素6 (IL-6)属于细胞因子家族,包括多种因子,且这些因子可与糖蛋白130 (gp130)结合,作为β受体激活细胞内信号级联,这些级联通常由gp130的同源或异源二聚体组成与其他细胞因子受体结合 [1]。间歇性缺氧和睡眠结构紊乱可引起脂肪组织炎症,继而导致IL-6释放升高 [2],并可能通过脂肪细胞衍生的介质如IL-6与内皮细胞发生交联,促进内皮功能障碍 [3]。此外,血浆IL-6水平与内皮功能障碍及动脉粥样硬化的程度相关,并且还可预测2型糖尿病和肥胖症的发病率 [4] [5],因此,IL-6可以作为OSAHS存在或OSAHS相关发病率风险的可靠指标。另外OSAHS的标志性特征是间歇性缺氧,而间歇性缺氧会诱发巨噬细胞的极化从而增加IL-6的产量 [6]。有研究表明,有OSAHS和没有OSAHS的肥胖患者的血浆中包括IL-6在内的各种促炎细胞因子的组织表达和循环水平大幅增加,且CPAP治疗6个月后这些促炎细胞因子水平明显降低 [7]。并且通过减少睡眠延迟记录的成年OSAHS和过度嗜睡的患者白天和夜间IL-6血浆水平显著升高,如果没有过度嗜睡时这一变化就不存在 [8]。已发表的OSAHS成人报告汇总显示,CPAP治疗前IL-6的血浆水平在1.2~131.66 pg/mL之间,在CPAP治疗后显著降至0.45~66.04 pg/mL之间(p < 0.05),但也不排除存在显著的个体间异质性 [9],在OSAHS患儿的IL-6水平中也检测到类似的异质性 [10] [11] [12] [13],可能与IL-6和CRP基因的遗传变异有关 [13]。

2) 肿瘤坏死因子-α (TNF-α)是一种经典的促炎细胞因子其与调节睡眠有关 [14] [15] [16]。全身应用TNF-α可促进生理性睡眠状态的概率和深度,特别是增加非快速眼动睡眠(NREM)阶段的时间。此外,TNF-α水平表现出昼夜节律模式,在睡眠剥夺后会增强,而中枢神经系统中的肿瘤坏死因子-α受体的靶向破坏或抑制将导致自发性NREM睡眠的抑制 [17],另外,TNF-α传统上会导致 NF通路的激活,进而激活一氧化氮合酶、环氧合酶2和腺苷A1受体,而这些都与睡眠调节有关 [14] [15] [16]。睡眠结构紊乱模式模拟了OSAHS睡眠中断这一特征,诱导小鼠中枢神经系统和其他组织TNF-α表达大幅上调,伴随着睡眠倾向的增加以及认知和情绪障碍,甚至在睡眠时间不受限制的情况下 [17] [18]。此外,在受分段睡眠影响的野生型小鼠中使用TNF-α中和抗体治疗,或在将相同的睡眠干扰应用于双TNF-α受体缺失小鼠时,增加的睡眠倾向明显减弱,睡眠中断引起的认知和行为障碍也明显减弱 [19] [20]。除了在小鼠和人类实验中证明的睡眠紊乱和TNF-α之间的关系外,在小鼠中的类似研究集中于OSAHS的慢性间歇性缺氧,进一步证明了TLR-4-NF-κB通路的募集以及细胞内外TNF-α水平的增加,从而进一步证实了肿瘤坏死因子在OSAHS中的病理生理作用 [19] - [24]。除了OSAHS或其内在成分促进促炎状态并表现为TNF-α循环水平升高外,这种相互关系也可能有利于上气道功能障碍的出现或其他促进OSAHS发病的机制,例如,间歇性缺氧可在颈动脉体产生炎症过程,进而转化为免疫调节的改变以及呼吸控制的干扰,可能会促进睡眠时呼吸不稳定的倾向 [25],此外,虽然缺乏与上气道肌肉组织相关的具体研究,但在其他条件(如肥胖)下,TNF-α的增加可能促进肌肉功能障碍,从而增加上气道功能障碍的可能性 [26]。由于白天过度嗜睡(EDS)是成年人OSAHS常见的临床特征 [20],在肥胖儿童 [21] [22] [23] OSAHS中,EDS和TNF-α之间的相关性已经被提出 [27]。这些研究表明,无论是独立于肥胖的成人OSAHS患者,还是儿童,循环TNF-α升高水平都不一致。事实上,在迄今发表的37项成人研究中,27项显示TNF-α水平较高,8项未检测到TNF-α水平升高的证据,OSAHS患者的循环浓度,另有两项研究报告结果模棱两可,这些结果的差异可能是由于被招募的受试者数量不足、OSAHS严重程度的差异、并发肥胖的分布差异以及潜在的种族差异 [28]。一项Meta分析表明,OSAHS患者血浆TNF-α水平总体升高,尽管幅度不大,甚至被提议作为OSAHS EDS的生物标志物 [29]。OSAHS患者全身TNF-α浓度升高存在显著差异,提示OSAHS直接效应可能受到以下因素的增强(如TNF-α基因多态性)或减弱(如饮食、体力活动),从而支持了OSAHS背景下的全身炎症程度是疾病发生并发症的主要决定因素。

