羟基(对甲苯磺酰氧基)碘苯的制备与应用
Preparation and Application of Hydroxy(sulfonyloxy)iodoarenes
DOI: 10.12677/HJCET.2022.123019, PDF, HTML, XML, 下载: 585  浏览: 980  科研立项经费支持
作者: 周德军*:山东达冠医药科技有限公司,山东 济南;河南理工大学医学院,河南 焦作;盛遵田, 李广乾, 马文龙:山东达冠医药科技有限公司,山东 济南;王寒露, 李子怡:河南理工大学医学院,河南 焦作;周景春:北京本草方源药业集团有限公司,北京
关键词: 羟基(对甲苯磺酰氧)碘苯高价碘化合物制备与应用综述Hydroxy(sulfonyloxy)iodoarenes Hypervalent Iodine Compounds Preparation and Application Review
摘要: 羟基(对甲苯磺酰氧基)碘苯作为一种安全、有效、污染小的高价碘化合物,近年广泛应用于有机化学与药物化学的研究中。本课题组一直从事高价碘氧化剂的制备与应用研究,其中对高价碘化合物中的亚碘酰苯、二酰氧碘苯、羟基(对甲苯磺酰氧)碘苯做了大量的研究工作。本文结合自己课题组的研究成果综述了羟基(对甲苯磺酰氧基)碘苯以及衍生物的制备方法与实际应用。
Abstract: Hydroxy(sulfonyloxy)iodoarenes, as a safe, effective and low-polluting hypervalent iodine compounds, have been widely used in the research of organic chemistry and medicinal chemistry in recent years. Our research group has been engaged in the preparation and application of hypervalent iodine compounds. In particular, we have done a lot of research on iodosylbenzene, bisacyloxyiodobenzenes and hydroxy(sulfonyloxy)iodoarenes in hypervalent iodine compounds. In this paper, the preparation methods and practical applications of hydroxy (p-toluenesulfonyloxy) iodobenzene and derivatives are reviewed based on the research results of our group.
文章引用:周德军, 盛遵田, 李广乾, 马文龙, 王寒露, 李子怡, 周景春. 羟基(对甲苯磺酰氧基)碘苯的制备与应用[J]. 化学工程与技术, 2022, 12(3): 133-141. https://doi.org/10.12677/HJCET.2022.123019

1. 引言

羟基(对甲苯磺酰氧)碘苯PhI(OH)OTs,Hydroxy(tosyl)iodobenzene (HTIB)是一类重要高价碘(III)化合物之一,最早是由Neilland和Karele在1970制得(Neiland O Y, Karele B Y. Zhurnal Organicheskoi Khimii, 1970, 6(4): 885)。在1976年化学家Koser确定了该化合物的结构,并对其进行了系统研究,此试剂被命名为Koser试剂 [1]。关于Koser试剂以及衍生物的合成和应用已有多篇文献报道过 [2] - [29],但目前只有HTIB在市场上销售。经详查文献,在此总结了几种已报道过的代表性羟基磺酰氧碘化合物(1~11)。该类化合物通常使用对应的碘苯在有机磺酸存在下被过氧化合物氧化或者使用适当的对甲苯磺酸和二乙酰氧碘苯进行配体交换反应而制得 [30] - [44] (图1)。本文详细介绍了羟基(对甲苯磺酰氧)碘苯衍生物的种类、制备方法、合成应用以及对此类化合物的展望,希望能够为有机化学和药物化学工作者提供帮助。

Figure 1. Representative hydroxy(p-toluenesulfonyloxy)iodine aromatic compounds

图1. 代表性羟基(对甲苯磺酰氧)碘芳香化合物

2. 羟基(对甲苯磺酰氧基)碘苯衍生物的制备方法

Togo课题组报道了一种便利的一锅法制备羟基磺酰氧碘芳香化合物的方法。在有机磺酸存在的室温条件下,碘苯及其衍生物和mCPBA反应可以制得各种羟基磺酰氧碘芳香化合物(Yamamoto, Y., & Togo, H. Synlett, 2005(16), 2486-2488)。此外Olofsson课题组也报道了从芳烃12直接制备羟基磺酰氧碘芳香化合物13的改进法。这种便利的一锅法方案涉及到芳烃12的碘化–氧化–配体交换 [45] (图2)。

