油茶壳提取物对酪氨酸酶的抑制机理
Inhibitory Mechanism of Camellia oleifera Shell Extract on Tyrosinase
DOI: 10.12677/HJFNS.2022.112018, PDF, HTML, XML, 下载: 268  浏览: 600  国家自然科学基金支持
作者: 王璐馨, 沈建福*:浙江大学生物系统工程与食品科学学院,浙江 杭州
关键词: 油茶壳抑制机理酪氨酸酶 Camellia oleifera Inhibition Mechanism Tyrosinase
摘要: 目的:探究油茶壳提取物对酪氨酸酶的抑制作用,判断其抑制类型,初步探究其抑制机理,并对其活性成分进行测定。方法:分别以L-酪氨酸与L-多巴(L-DOPA)为底物,测定油茶壳提取物对酪氨酸酶单酚酶活性与二酚酶活性的抑制效果,Lineweaver-Burk双倒数作图法探究其抑制机理,并测定油茶壳提取物中的总多酚和黄酮含量。结果:油茶壳提取物对酪氨酸酶单酚酶和二酚酶的IC50分别为0.0711 mg/mL、0.2199 mg/mL,对酶底物络合物抑制常数KIS为10.7487 mg/mL。油茶壳提取物中总多酚含量为30.22% ± 1.02%,黄酮含量为13.52% ± 0.24%。结论:油茶壳提取物对酪氨酸酶单酚酶与二酚酶均具有较好抑制效果,总多酚、黄酮可能是油茶壳提取物发挥抑制酪氨酸酶活性作用的主要物质。
Abstract: Objective: To explore the inhibitory effect of Camellia oleifera shell extract on tyrosinase, to determine the type of inhibition, to preliminarily explore the inhibition mechanism, and to determine its active components. Method: Using L-tyrosine and L-DOPA as substrates, respectively, the inhibitory effects of Camellia oleifera shell extract on tyrosinase monophenolase activity and diphenolase activity were determined. The Lineweaver-Burk double-reciprocal plot method was used to explore the inhibition mechanism, and the contents of total polyphenols and flavonoids in Camellia oleifera shell extract were determined. Results: The IC50 of Camellia oleifera shell extract for tyrosinase monophenolase and diphenolase were 0.0711 mg/mL and 0.2199 mg/mL, respectively, and the KIS for enzyme-substrate complex was 10.7487 mg/mL. The total polyphenol content in Camellia oleifera shell extract was 30.22% ± 1.02%, and the flavonoid content was 13.52% ± 0.24%. Conclusion: Camellia oleifera shell extract has a good inhibitory effect on tyrosinase monophenolase and diphenolase. Total polyphenols and flavonoids may be the main substances of Camellia oleifera shell extract that inhibit tyrosinase activity.
文章引用:王璐馨, 沈建福. 油茶壳提取物对酪氨酸酶的抑制机理[J]. 食品与营养科学, 2022, 11(2): 147-156. https://doi.org/10.12677/HJFNS.2022.112018

参考文献

[1] Himalini, S., Uma Maheshwari Nallal, V., Razia, M., Chinnapan, S., Chandrasekaran, M., Ranganathan, V., et al. (2022) Antimicrobial, Anti-Melanogenesis and Anti-Tyrosinase Potential of Myco-Synthesized Silver Nanoparticles on Human Skin Melanoma SK-MEL-3 Cells. Journal of King Saud University-Science, 34, Article ID: 101882.
https://doi.org/10.1016/j.jksus.2022.101882
[2] Ic, A., Iar, A., Vla, B. and Furlan, R.L.E. (2020) Effect Directed Synthesis of a New Tyrosinase Inhibitor with Anti-Browning Activity. Food Chemistry, 341, Article ID: 128232.
https://doi.org/10.1016/j.foodchem.2020.128232
[3] Carcelli, M., Rogolino, D., Bartoli, J., Pala, N., Compari, C., Ronda, N., et al. (2020) Hydroxyphenyl Thiosemicarbazones as Inhibitors of Mushroom Tyrosinase and Antibrowning Agents. Food Chemistry, 303, Article ID: 125310.
https://doi.org/10.1016/j.foodchem.2019.125310
[4] Xu, H., Li, X., Xin, X., Mo, L., Zou, Y., Zhao, G., et al. (2021) Antityrosinase Mechanism and Antimelanogenic Effect of Arbutin Esters Synthesis Catalyzed by Whole-Cell Bi-ocatalyst. Journal of Agricultural and Food Chemistry, 69, 4243-4252.
https://doi.org/10.1021/acs.jafc.0c07379
[5] 黄浩, 周秀玲, 吕美云. 还原性谷胱甘肽、抗坏血酸对酪氨酸酶的抑制作用[J]. 中国生化药物杂志, 2009, 30(2): 95-98+102.