3. 免疫功能变化与OSAHS

参与OSAHS的免疫细胞种类较多,其中以T淋巴细胞最为重要,T淋巴细胞按照其分化抗原可分为两大类,分别为:CD4+辅助T细胞和CD8+细胞毒T细胞,T淋巴细胞的功能主要是介导细胞免疫,另外T淋巴细胞也对体内免疫应答起到关键的调节作用 [30]。CD4+辅助T细胞的主要功能是通过其分泌的淋巴因子,增强和扩大免疫应答过程,而CD8+细胞毒T细胞的功能为抑制T淋巴细胞和B淋巴细胞的功能,从而抑制免疫应答过程,以保持免疫功能的平衡 [30]。有研究表明OSAHS患者外周血中 CD8+明显升高,而CD4 +及CD4+与CD8+比值降低,但另一些研究表明OSAHS患者血CD4+和CD8+细胞计数增加,表明存在差异性,但不可否认的是,OSAHS患者的免疫功能是下降的 [31]。且CD8+T细胞的数目改变与特定疾病相关,如CD8+T细胞数目增加已被证实与动脉粥样硬化密切相关,而CD8+T细胞的减少与上皮组织的细胞毒性降低、结肠炎症的预防和肿瘤诱导的免疫抑制等有关 [31]。B细胞的功能是体液免疫,许多证据表明,B细胞在抑制和调节免疫反应中起着非常重要的作用,它是通过释放白细胞介素10 (IL-10)和表达可诱导T细胞凋亡的程序性死亡配体1,2 (PD-1,PD-2)、Fas-L和颗粒细胞B起作用的,Domagaia-Kulawik等发现OSAHS患者中B细胞比例减低、数量减少,并首次观察到OSAHS患者外周血B细胞数量减少与代谢紊乱和肥胖密切相关并且B细胞的耗竭可能促进了OSAHS的全身性炎症 [32]。

4. 部分炎症指标与OSAHS

OSAHS的特征表现为反复发生的间歇性缺氧,并伴有炎症发生。且OSAHS与炎症相关已被大量研究所证实,已发现OSHAS患者的炎症指标升高,且升高程度与疾病严重程度以及缺氧时间有关 [33]。

1) 中性粒细胞:中性粒细胞与淋巴细胞比率(neutrophil-to-lymphocyte ratio NLR)是一个新的指标,可反应机体的炎症情况,并且比较稳定。有研究发现0SAHS患者NLR较健康体检者升高,并且NLR与OSAHS的严重程度存在显著相关性,且NLR与冠心病独立相关 [34],同时亦有研究者发现OSAHS患者进行 CPAP治疗后 NLR值显著降低 [35]。

