胶原蛋白海绵对烧伤创面炎症因子水平影响的研究进展
Research Progress in the Effect of Collagen Sponge on Inflammatory Factors Level in Burn Wounds
DOI: 10.12677/ACM.2022.126764, PDF, HTML, XML, 下载: 188  浏览: 332 
作者: 施鸳鸳:青海大学研究生院,青海 西宁;祁永章, 李 毅*:青海大学附属医院,青海 西宁
关键词: 胶原蛋白海绵烧伤炎症因子Collagen Sponge Burn Inflammatory Factor
摘要: 胶原蛋白是结缔组织的主要成分,约占动物体内蛋白质含量的1/3,具有支撑机体器官,维持机体稳定性、弹性和强度等功能。作为一种天然的生物资源,胶原蛋白具有低免疫原性、良好的生物相容性和生物可降解性,被广泛用作医用生物材料。用胶原蛋白制备的胶原蛋白海绵,对烧伤创面具有保护作用。本文就胶原蛋白海绵对烧伤创面炎症因子影响的相关研究进展作一综述。
Abstract: Collagen is the main component of connective tissue, accounting for about 1/3 of the protein content in animals. It has functions of supporting body organs and maintaining body stability, elasticity and strength. As a natural biological resource, collagen is widely used as a medical biological material due to its low immunogenicity, good biocompatibility and biodegradability. Collagen sponge pre-pared from collagen has protective effect on burn wound. This paper reviews the research progress on the effect of collagen sponge on inflammatory factors of burn wound.
文章引用:施鸳鸳, 祁永章, 李毅. 胶原蛋白海绵对烧伤创面炎症因子水平影响的研究进展[J]. 临床医学进展, 2022, 12(6): 5273-5277. https://doi.org/10.12677/ACM.2022.126764

1. 胶原蛋白海绵的生物作用

近年来,随着生物工程技术的迅速发展,重组胶原蛋白(rCOL)应运而生。rCOL是一种以基因工程和发酵技术为基础,利用生物技术制备的仿生胶原蛋白,经高效纯化可实现工业化。新型重组胶原蛋白海绵在体内完全可生物降解,无刺激、致敏、急性毒性、溶血或明显的免疫排斥反应。重组的胶原海绵在体外的促凝作用明显优于天然胶原蛋白海绵,其促进血细胞粘附的能力更强。新型重组胶原蛋白海绵具有良好的生物相容性和显著的止血效果,可作为一种潜在的新型临床产品进行研发。胶原蛋白海绵具有较好的亲水性和血细胞粘附性。经过大规模发酵和纯化,得到的高纯度重组人胶原蛋白具有产量高、稳定性好、性能优良等优点。大多数胶原蛋白产品由于具有良好的多孔结构和优异的吸湿性能而具有显著的凝血功能。其生理机制主要是吸附血细胞,促进血细胞和血小板聚集,释放血小板刺激的凝血因子,激活内源性止血 [1]。同时,胶原蛋白引导伤口周围成纤维细胞加速伤口愈合 [2]。然而,胶原蛋白海绵制品的缺陷也不容忽视。目前批准的胶原蛋白海绵产品提取自动物来源(动物皮肤或肌腱),存在潜在的病毒风险,生物相容性差 [3] 纯度低。由提取的胶原蛋白制备的胶原蛋白海绵是一种理论上的止血材料,可以诱导包括血红蛋白和血小板 [4] 在内的血细胞的粘附和凝固。因为孔隙结构吸水能力高的材料性能,胶原蛋白海绵可以提供完全遵循与血液中血红蛋白和血小板凝集相似的作用,从而有效提高凝血浓度。全球的伤口和烧伤管理市场非常巨大,包括传统的伤口敷料和先进的伤口敷料 [5] [6] [7]。用伤口敷料进行伤口护理对减少感染和促进康复至关重要。一般情况下,创面愈合按 [7] 顺序分为止血、炎症、增殖和重塑四个阶段。伤口周围适宜的潮湿环境对皮肤组织的再生和愈合过程非常重要。与其他止血类材料相比,胶原蛋白海绵具有良好的吸湿性、生物相容性及生物可降解性等性能 [8] [9]。胶原蛋白海绵在发挥良好的止血性能的同时,还可有效促进伤口的愈合 [10] [11],因而胶原蛋白海绵在临床止血和促进创面愈合方面有着良好的应用前景。