Figure 2. Preparation of Hydroxysulfonyloxyiodoaromatic compounds from aromatic hydrocarbons

图2. 由芳烃直接制备羟基磺酰氧碘芳香化合物

另外,Koser课题组还通过HTIB中的配体交换制备了几种烷氧基(甲苯磺酰氧)碘苯衍生物 [46] [47] [48] 例如,HTIB 14和三甲基原甲酸酯反应得到了甲氧基(对甲苯磺酰氧)碘苯15。同样,甲氧基(对甲苯磺酰氧基)碘苯15和薄荷醇进行配体交换反应以95%的收率得到手性甘草碱化合物16 (图3)。

Figure 3. Ligand exchange of HTIB to obtain alkoxysulfonyloxyiodobenzene

图3. HTIB经配体交换得到烷氧磺酰氧碘苯

3. 羟基(对甲苯磺酰氧基)碘芳香化合物的实际应用

Koser课题组首次报道了羟基(对甲苯磺酰氧基)碘苯PhI(OH)OTs的X射线晶体结构。经过对HTIB晶体结构分析,发现了碘原子周围的T字形几何构型以及2.47A(I-OTs)和1.94A(I-OH)两个不同的I-O共价键。通过几种羟基(对甲磺酰氧基)碘芳香化合物的X射线晶体结构分析,得出在HTIB的苯环中引入取代基对高价碘中心的几何形状没有太大影响 [49] [50] [51] [52] [53]。Richter课题组报道了HTIB衍生物的晶体结构,得出与Koser课题组相类似的研究结果,另外还扩展到了氧桥酸酐化合物。羟基(甲磺酰氧基)碘苯的分子几何形状与HTIB 14的相似,由于分子内I…O二次键合,羟基甲磺酰氧碘苯和另一分子羟基(甲磺酸氧基)碘苯形成固态二聚体。Richter课题组还分析羟基(甲磺酰氧基)碘苯和HTIB在水溶液中的状态,在水溶液中羟基(甲磺酰氧基)碘苯和羟基(甲苯磺酰氧基)碘苯均完全电离,得到PhI+OH和相应的磺酸根阴离子,但它们彼此不形成离子对 [54]。

羟基(有机磺酰氧基)碘芳香化合物18最典型的反应是在羰基化合物17的α-碳上导入磺酰氧基得到产物19 (Koser G F. Aldrichimica Acta, 2001, 34(3): 89-102) (图4)。

Muniz课题组发现改良后的HTIB试剂可以促进烯烃分子内胺化反应得到相应的吲哚,尤其是由PhIO和2,4,5-三异丙基苯磺酸制备的HTIB衍生物,在温和条件下促进2-氨基苯乙烯20高收率转化为吲哚21 [55] (图5)。

Figure 4. Introduction of sulfonyloxy group to the α-carbon of the carbonyl group

图4. 羰基α-碳上导入磺酰氧基

Figure 5. Coupling to prepare indole

图5. 偶联制备吲哚

Rao课题组多次报道了通过使用HTIB从腙22中得到3,6-二取代-1,2,4,5-四二氢嗪23 (图6)。相应的3,6-二取代-1,2,4,5-四二氢嗪23可以在对甲苯磺酰基(Ts)去保护后,经四丁基氟化胺(TBAF)处理很容易芳构化得到四嗪 [56] [57] [58] [59]。

Figure 6. Oxidation of hydrazone to tetrazine

图6. 氧化腙得到四嗪

Justik和Koser报道烯烃经HTIB处理可进行氧化重排。芳族烯烃24与HTIB在甲醇水溶液中氧化重排,以良好产率得到α-芳基酮25 (图7)。这种区域选择性氧化重排反应在环状烯烃中可用于环收缩反应 [60]。

Figure 7. Oxidative rearrangement

图7. 氧化重排反应

TIB在温和条件下可用作环扩张诱导剂。Silva课题组报道了HTIB诱导化合物26扩环得到主要产物苯并环庚基酮衍生物27 [61] (图8)。

Figure 8. Induce ring expansion reaction

图8. 诱导扩环反应

HTIB可以用作分子间C-C键交叉偶联反应的有效氧化剂。Kita课题组报道了HTIB诱导杂环化合物交叉偶联得到多种有用的混合联芳。例如,在三甲基溴硅烷存在下,在六氟异丙醇溶液中,取代噻吩28和1-甲氧基萘29使用HTIB交叉偶联得到产物30 [62] (图9)。