2) C反应蛋白:C反应蛋白(CRP)参与慢性炎症,且动脉粥样硬化形成有关,但CRP与OSAHS疾病之间是否存在相关性,争议较大,且研究结果不一致。有一项Meta分析显示,OSAHS患者血清CRP水平高于健康对照组,最高体重指数与AHI和CRP值之间存在相关性 [36] [37]。Yokoe等人观察到30例OSAHS患者CRP水平高于健康受试者 [38]。

3) 血沉:目前血沉也作为炎症活动的表现因子,但由于有关血沉与OSAHS疾病及其严重程度的研究较少,所以其作用也不清楚。但有研究显示OSAHS患者血沉水平明显高于对照组,而血沉水平升高与炎症反应的发生密切相关,血沉是炎症发生的重要标记物,这表明OSAHS患者存在炎症反应,血沉升高可能与OSAHS患者反复的血氧不足和睡眠障碍引起的组织炎症有关 [39]。

4) 降钙素原PCT:是一种无激素活性的蛋白质,在血浆中稳定,健康人体内含量低(<0.1 ng/ml),脂多糖和其它多种炎症因子诱导PCT的产生,PCT可能是一种次级炎症因子,它本身不能启动炎症反应,但可放大并加重炎症反应过程,全身细菌或真菌感染时显著升高,但病毒或局部感染时正常或轻微升高,对鉴别感染、判断感染严重程度和预后有重要意义,研究发现OSAHS组PCT较对照组略有所增高 [40],提示PCT在OSAHS患者的诊断中有一定的价值,但具体机制尚需进一步探讨。

5. 结论

综上,OSAHS主要表现以慢性缺氧为特征,且机体的免疫功能失调,进而导致一系列全身炎症反应,一些炎症因子升高,但由于目前有关OSAHS免疫及炎症的研究尚少,且结果缺乏一致性,所以还需进一步研究。且有研究表明,OSAHS患者发生动脉粥样硬化的可能性较高,但具体机制尚不清楚,有待进一步研究。