2. 烧伤后炎症因子的变化

肿瘤坏死因子(Tumor Necrosis Factor, TNF)是一种炎性细胞因子,可以协同调节其他细胞因子的产生、细胞存活和死亡来协调组织的稳态 [12]。最初,TNF因其可以在人和小鼠体内诱导肿瘤快速出血性坏死的能力而被命名。TNF-α (Tumor Necrosis Factor-α)由活化的巨噬细胞和其他类型的细胞如CD4+ T细胞、中性粒细胞、肥大细胞等释放产生,能够诱导炎症反应和细胞凋亡。目前TNF-α在伤口愈合中的作用已经被很好地描述,此外,众所周知,它参与创面愈合的早期阶段,而不是后期阶段,特别是在创面后的最初几个小时,直到第一天。研究指出,TNF-α也可以由肿瘤相关微环境中的恶性细胞和免疫细胞产生,其作为内源性肿瘤启动子,通过产生炎症生态环境来促进恶性疾病的进行 [13]。同时大量研究表明 [14] [15] 烧伤后组织损伤越严重,则外周血中TNF-α浓度越高,并且随着烧伤程度的加重,TNF-α水平升高的越明显。当机体受到损伤后,循环中的细胞因子TNF-α出现较早并迅速达到高峰,TNF-α可诱发血管内皮细胞及微循环发生一系列的炎症性改变,如果细胞因子TNF-α改变较局限并且分泌水平适中,有利于控制感染的扩散和炎症的发展,反之则造成机体的进一步损伤 [16] [17]。因此,检测不同时间节点的TNF-α水平可以提示烧伤后病情演变,进行病情评估,对于指导临床治疗措施和提示预后具有重要帮助。

白细胞介素(interleukin, IL)是由一些细胞分泌或合成,最后作用于另一类细胞的细胞因子。截至目前至少已发现38个IL,它们可以导致恶病质、调节免疫、引起发热和急性期反应,以及调控其他相关细胞因子的产生分化等。IL-6在健康人体中不表达,当机体发生组织损伤或感染时,IL-6能被快速合成,可以诱导多种引起急性炎症的蛋白质表达,并在细胞增殖分化中发挥重要作用,其中单核细胞和巨噬细胞是IL-6的主要产生者,T细胞、B细胞、肝细胞、内皮细胞以及一些肿瘤细胞也能组成性地产生IL-6 [18]。在上调的细胞因子中,IL-6和IL-8是众所周知的促炎细胞因子,而IL-10和IL-1RA是抗炎(免疫调节)细胞因子。相关研究表明,促炎和抗炎活动都参与了早期烧伤。并发现不是所有的促炎细胞因子在被烧伤后都上调,这表明在机体内存在维持着细胞因子网络中的某种制衡系统。烧伤后检测到炎性细胞因子(包括TNF-α [19]、IL-8 [20] 和IL-6 [21])的血清水平升高,并且在烧伤后约4天内这些细胞因子反应达到高峰。尽管这些细胞因子的峰值水平和达到峰值水平的时间因烧伤后机体而异,但IL-6和IL-10在第1天显示最高水平,此后逐渐下降。在脓毒性烧伤患者中,可以观察到三种促炎细胞因子在烧伤后约1~2周与感染同时开始增加。炎症由这些促炎和抗炎介质之间的平衡控制;抗炎细胞因子的同时产生可以抵消促炎细胞因子的作用,并改变炎症反应的强度。促炎和抗炎细胞因子的不受控制的释放会促进免疫功能障碍,从而导致显著的发病率。如果系统免疫不能恢复宿主的完整性,免疫系统失调会导致严重的全身炎症和免疫麻痹;这些不受控制的全身免疫事件最终会导致组织损伤和多器官衰竭。

烧伤创面组织的变性、坏死以及休克引起的组织细胞缺血缺氧均可诱发机体炎症反应。炎症反应虽是组织修复的必经过程,但过度的炎症反应可加剧创面组织损害而影响创面愈合。如TNF-α由巨噬细胞分泌,在机体损伤过程中具有始动效应,可诱导IL-6,IL-8等炎症因子的分泌,致使血管通透性增加而导致微循环障碍。严重烧伤会诱发炎症反应,其特征是炎症通路的激活和各种细胞因子的释放 [22]。炎症是由复杂的细胞因子网络中促炎和抗炎介质之间的平衡控制的 [23]。在这个网络中,一种细胞因子可以影响多种细胞类型(多效性),多种细胞因子可以对同一种细胞类型产生类似的生物效应(冗余性) [24]。因此,一种细胞因子的作用可以被另一种细胞因子所补偿。促炎和抗炎细胞因子的失控释放会促进免疫功能障碍和显著的全身炎症,从而导致烧伤患者的组织损伤、多器官衰竭或死亡 [22]。所以促炎细胞因子如IL-6和TNF-α在伤口愈合中起着重要作用。这些细胞因子包括了对成纤维细胞增殖和趋化的刺激。