Figure 9. Aromatic heterocyclic coupling reaction

图9. 芳香杂环偶联反应

Zhu课题组报道用HTIB处理硫脲31可得到脱硫化氢产物碳二酰亚胺32,此方法是一种有效制备碳二酰亚胺的方法 [60] [63] (图10)。

Figure 10. Preparation of imide by reaction with thiourea

图10. 与硫脲反应制备二酰亚胺

课题组报道4-羟基香豆素33用HTIB处理可以在3位引入磺酰氧基得到化合物34,此方法拓展了香豆素衍生物的合成范围 [64] (图11)。

Figure 11. Introduction of oxygen at the 3-position of coumarin

图11. 在香豆素3位导入氧

4. 羟基磺酰氧碘芳香化合物的合成与应用展望

羟基磺酰氧碘芳香化合物的合成已经取得了诸多成就。此类化合物不仅合成简便,而且作为一种安全、有效、污染小的试剂,已经在有机合成和药物化学中广泛应用。羟基磺酰氧碘芳香化合物作为一种反应试剂虽然扮演着重要角色,但仍需要我们不断探索与研究新功效新用途。乙酰氧碘苯现已经表明可以和缺电子酚反应,可以将芳香环部分导入酚的结构里得到相应的芳香醚化合物,羟基磺酰氧碘苯衍生物目前还没有相关报道。