NOTES

*通讯作者。

参考文献

[1] Wolf, J., Rose-John, S. and Garbers, C. (2014) Interleukin-6 and Its Receptors: A Highly Regulated and Dynamic Sys-tem. Cytokine, 70, 11-20.
https://doi.org/10.1016/j.cyto.2014.05.024
[2] Poroyko, V.A., Carreras, A., Khalyfa, A., Khalyfa, A.A., Leone, V., Peris, E., Almendros, I., Gileles-Hillel, A., Qiao, Z., Hubert, N., et al. (2016) Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Scientific Reports, 6, Article No. 35405.
https://doi.org/10.1038/srep35405
[3] Lee, W.Y., Allison, M.A., Kim, D.J., Song, C.H. and Barrett-Connor, E. (2007) Association of Interleukin-6 and C-Reactive Protein with Subclinical Carotid Atherosclerosis (The Rancho Bernardo Study). American Journal of Cardiology, 99, 99-102.
https://doi.org/10.1016/j.amjcard.2006.07.070
[4] Esteve, E., Castro, A., López-Bermejo, A., Vendrell, J., Ricart, W. and Fernández-Real, J.M. (2007) Serum Interleukin-6 Correlates with Endothelial Dysfunction in Healthy Men Inde-pendently of Insulin Sensitivity. Diabetes Care, 30, 939-945.
https://doi.org/10.2337/dc06-1793
[5] Schaefer, E., Wu, W., Mark, C., Yang, A., DiGiacomo, E., Carlton-Smith, C., Salloum, S., Brisac, C., Lin, W., Corey, K.E., et al. (2017) Intermittent Hypoxia Is a Proinflammatory Stimulus Resulting in IL-6 Expression and M1 Macrophage Polariza-tion. Hepatology Communications, 1, 326-337.
https://doi.org/10.1002/hep4.1045
[6] Li, Y., Vgontzas, A.N., Fernandez-Mendoza, J., Kritikou, I., Basta, M., Pejovic, S., Gaines, J. and Bixler, E.O. (2017) Objective, But Not Sub-jective, Sleepiness Is Associated with Inflammation in Sleep Apnea. Sleep, 40, zsw033.
https://doi.org/10.1093/sleep/zsw033
[7] Baessler, A., Nadeem, R., Harvey, M., Madbouly, E., Younus, A., Sajid, H., Naseem, J., Asif, A. and Bawaadam, H. (2013) Treatment for Sleep Apnea by Continuous Positive Airway Pressure Improves Levels of Inflammatory Markers—A Meta-Analysis. Journal of Inflammation, 10, Article No. 13.
https://doi.org/10.1186/1476-9255-10-13
[8] Van Eyck, A., Van Hoorenbeeck, K., De Winter, B.Y., Van Gaal, L., De Backer, W. and Verhulst, S.L. (2017) Sleep-Disordered Breathing, Systemic Adipokine Secretion, and Metabolic Dysregulation in Overweight and Obese Children and Adolescents. Sleep Medicine, 30, 52-56.
https://doi.org/10.1016/j.sleep.2015.11.014
[9] Smith, D.F., Hossain, M.M., Hura, A., Huang, G., McConnell, K., Ishman, S.L. and Amin, R.S. (2017) Inflammatory Milieu and Cardiovascular Homeostasis in Children with Obstructive Sleep Apnea. Sleep, 40, zsx022.
https://doi.org/10.1093/sleep/zsx022
[10] Gaines, J., Vgontzas, A.N., Fernandez-Mendoza, J., Calhoun, S.L., He, F., Liao, D., Sawyer, M.D. and Bixler, E.O. (2016) Inflammation Mediates the Association Between Visceral Adiposity and Obstructive Sleep Apnea in Adolescents. American Journal of Physiology: Endocrinology and Metabolism, 311, E851-E858.
https://doi.org/10.1152/ajpendo.00249.2016
[11] Kaditis, A.G., Gozal, D., Khalyfa, A., Kheirandish-Gozal, L., Capdevila, O.S., Gourgoulianis, K., Alexopoulos, E.I., Chaidas, K., Bhattacharjee, R., Kim, J., et al. (2014) Variants in C-Reactive Protein and IL-6 Genes and Susceptibility to Obstructive Sleep Apnea in Children: A Candidate-Gene Asso-ciation Study in European American and Southeast European Populations. Sleep Medicine, 15, 228-235.
https://doi.org/10.1016/j.sleep.2013.08.795