3. 胶原蛋白海绵与烧伤后炎症因子间的关系

传统的棉纱布等创面敷料无法为创面提供合适的湿润环境,在烧伤治疗中恢复效果有限 [5] [6]。近二十年来,许多基于水分疗法原理的先进创面敷料被开发出来,用于治疗严重烧伤等复杂创面 [7] [25]。胶原蛋白、海藻酸盐和纤维素等天然聚合物已被广泛研究,它们具有生物相容性、保湿性和良好的透气性等先进性能 [5] [6] [26]。众所周知,I型胶原蛋白是皮肤组织中细胞外基质的主要成分,约占皮肤干重的三分之二 [25] [27]。胶原蛋白可以引发成纤维细胞的形成加速内皮细胞向创面组织的迁移,在愈合过程 [6] 中发挥积极作用。商业I型胶原材料通常使用牛和猪的组织制备 [25] [27]。胶原蛋白具有良好的抗菌性能和快速的创面愈合效率 [28]。近年来为了解胶原蛋白海绵,促进创面愈合的效果,有相关研究表明,胶原蛋白海绵可以使受损创伤后的IL-6和TNF-α表达水平降低,并抑制IL-6和TNF-α水平。胶原蛋白海绵通过抑制炎症细胞因子,增加肉芽组织厚度、促进上皮细胞的形成以及炎症细胞数量的减少,以更快的方式愈合伤口,而且有助于减少创伤修复的质量。

4. 预期与展望

胶原蛋白作为一种先进的创面敷料,在治疗此类复杂的创面时被广泛用作多孔海绵或支架 [6] [27]。除了烧伤,胶原基的伤口敷料已被用于治疗糖尿病相关的足溃疡。许多慢性伤口可以使用胶原基敷料来治疗 [25] [29] [30]。其良好的生物相容性、可降解性、促进伤口愈合、美白保湿等优异性能使其在组织工程、医疗美容等行业有着广泛的关注和研究 [8] [9] [31] [32];但其存在的免疫原性也可能导致机体的过敏、排斥等免疫反应,势必对其实际应用造成不良影响 [33] [34]。疯牛病、口蹄疫以及禽流感等疾病的流行引起人们对动物源性胶原蛋白生物医学应用的担忧,因此需要对提取的胶原产品中潜在的病毒进行有效地消除 [35] [36],只有这样才能为临床研究奠定坚实的基础,沟通起基础研究到临床应用的跨度。为保证用于人类时的安全性和有效性,还需要进行大量的实验研究工作。