基金项目

北京本草方源药业科研合作项目(H20-523)。

NOTES

*通讯作者。

参考文献

[1] Koser, G.F., Wettach, R.H., Troup, J.M. and Frenz, B.A. (1976) Hypervalent Organoiodine. Crystal Structure of Phe-nylhydroxytosyloxyiodine. Journal of Organic Chemistry, 41, 3609-3611.
https://doi.org/10.1021/jo00884a028
[2] Wirth, T. (2005) Hypervalent Iodine Chemistry in Synthesis: Scope and New Directions. Angewandte Chemie International Edition, 44, 3656-3665.
https://doi.org/10.1002/anie.200500115
[3] Li, Y., Hari, D.P., Vita, M.V. and Waser, J. (2016) Cyclic Hyperva-lent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation. Angewandte Chemie International Edi-tion, 55, 4436-4454.
https://doi.org/10.1002/anie.201509073
[4] Ceballos, J., Grinhagena, E., Sangouard, G., Heinis, C. and Waser, J. (2021) Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angewandte Chemie International Edition, 60, 9022-9031.
https://doi.org/10.1002/anie.202014511
[5] Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Io-dine. Chemical Reviews, 108, 5299-5358.
https://doi.org/10.1021/cr800332c
[6] Zhang, H. and Wirth, T. (2022) Oxidation of BINOLs by Hypervalent Io-dine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry, e202200181.
https://doi.org/10.1002/chem.202200181
[7] Shetgaonkar, S.E. and Singh, F.V. (2020) Hypervalent Iodine Rea-gents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Frontiers in Chemistry, 8, Article No. 705.
https://doi.org/10.3389/fchem.2020.00705
[8] Wolf, W., Weiner, A. and Weisberg, R. (1965) Chemistry and Bi-ochemistry of Polyvalent Iodine Compounds. 3. Acute Toxicity of 1,3-Dihydro-1-Hydroxy-3-Oxo-1,2-Benziodoxole. Journal of Pharmaceutical Sciences, 54, 329-330.
https://doi.org/10.1002/jps.2600540244
[9] Eisenmann, A. and Wolf, W. (1968) Chemistry and Biochemistry of Polyvalent Iodine Compounds. VII. The ARP (Apparent Reduction Potential) of 1,3-Dihydro-1-Hydroxo-3-Oxo-1,2-Benziodoxole. Journal of Pharmaceutical Sciences, 57, 1435-1437.
https://doi.org/10.1002/jps.2600570837
[10] Wolf, W., Chen, J.C. and Hsu, L.L. (1966) Chemistry and Biochem-istry of Polyvalent Iodine Compounds. V. Ionization of Heterocyclic Polyvalent Iodine Compounds. Journal of Phar-maceutical Sciences, 55, 68-72.
https://doi.org/10.1002/jps.2600550115
[11] Pan, L., Ke, Z. and Yeung, Y.Y. (2021) Lewis Base Catalyzed Diox-ygenation of Olefins with Hypervalent Iodine Reagents. Organic Letters, 23, 8174-8178.
https://doi.org/10.1021/acs.orglett.1c02872
[12] Xiao, X. and Wengryniuk, S.E. (2021) Recent Advances in the Selective Oxidative Dearomatization of Phenols to O-Quinones and O-Quinols with Hypervalent Iodine Reagents. Synlett, 32, 752-762.
https://doi.org/10.1055/s-0037-1610760
[13] Kumar, R., Singh, F.V., Takenaga, N. and Dohi, T. (2022) Asym-metric Direct/Stepwise Dearomatization Reactions Involving Hypervalent Iodine Reagents. Chemistry, 17, e202101115.
https://doi.org/10.1002/asia.202101115
[14] Suzuki, Y., Takehara, R., Miura, K., Ito, R. and Suzuki, N. (2021) Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. The Journal of Or-ganic Chemistry, 86, 16892-16900.
https://doi.org/10.1021/acs.joc.1c02087
[15] Declas, N. and Waser, J. (2020) Access to Vinyl Ethers and Ketones with Hypervalent Iodine Reagents as Oxy-Allyl Cation Synthetic Equivalents. Angewandte Chemie International Edition, 59, 18256-18260.
https://doi.org/10.1002/anie.202006707
[16] Bryant, M.R. and Richardson, C. (2020) Hypervalent Organoiodine(v) Metal-Organic Frameworks: Syntheses, Thermal Studies and Stoichiometric Oxidants. Dalton Transactions, 49, 5167-5174.
https://doi.org/10.1039/D0DT00870B
[17] Wang, C., Ma, D., Tu, Y. and Bolm, C. (2020) Use of Hypervalent Iodine Reagents in Visible Light-Promoted Alpha-Ketoacylations of Sulfoximines with Aryl Alkynes. Or-ganic Letters, 22, 8937-8940.