[12] Zhong, A., Xiong, X., Shi, M. and Xu, H. (2016) Roles of Inter-leukin (IL)-6 Gene Polymorphisms, Serum IL-6 Levels, and Treatment in Obstructive Sleep Apnea: A Meta-Analysis. Sleep and Breathing, 20, 719-731.
https://doi.org/10.1007/s11325-015-1288-6
[13] Kong, D., Qin, Z., Wang, W. and Kang, J. (2017) Effect of Ob-structive Sleep Apnea on Carotid Artery Intima Media Thickness Related To Inflammation. Clinical and Investigative Medicine, 40, E25-E33.
https://doi.org/10.25011/cim.v40i1.28051
[14] Rockstrom, M.D., Chen, L., Taishi, P., Nguyen, J.T., Gibbons, C.M., Veasey, S.C. and Krueger, J.M. (2018) Tumor Necrosis Factor Alpha in Sleep Regulation. Sleep Medicine Reviews, 40, 69-78.
https://doi.org/10.1016/j.smrv.2017.10.005
[15] Krueger, J.M. and Opp, M.R. (2016) Sleep and Microbes. Inter-national Review of Neurobiology, 131, 207-225.
https://doi.org/10.1016/bs.irn.2016.07.003
[16] Jewett, K.A., Taishi, P., Sengupta, P., Roy, S., Davis, C.J. and Krueger, J.M. (2015) Tumor Necrosis Factor Enhances the Sleep-Like State and Electrical Stimulation Induces a Wake-Like State in Co-Cultures of Neurons and Glia. European Journal of Neuroscience, 42, 2078-2090.
https://doi.org/10.1111/ejn.12968
[17] De Araújo Freitas, I.G., De Bruin, P.F., Bittencourt, L., De Bruin, V.M. and Tufik, S. (2015) What Can Blood Biomarkers Tell Us about Cardiovascular Risk in Obstructive Sleep Apnea? Sleep and Breathing, 19, 755-768.
https://doi.org/10.1007/s11325-015-1143-9
[18] Ramesh, V., Thatte, H.S., McCarley, R.W. and Basheer, R. (2007) Adenosine and Sleep Deprivation Promote NF-κB Nuclear Translocation in Cholinergic Basal Forebrain. Journal of Neurochemistry, 100, 1351-1363.
https://doi.org/10.1111/j.1471-4159.2006.04314.x
[19] Kaushal, N., Ramesh, V. and Gozal, D. (2012) TNF-α and Temporal Changes in Sleep Architecture in Mice Exposed To Sleep Fragmentation. PLOS ONE, 7, Article ID: e45610.
https://doi.org/10.1371/journal.pone.0045610
[20] Ramesh, V., Nair, D., Zhang, S.X., Hakim, F., Kaushal, N., Kayali, F., Wang, Y., Li, R.C., Carreras, A. and Gozal, D. (2012) Disrupted Sleep without Sleep Curtailment Induces Sleepiness and Cognitive Dysfunction via the Tumor Necrosis Factor-α Pathway. Journal of Neuroinflammation, 9, Ar-ticle No. 91.
https://doi.org/10.1186/1742-2094-9-91
[21] He, K. and Kapur, V.K. (2017) Sleep-Disordered Breathing and Excessive Daytime Sleepiness. Sleep Medicine Clinics, 12, 369-382.
https://doi.org/10.1016/j.jsmc.2017.03.010
[22] Gozal, D. and Kheirandish-Gozal, L. (2009) Obesity and Excessive Daytime Sleepiness in Prepubertal Children with Obstructive Sleep Apnea. Pediatrics, 123, 13-18.
https://doi.org/10.1542/peds.2008-0228
[23] Tauman, R., O’Brien, L.M., Holbrook, C.R. and Gozal, D. (2004) Sleep Pressure Score: A New Index of Sleep Disruption in Snoring Children. Sleep, 27, 274-278.
https://doi.org/10.1093/sleep/27.2.274
[24] Song, D., Fang, G., Mao, S.Z., Ye, X., Liu, G., Gong, Y. and Liu, S.F. (2012) Chronic Intermittent Hypoxia Induces Atherosclerosis by NF-κB-Dependent Mechanisms. Biochimica et Bio-physica Acta (BBA)—Molecular Basis of Disease, 1822, 1650-1659.
https://doi.org/10.1016/j.bbadis.2012.07.010
[25] Reid, M.B., Lannergren, J. and Westerblad, H. (2002) Respira-tory and Limb Muscle Weakness Induced by Tumor Necrosis Factor-Alpha: Involvement of Muscle Myofilaments. American Journal of Respiratory and Critical Care Medicine, 166, 479-484.
https://doi.org/10.1164/rccm.2202005