NOTES

*通讯作者Email: liyiqhxn2006@aliyun.com

参考文献

[1] Manon-Jensen, T., Kjeld, N.G. and Karsdal, M.A. (2016) Collagen-Mediated Hemostasis. Journal of Thrombosis and Haemostasis, 14, 438-448.
https://doi.org/10.1111/jth.13249
[2] Napavichayanun, S. and Aramwit, P. (2017) Effect of Animal Products and Extracts on Wound Healing Promotion in Topical Applications: A Review. Journal of Biomaterials Science, Polymer Edition, 28, 703-729.
https://doi.org/10.1080/09205063.2017.1301772
[3] Werz, W., Hoffmann, H., Haberer, K. and Walter, J.K. (1997) Strategies to Avoid Virus Transmissions by Biopharmaceutic Products, In: Kaaden, O.R., Czerny, C.P. and Eichhorn, W., Eds., Viral Zoonoses and Food of Animal Origin, Springer Publishing, Vienna, 245-256.
https://doi.org/10.1007/978-3-7091-6534-8_23
[4] Morton, L.F., Peachey, A.R., Zijenah, L.S., Goodall, A.H., Humphries, M.J. and Barnes, M.J. (1994) Conformation-Dependent Platelet Adhesion to Collagen Involving Integrin Alpha 2 Beta 1-Mediated and Other Mechanisms: Multiple Alpha 2 Beta 1-Recognition Sites in Collagen Type I. Bio-chemical Journal, 299, 791-797.
https://doi.org/10.1042/bj2990791
[5] Sweeney, I.R., Miraftab, M. and Collyer, G. (2012) A Critical Review of Modern and Emerging Absorbent Dressings Used to Treat Exuding Wounds. International Wound Journal, 9, 601-612.
https://doi.org/10.1111/j.1742-481X.2011.00923.x
[6] Dhivya, S., Padma, V.V. and Santhini, E. (2015) Wound Dressings—A Review. Biomedicine, 5, 24-28.
[7] Murray, R.Z., West, Z.E., Cowin, A.J. and Farrugia, B.L. (2019) Development and Use of Biomaterials as Wound Healing Therapies. Burns Trauma, 7, s41038-018-0139-7.
https://doi.org/10.1186/s41038-018-0139-7
[8] Jin, J., Ji, Z., Xu, M., Liu, C., Ye, X., Zhang, W., et al. (2018) Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo. ACS Bio-materials Science & Engineering, 4, 2541-2551.
https://doi.org/10.1021/acsbiomaterials.8b00453
[9] Cheng, X., Shao, Z., Li, C., Yu, L., Raja, M.A. and Liu, C. (2017) Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema Esculentum Kishinouye for Use in Hemostatic Applications. PLOS ONE, 12, Article ID: e0169731.
https://doi.org/10.1371/journal.pone.0169731
[10] Sheehy, E.J., Cunniffe, G.M. and O’Brien, F.J. (2018) 5-Collagen-Based Biomaterials for Tissue Regeneration and Repair. In: Barbosa, M.A. and Martins, M.C.L., Eds., Pep-tides and Proteins as Biomaterials for Tissue Regeneration and Repair, Woodhead Publishing, Sawston, 127-150.
https://doi.org/10.1016/B978-0-08-100803-4.00005-X
[11] Gelse, K., Pöschl, E. and Aigner, T. (2003) Colla-gens—Structure, Function, and Biosynthesis. Advanced Drug Delivery Reviews, 55, 1531-1546.
https://doi.org/10.1016/j.addr.2003.08.002
[12] Webster, J.D. and Vucic, D. (2020) The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Frontiers in Cell and Devel-opmental Biology, 8, Article No. 365.
https://doi.org/10.3389/fcell.2020.00365
[13] Atretkhany, K.N., Gogoleva, V.S., Drutskaya, M.S. and Ne-dospasov, S.A. (2020) Distinct Modes of TNF Signaling through Its Two Receptors in Health and Disease. Journal of Leukocyte Biology, 107, 893⁃905.
https://doi.org/10.1002/JLB.2MR0120-510R
[14] 邓小军, 张阳根. 烧伤患者血清炎症物质研究进展[J]. 新乡医学院学报, 2008, 25(1): 43-45.
[15] Bird, M.D. and Kovacs, E.J. (2008) Organ-Specific Inflammation Following Acute Ethanol and Burn Injury. Journal of Leukocyte Biology, 84, 607-613.
https://doi.org/10.1189/jlb.1107766
[16] Tsay, T.B., Yang, M.C., Chen, P.H., Lin, CT., Hsu, C.M and Chen, L.W. (2013) TNF-Alpha Decreases Infection-Induced Lung Injury in Burn through Negative Regulation of TLR4/iNOS. Journal of Surgical Research, 179, 106-114.
https://doi.org/10.1016/j.jss.2012.08.038
[17] Tsay, T.B., Yang, M.C., Chen, P.H., Lai, K.H., Huang, H.T., Hsu, C.M., et al. (2013) Blocking TNF-α Enhances Pseudomonas aeru-ginosa-Induced Mortality in Burn Mice through Induction of IL-1β. Cytokine, 63, 58-66.
https://doi.org/10.1016/j.cyto.2013.04.002