https://doi.org/10.1021/acs.orglett.0c03338
[18] Elsherbini, M., Winterson, B., Alharbi, H., Folgueiras-Amador, A.A., Génot, C. and Wirth, T. (2019) Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. Angewandte Chemie International Edition, 58, 9811-9815.
https://doi.org/10.1002/anie.201904379
[19] Hari, D.P., Caramenti, P. and Waser, J. (2018) Cyclic Hypervalent Io-dine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Accounts of Chemical Research, 51, 3212-3225.
https://doi.org/10.1021/acs.accounts.8b00468
[20] Ghosh, S., Pradhan, S. and Chatterjee, I. (2018) A Survey of Chiral Hypervalent Iodine Reagents in Asymmetric Synthesis. Beilstein Journal of Organic Chemistry, 14, 1244-1262.
https://doi.org/10.3762/bjoc.14.107
[21] Elsherbini, M. and Wirth, T. (2018) Hypervalent Iodine Reagents by An-odic Oxidation: A Powerful Green Synthesis. Chemistry, 24, 13399-13407.
https://doi.org/10.1002/chem.201801232
[22] Sousa, E.S.F., Tierno, A.F. and Wengryniuk, S.E. (2017) Hyperva-lent Iodine Reagents in High Valent Transition Metal Chemistry. Molecules, 22, Article No. 780.
https://doi.org/10.3390/molecules22050780
[23] Protasiewicz, J.D. (2016) Organoiodine(III) Reagents as Active Participants and Ligands in Transition Metal-Catalyzed Reactions: Iodosylarenes and (Imino)iodoarenes. In: Wirth, T., Ed., Hypervalent Iodine Chemistry, Vol. 373, Springer, Cham, 263-288.
https://doi.org/10.1007/128_2015_664
[24] Zhdankin, V.V. (2011) Organoiodine(V) Reagents in Organic Synthe-sis. The Journal of Organic Chemistry, 76, 1185-1197.
https://doi.org/10.1021/jo1024738
[25] Stang, P.J. (2003) Polyvalent Iodine in Organic Chemistry. The Journal of Organic Chemistry, 68, 2997-3008.
https://doi.org/10.1021/jo030022e
[26] Stang, P.J. and Zhdankin, V.V. (1996) Organic Polyvalent Iodine Com-pounds. Chemical Reviews, 96, 1123-1178.
https://doi.org/10.1021/cr940424+
[27] Dahiya, A., Kumar Sahoo, A., Chakraborty, N., Das, B. and Patel, B.K. (2022) Updates on Hypervalent-Iodine Reagents: Metal-Free Functionalisation of Alkenes, Alkynes and Heterocycles. Organic & Biomolecular Chemistry, 20, 2005-2007.
https://doi.org/10.1039/D1OB02233D
[28] Le Du, E., Duhail, T., Wodrich, M.D., Scopelliti, R., Fadaei-Tirani, F., Anselmi, E., et al. (2021) Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry, 27, 10979-10986.
https://doi.org/10.1002/chem.202101475
[29] Alharbi, H., Elsherbini, M., Qurban, J. and Wirth, T. (2021) C-N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective Alpha-Oxytosylation of Ketones. Chemistry, 27, 4317-4321.
https://doi.org/10.1002/chem.202005253
[30] Lakshman, M.K. and Zajc, B. (2018) When Nucleoside Chemistry Met Hypervalent Iodine Reagents. ARKIVOC, 2018, 252-279.
https://doi.org/10.24820/ark.5550190.p010.281
[31] Grelier, G., Darses, B. and Dauban, P. (2018) Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. Beilstein Journal of Organic Chemistry, 14, 1508-1528.
https://doi.org/10.3762/bjoc.14.128
[32] Singh, F.V., Kole, P.B., Mangaonkar, S.R. and Shetgaonkar, S.E. (2018) Synthesis of Spirocyclic Scaffolds Using Hypervalent Iodine Reagents. Beilstein Journal of Organic Chemistry, 14, 1778-1805.
https://doi.org/10.3762/bjoc.14.152
[33] Zhdankin, V.V. and Stang, P.J. (2002) Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chemical Reviews, 102, 2523-2584.
https://doi.org/10.1021/cr010003+
[34] Wang, F., Yu, X., Qi, Z. and Li, X. (2016) Rhodium-Catalyzed C-S and C-N Functionalization of Arenes: Combination of C-H Activation and Hypervalent Iodine Chemistry. Chemistry, 22, 511-516.
https://doi.org/10.1002/chem.201504179