[6] Ravetti, S., Clemente, C., Brignone, S., Hergert, L., Allemandi, D. and Palma, S. (2019) Ascorbic Acid in Skin Health. Cosmetics, 6, Article No. 58.
https://doi.org/10.3390/cosmetics6040058
[7] Rho, H.-S., Lee, C.-S., Ahn, S.-M., Hong, Y.-D., Shin, S.-S., Park, Y.-H., et al. (2011) Studies on Tyrosinase Inhibitory and Antioxidant Activities of Benzoic Acid Derivatives Con-taining Kojic Acid Moiety. Bulletin of the Korean Chemical Society, 32, 4411-4414.
https://doi.org/10.5012/bkcs.2011.32.12.4411
[8] Rainer, B., Revoltella, S., Mayr, F., Moesslacher, J., Scalfari, V., Kohl, R., et al. (2019) From Bench to Counter: Discovery and Validation of a Peony Extract as Tyrosinase Inhibiting Cosmeceutical. European Journal of Medicinal Chemistry, 184, Article ID: 111738.
https://doi.org/10.1016/j.ejmech.2019.111738
[9] Kim, J.H., Jang, D.H., Lee, K.W., Kim, K.D., Shah, A.B., Zhumanova, K., et al. (2020) Tyrosinase Inhibition and Kinetic Details of Puerol A Having But-2-Enolide Structure from Amorpha fruticosa. Molecules, 25, Article No. 2344.
https://doi.org/10.3390/molecules25102344
[10] 孙玉洁. 香水莲花美白保湿作用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.
[11] Luan, F., Zeng, J., Yang, Y., He, X., Wang, B., Gao, Y., et al. (2020) Recent advances in Camellia oleifera Abel: A Review of Nutritional Constituents, Biofunctional Properties, and Potential Industrial Applica-tions. Journal of Functional Foods, 75, Article ID: 104242.
https://doi.org/10.1016/j.jff.2020.104242
[12] Chaydarreh, K.C., Lin, X., Guan, L., Yun, H., Gu, J. and Hu, C. (2021) Utilization of Tea Oil Camellia (Camellia oleifera Abel.) Shells as Alternative Raw Materials for Manufacturing Particleboard. Industrial Crops and Products, 161, Article ID: 113221.
https://doi.org/10.1016/j.indcrop.2020.113221
[13] Yang, Z., Fu, L. and Fan, F. (2019) Thermal Characteristics and Kinetics of Waste Camellia oleifera Shells by TG-GC/MS. ACS Omega, 4, 10370-10375.
https://doi.org/10.1021/acsomega.9b01013
[14] Yeh, W., Ko, J., Huang, W., Cheng, W. and Yang, H. (2020) Crude Extract of Camellia oleifera Pomace Ameliorates the Progression of Non-Alcoholic Fatty Liver Disease via De-creasing Fat Accumulation, Insulin Resistance and Inflammation. British Journal of Nutrition, 123, 508-515.
https://doi.org/10.1017/S0007114519003027
[15] Zhu, J., Zhu, Y., Jiang, F., Xu, Y., Ouyang, J. and Yu, S. (2013) An Integrated Process to Produce Ethanol, Vanillin, and Xylooligosaccharides from Camellia oleifera Shell. Carbohydrate Research, 382, 52-57.
https://doi.org/10.1016/j.carres.2013.10.007
[16] 姜天甲. 油茶籽壳活性物质的提取及抗氧化、抑制脂肪酸合酶机理初探[D]: [硕士学位论文]. 杭州: 浙江大学, 2007.
[17] 陈艳梅. 酪氨酸酶新型抑制剂曲酸衍生物的合成及其抑制黑色素形成的作用机理[D]: [硕士学位论文]. 厦门: 厦门大学, 2019.
[18] 朱绮琴, 钟山. 酪氨酸酶催化多巴的米氏常数测定[J]. 化学通报, 1987(5): 49-52.
[19] Cui, Y., Liang, G., Hu, Y., Shi, Y., Cai, Y.-X., Gao, H.-J., et al. (2015) Alpha-Substituted Derivatives of Cinnamaldehyde as Tyrosinase Inhibitors: Inhibitory Mechanism and Mo-lecular Analysis. Journal of Agricultural & Food Chemistry, 63, 716-722.
https://doi.org/10.1021/jf505469k
[20] 黄璜, 宋康康, 陈清西. 曲酸作为化妆品添加剂的增白作用机理研究[J]. 厦门大学学报(自然科学版), 2003, 42(5): 652-656.