[18] Uciechowski, P. and Dempke, W.C.M. (2020) Interleukin-6: A Master Player in the Cytokine Network. Oncology, 98, 131-137.
https://doi.org/10.1159/000505099
[19] Yeh, F.L., Lin, W.L., Shen, H.D. and Fang, R.H. (1997) Changes in Serum Tumor Necrosis Factor-α in Burned Patients. Burns, 23, 6-10.
https://doi.org/10.1016/S0305-4179(96)00071-X
[20] Yeh, F.L., Lin, W.L., Shen, H.D. and Fang, R.H. (1997) Changes in Levels of Serum IL-8 in Burned Patients. Burns, 23, 555-559.
https://doi.org/10.1016/S0305-4179(97)00071-5
[21] Yeh, F.L., Lin, W.L., Shen, H.D. and Fang, R.H. (1999) Changes in Circulating Levels of Interleukin 6 in Burned Patients. Burns, 25, 131-136.
https://doi.org/10.1016/S0305-4179(98)00150-8
[22] Finnerty, C.C., Herndon, D.N., Przkora, R., Pereira, C.T., Oliveira, H.M., Queiroz, D.M., et al. (2006) Cytokine Expression Profile over Time in Severely Burned Pediatric Pa-tients. Shock, 26, 13-19.
https://doi.org/10.1097/01.shk.0000223120.26394.7d
[23] Elias, J.A., Freundlich, B., Kern, J.A. and Rosenbloom, J. (1990) Cytokine Networks in the Regulation of Inflammation and Fibrosis in the Lung. Chest, 97, 1439-1445.
https://doi.org/10.1378/chest.97.6.1439
[24] Ozaki, K. and Leonard, W.J. (2002) Cytokine and Cytokine Receptor Pleiotropy and Redundancy. Journal of Biological Chemistry, 277, 29355-29358.
https://doi.org/10.1074/jbc.R200003200
[25] Fleck, C.A. and Simman, R. (2010) Modern Collagen Wound Dressings: Function and Purpose. The Journal of the American College of Certified Wound Specialists, 2, 50-54.
https://doi.org/10.1016/j.jcws.2010.12.003
[26] Li, X., Li, B., Ma, J., Wang, X. and Zhang, S. (2014) Develop-ment of a Silk Fibroin/HTCC/PVA Sponge for Chronic Wound Dressing. Journal of Bioactive and Compatible Poly-mers, 29, 398-411.
https://doi.org/10.1177/0883911514537731
[27] Chattopadhyay, S. and Raines, R.T. (2014) Review Colla-gen-Based Biomaterials for Wound Healing. Biopolymers, 101, 821-833.
https://doi.org/10.1002/bip.22486
[28] Mitra, T., Manna, P.J., Raja, S.T.K., Gnanamani, A. and Kundu, P.P. (2015) Curcumin Loaded Nano Graphene Oxide Reinforced Fish Scale Collagen—A 3D Scaffold Biomaterial for Wound Heal-ing Applications. RSC Advances, 5, 98653-98665.
https://doi.org/10.1039/C5RA15726A
[29] Ruszczak, Z. (2003) Effect of Collagen Matrices on Dermal Wound Healing. Advanced Drug Delivery Reviews, 55, 1595-1611.
https://doi.org/10.1016/j.addr.2003.08.003
[30] Lee, C.H., Singla, A. and Lee, Y. (2001) Biomedical Applications of Collagen. International Journal of Pharmaceutics, 221, 1-22.
https://doi.org/10.1016/S0378-5173(01)00691-3
[31] Naghshineh, N., Tahvildari, K. and Nozari, M. (2019) Preparation of Chitosan, Sodium Alginate, Gelatin and Collagen Biodegradable Sponge Composites and Their Applica-tion in Wound Healing and Curcumin Delivery. Journal of Polymers and the Environment, 27, 2819-2830.
https://doi.org/10.1007/s10924-019-01559-z
[32] Fukushima, S.I., Yonetsu, M. and Yasui, T. (2018) Polariza-tion-Resolved Second-Harmonic-Generation Imaging of Dermal Collagen Fiber in Prewrinkled and Wrinkled Skins of Ultraviolet-B-Exposed Mouse. Journal of Biomedical Optics, 24, Article ID: 031006.
https://doi.org/10.1117/1.JBO.24.3.031006
[33] Aragona, F. (1991) Is Bovine Collagen Safe? J Duro, 97, 279-281.
[34] Lynn, A.K., Yannas, I.V. and Bonfield, W. (2010) Antigenicity and Immunogenicity of Collagen. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71B, 343-354.
https://doi.org/10.1002/jbm.b.30096
[35] Zhao, W., Chi, C., Zhao, Y. and Wang, B. (2018) Preparation, Physico-chemical and Antioxidant Properties of Acid- and Pepsin-Soluble Collagens from the Swim Bladders of Miiuycroaker (Miichthys miiuy). Marine Drugs, 16, Article No. 161.
https://doi.org/10.3390/md16050161
[36] Bae, J.E., Kim, C.K., Kim, S. and Kim, I.S. (2012) Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides. Korean Journal of Microbiology, 48, 314-318.
https://doi.org/10.7845/kjm.2012.049