[35] Dohi, T., Han, J.W. and Kumar, R. (2021) Editorial: New Hyperva-lent Iodine Reagents for Oxidative Coupling. Frontiers in Chemistry, 9, Article ID: 642889.
https://doi.org/10.3389/fchem.2021.642889
[36] Sun, T.Y., Chen, K., Zhou, H., You, T., Yin, P. and Wang, X. (2021) Revisiting the Effect of f-Functions in Predicting the Right Reaction Mechanism for Hypervalent Iodine Reagents. Journal of Computational Chemistry, 42, 470-474.
https://doi.org/10.1002/jcc.26469
[37] Uyanik, M., Yasui, T. and Ishihara, K. (2017) Chiral Hypervalent Organ-oiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives. The Journal of Organic Chem-istry, 82, 11946-11953.
https://doi.org/10.1021/acs.joc.7b01941
[38] Hokamp, T. and Wirth, T. (2019) Structurally Defined Al-pha-Tetralol-Based Chiral Hypervalent Iodine Reagents. The Journal of Organic Chemistry, 84, 8674-8682.
https://doi.org/10.1021/acs.joc.9b01315
[39] Lee, J.H., Choi, S. and Hong, K.B. (2019) Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. Molecules, 24, Article No. 2634.
https://doi.org/10.3390/molecules24142634
[40] Dasgupta, A., Thiehoff, C., Newman, P.D., Wirth, T. and Melen, R.L. (2021) Reactions Promoted by Hypervalent Iodine Reagents and Boron Lewis Acids. Organic & Biomolecular Chemistry, 19, 4852-4865.
https://doi.org/10.1039/D1OB00740H
[41] Klimankova, I., Hubálek, M., Matoušek, V. and Beier, P. (2019) Syn-thesis of Water-Soluble Hypervalent Iodine Reagents for Fluoroalkylation of Biological Thiols. Organic & Biomolecular Chemistry, 17, 10097-10102.
https://doi.org/10.1039/C9OB02115A
[42] Liang, H., Zhu, G., Pu, X. and Qiu, L. (2021) Copper-Catalyzed Enan-tioselective C-H Arylation between 2-Arylindoles and Hypervalent Iodine Reagents. Organic Letters, 23, 9246-9250.
https://doi.org/10.1021/acs.orglett.1c03596
[43] Wu, S., Li, J., He, R., Jia, K. and Chen, Y. (2021) Terminal Tri-fluoromethylation of Ketones via Selective C-C Cleavage of Cycloalkanols Enabled by Hypervalent Iodine Reagents. Organic Letters, 23, 9204-9209.
https://doi.org/10.1021/acs.orglett.1c03526
[44] Sun, T.Y., Chen, K., Lin, Q., You, T. and Yin, P. (2021) Predict-ing the Right Mechanism for Hypervalent Iodine Reagents by Applying Two Types of Hypervalent Twist Models: Api-cal Twist and Equatorial Twist. Physical Chemistry Chemical Physics, 23, 6758-6762.
https://doi.org/10.1039/D0CP06692C
[45] Merritt, E.A., Carneiro, V.M., Silva Jr., L.F. and Olofsson, B. (2010) Facile Synthesis of Koser’s Reagent and Derivatives from Iodine or Aryl Iodides. The Journal of Organic Chemistry, 75, 7416-7419.
https://doi.org/10.1021/jo101227j
[46] Richter, H.W., Paul, N.M., Ray, D.G., Ray, C.A., Liable-Sands, L.M., Concolino, T., et al. (2010) Anhydrides of Real and Hypothetical [Hydroxy(R-O)iodo]benzenes. Inorganic Chemistry, 49, 5413-5423.
https://doi.org/10.1021/ic1007318
[47] Justik, M.W. and Koser, G.F. (2005) Application of [Hy-droxy(tosyloxy)iodo]benzene in the Wittig-Ring Expansion Sequence for the Synthesis of Beta-Benzocyclo-Alkenones from Alpha-Benzocycloalkenones. Molecules, 10, 217-225.
https://doi.org/10.3390/10010217
[48] Richter, H.W., Koser, G.F., Incarvito, C.D. and Rheingold, A.L. (2007) Preparation and Structure of a Solid-State Hypervalent-Iodine Polymer Containing Iodine and Oxygen Atoms in Fused 12-Atom Hexagonal Rings. Inorganic Chemistry, 46, 5555-5561.
https://doi.org/10.1021/ic0701716
[49] Zagulyaeva, A.A., Yusubov, M.S. and Zhdankin, V.V. (2010) A General and Convenient Preparation of [Bis(trifle- oroacetoxy)iodo]perfluoroalkanes and [Bis(trifluoroacetoxy)iodo]arenes by Oxidation of Organic Iodides Using Oxone and Trifluoroacetic Acid. The Journal of Organic Chemistry, 75, 2119-2122.
https://doi.org/10.1021/jo902733f