[26] Wilcox, P., Milliken, C. and Bressler, B. (1996) High-Dose Tumor Ne-crosis Factor Alpha Produces an Impairment of Hamster Diaphragm Contractility. Attenuation with a Prostaglandin In-hibitor. American Journal of Respiratory and Critical Care Medicine, 153, 1611-1615.
https://doi.org/10.1164/ajrccm.153.5.8630610
[27] Shoham, S., Davenne, D., Cady, A.B., Dinarello, C.A. and Krueger, J.M. (1987) Recombinant Tumor Necrosis Factor and Interleukin 1 Enhance Slow-Wave Sleep. American Journal of Physiology, 253, R142-R149.
https://doi.org/10.1152/ajpregu.1987.253.1.R142
[28] Nadeem, R., Molnar, J., Madbouly, E.M., Nida, M., Ag-garwal, S., Sajid, H., Naseem, J. and Loomba, R. (2013) Serum Inflammatory Markers in Obstructive Sleep Apnea: A Meta-Analysis. Journal of Clinical Sleep Medicine, 89, 1003-1012.
https://doi.org/10.5664/jcsm.3070
[29] Kheirandish-Gozal, L. and Gozar, D. (2019) Obstructive Sleep Apnea and Inflammation:Proof of Concept Based on Two Illustrative Cytokines. International Journal of Molecular Sciences, 20, Article No. 459.
https://doi.org/10.3390/ijms20030459
[30] 黄磊, 徐爱晖. 阻塞性睡眠呼吸暂停综合征免疫网络的研究进展[J]. 临床肺科杂志, 2009, 14(3): 351-352.
[31] Xie, H., Yin, J., Bai, Y., Peng, H., Zhou, X. and Bai, J. (2019) Differ-ential Expression of Immune Markers in the Patients with Obstructive Sleep Apnea/hypopnea Syndrome. European Ar-chives of Oto-Rhino-Laryngology, 276, 735-744.
https://doi.org/10.1007/s00405-018-5219-6
[32] Domagała-Kulawik, J., Osinska, I., Piechuta, A., Bielicki, P. and Skirecki, T. (2015) T, B, and NKT Cells in Systemic Inflammation in Obstructive Sleep Apnoea. Mediators of Inflamma-tion, 2015, Article ID: 161579.
https://doi.org/10.1155/2015/161579
[33] 计明, 李从荣. 阻塞性睡眠呼吸暂停综合征患者血清IL-6、TNF-α测定的临床意义[J]. 微循环学杂志, 2008, 18(4): 43-45.
[34] Kivanc, T., Kulaksizoglu, S., Lakadamyali, H. and Eyuboglu, F. (2018) Importance of Laboratory Parameters in Patients with Obstructive Sleep Apnea and Their Relation-ship with Cardiovascular Diseases. Journal of Clinical Laboratory Analysis, 32, e22199.
https://doi.org/10.1002/jcla.22199
[35] Al-Halawani, M., Kyung, C., Liang, F., Kaplan, I., Moon, J., Clerger, G., et al. (2020) Treatment of Obstructive Sleep Apnea with CPAP Improves Chronic Inflammation Measured by Neutro-phil-To-Lymphocyte Ratio. Journal of Clinical Sleep Medicine, 16, 251-257.
https://doi.org/10.5664/jcsm.8176
[36] Ermakov, A.V., Konkova, M.S., Kostyuk, S.V., Izevskaya, V.L., Baranova, A. and Veiko, N.N. (2013) Oxidised Extracellular DNA as a Stress Signal in Human Cells. Oxidative Medicine and Cel-lular Longevityv, 2013, Article ID: 649747.
https://doi.org/10.1155/2013/649747
[37] Lo, Y.M., Tein, M.S., Lau, T.K., Haines, C.J., Leung, T.N., Poon, P.M., Wainscoat, J.S., Johnson, P.J., Chang, A.M. and Hjelm, N.M. (1998) Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics, 62, 768-775.
https://doi.org/10.1086/301800
[38] Yokoe, T., Minogu-chi, K., Matsuo, H., Oda, N., Minoguchi, H., Yoshino, G., Hirano, T. and Adachi, M. (2003) Elevated Levels of C-Reactive Protein and Interleukin-6 in Patients with Obstructive Sleep Apnea Syndrome Are Decreased by Nasal Con-tinuous Positive Airway Pressure. Circulation, 107, 1129-1134.
https://doi.org/10.1161/01.CIR.0000052627.99976.18
[39] 韩林华, 刘晨, 王红阳, 张盼盼, 王立民, 黄艳, 孟晓华. 持续气道正压通气对睡眠呼吸暂停患者疗效及C-反应蛋白和血沉的影响[J]. 中国耳鼻咽喉头颈外科, 2013, 20(6): 331-332.
[40] 陈艺慧, 闵丽, 张海涛, 努尔艾力•依米提. 睡眠呼吸暂停低通气综合征患者CRP、PCT水平的分析[J]. 兵团医学, 2016, 50(4): 33-34.