[50] Malamidou-Xenikaki, E., Spyroudis, S., Tsanakopoulou, M. and Hadjipav-lou-Litina, D. (2009) A Convenient Approach to Fused Indeno-1,4-Diazepinones through Hypervalent Iodine Chemistry. The Journal of Organic Chemistry, 74, 7315-7321.
https://doi.org/10.1021/jo9013063
[51] Yusubov, M.S., Funk, T.V., Chi, K.W., Cha, E.H., Kim, G.H., Kirschning, A., et al. (2008) Preparation and X-Ray Structures of 3-[Bis(trifluoroacetoxy)iodo]benzoic Acid and 3-[Hydroxy(tosyloxy)iodo]benzoic Acid: New Recyclable Hypervalent Iodine Reagents. The Journal of Organic Chemistry, 73, 295-297.
https://doi.org/10.1021/jo702112s
[52] Kumar, A., Ahmad, P., Akanksha and Murya, R.A. (2005) Cleavage of Oximes Using a Solid Supported Hypervalent Organ-oiodine Reagent. Combinatorial Chemistry & High Throughput Screening, 8, 445-447.
https://doi.org/10.2174/1386207054546522
[53] Katritzky, A.R., Gallos, J.K. and Durst, H.D. (1989) Structure of and Electronic Interactions in Aromatic Polyvalent Iodine Compounds: A (13) C NMR Study. Magnetic Resonance in Chemistry, 27, 815-822.
https://doi.org/10.1002/mrc.1260270902
[54] Wilkinson Richter, H., Cherry, B.R., Zook, T.D. and Koser, G.F. (1997) Characterization of Species Present in Aqueous Solutions of [Hydroxy(mesyloxy)iodo]benzene and [Hy-droxy(tosyloxy)iodo]benzene. Journal of the American Chemical Society, 119, 9614-9623.
https://doi.org/10.1021/ja971751c
[55] Fra, L., Millán, A., Souto, J.A. and Muñiz, K. (2014) Indole Synthesis Based on a Modified Koser Reagent. Angewandte Chemie International Edition, 53, 7349-7353.
https://doi.org/10.1002/anie.201402661
[56] Rao, G.W., Wang, C., Wang, J., Zhao, Z.-G. and Hu, W.-X. (2013) Synthesis, Structure Analysis, Antitumor Evaluation and 3D-QSAR Studies of 3,6-Disubstituted-Dihydro-1,2,4,5-Tetrazine Derivatives. Bioorganic & Medicinal Chemistry Letters, 23, 6474-6480.
https://doi.org/10.1016/j.bmcl.2013.09.036
[57] Rao, G.W. and Hu, W.X. (2003) Dipropyl 3,6-Diphenyl-1,2-Dihydro-1,2,4,5-Tetrazine-1,2-Dicarboxylate. Acta Crystallogr C, 59, o281-o282.
https://doi.org/10.1107/S0108270103007212
[58] Rao, G.W. and Hu, W.X. (2005) Synthesis, X-Ray Crystallo-graphic Analysis, and Antitumor Activity of 1-Acyl- 3,6-Disubstituted Phenyl-1,4-Dihydro-1,2,4,5-Tetrazines. Bioor-ganic & Medicinal Chemistry Letters, 15, 3174-3176.
https://doi.org/10.1016/j.bmcl.2005.03.122
[59] Rao, G.W., Guo, Y.M. and Hu, W.X. (2012) Synthesis, Structure Analysis, and Antitumor Evaluation of 3,6-Dimethyl- 1,2,4,5-Tetrazine-1,4-Dicarboxamide Derivatives. ChemMedChem, 7, 973-976.
https://doi.org/10.1002/cmdc.201200109
[60] Adamira, M., Justik, P., Ulman, J., Brezina, A., Mirejovsky, T. and Trnkova, M. (2011) Two Sporadic Infected Cardiac Myxomas in 1 Patient. Texas Heart Institute Journal, 38, 191-193.
[61] Silva, L.J., Vasconcelos, R.S. and Nogueira, M.A. (2008) Iodine(III)-Promoted Ring Expansion of 1-Vinylcycloalkanol Derivatives: A Metal-Free Approach toward Seven-Membered Rings. Organic Letters, 10, 1017-1020.
https://doi.org/10.1021/ol800048f
[62] Kita, Y., Morimoto, K., Ito, M., Ogawa, C., Goto, A. and Dohi, T. (2009) Metal-Free Oxidative Cross-Coupling of Unfunctionalized Aromatic Compounds. Journal of the American Chemical So-ciety, 131, 1668-1669.
https://doi.org/10.1021/ja808940n
[63] Zhu, C., Xu, D. and Wei, Y. (2011) A New Synthetic Protocol for the Preparation of Carbodiimides Using a Hypervalent Iodine(III) Reagent. Synthesis, No. 5, 711-714.
https://doi.org/10.1055/s-0030-1258414
[64] Xu, B., Gao, Y., Han, J., Xing, Z., Zhao, S., Zhang, Z., et al. (2019) Hypervalent Iodine(III)-Mediated Tosyloxylation of 4-Hydroxycoumarins. The Journal of Organic Chemistry, 84, 10136-10144.
https://doi.org/10.1021/acs.joc.9b01323