氯硝柳胺的老药新用开发
New Use for an Old Drug of Niclosamide
DOI: 10.12677/HJCET.2022.122012, PDF, HTML, XML,  被引量 下载: 303  浏览: 600 
作者: 黄 梅*, 李广学:恒诚制药集团淮南有限公司,安徽 淮南
关键词: 氯硝柳胺老药新用展望Niclosamide New Use of Old Drug Prospect
摘要: 根据药物氯硝柳胺在各国药典的收录情况,查阅该药物存在的经典文献;并了解老药新用的术语、好处、方法及经典。发现氯硝柳胺在癌症、糖尿病、帕金森及病毒等方面利用老药新用的最新研究状况,该药物存在着巨大的生产价值,值得药物生产企业大力关注。
Abstract: The niclosamide are included in various Pharmacopoeia, the classic literature of the drug discovery are reviewed; the new terms, advantages, methods and classics of old drug for new use are reviewed. The research status of niclosamide in cancer, diabetes, Parkinson and virus is reviewed. The drug has a huge production value and deserves the vigorous attention of drug manufacturers.
文章引用:黄梅, 李广学. 氯硝柳胺的老药新用开发[J]. 化学工程与技术, 2022, 12(2): 81-87. https://doi.org/10.12677/HJCET.2022.122012

1. 引言

氯硝柳胺(Niclosamide, CAS No. 50-65-7),化学名5,2’-二氯-4’-亚硝基水杨酰苯胺,结构见图1,用作抗蠕虫药、新型抗绦虫药 [1],其乙醇胺盐作为农药用于灭螺。中国药典 [2] 收录了氯硝柳胺、氯硝柳胺片;英国药典 [3] 与欧洲药典 [4] 同步收录了无水氯硝柳胺、单水氯硝柳胺;国际药典 [5] 对此也有收录;氯硝柳胺1982年被FDA [6] 批准用作驱虫药。

Figure 1. 5,2’-dichloro-4’-nitrosalicylanilide

图1. 5,2’-二氯-4’-亚硝基水杨酰苯胺

1958年国际会议上,德国拜耳Scluaufstätter和Gönnert提到选择氯硝柳胺(Bayluscide®) [7] 的过程,旨在寻找杀螺活性最佳的水杨酰胺类化合物,筛选超过20,000种化合物。德国拜耳Scluaufstätter和Gönnert在1955年申请了氯硝柳胺化合物德国专利 [8],又于1963、1964年申请了两个美国专利 [9] [10],给出了氯硝柳胺化合物的合成方法:

2-氯-4-硝基苯胺与5-氯水杨酸以等摩尔比溶于二甲苯(或氯苯)中,在沸腾状态下(102℃~104℃)慢慢加入三氯化磷(或三氯氧磷),回流、冷却,滤出结晶即为氯硝柳胺,合成反应式见图2

Figure 2. Synthesis process for Niclosamide

图2. 氯硝柳胺的合成工艺

合成等过程也出现在经典书籍中 [11] [12] [13]。陈循军也跟踪研究了此类合成工艺 [14]。

Scluaufstätter和Gönnert团队给出了氯硝柳胺的盐 [15],以提高溶解性、进而提高药效。

2. 老药新用的术语、好处、研究方法、经典

2.1. 老药新用的术语

2011年前提出的10种专业术语见表1

2.2. 老药新用的好处

Curtis R. Chong提出老药新用(New uses for old drugs) [18]。Ted T. Ashburn [19] 认为,老药新用比新药推向市场需要的时间自10~17年缩短至3~12年,开发风险降低,开发成本降低80%,由120亿美元降低至16亿 [20],同时增加了进入市场机会150% [17]。越来越多的公司正在扫描现有药典,寻找重新定位的候选药,重新定位的成功案例也在增加。例如老药新用有安非他酮等5种降压药、阿托莫西汀等6种神经药物、塞来昔布等14种非神经药物的。

Table 1. 10 technical terms proposed before 2011 [16]

表1. 2011年前提出的10种专业术语 [16]

在大小制药公司、生物技术公司、政府机构、学术团体和非营利组织中 [20],讨论为已知药物化合物寻找新用途,成为临床开发和业务增长的战略。

临床开发方面,人类疾病约10,000种,其中25%的疾病,有FDA批准的约2500种药物治疗。仍存在7000多种稀有且致命的疾病无药可治,每种影响少于20万人,仅有约350种治疗方法被批准治疗稀有疾病 [21]。

据估计,重新利用的药物约占FDA批准的新药30% [22],占制药业收入的25% [23],2009年51个新药的30%来自药物重新利用 [24]。全球药物再利用市场 [25],从2015年的244亿美元以5.1%的年复合增长率增长,到2020年预计将达到313亿美元。重新定位的药物2014年在全球创造了2500亿美元的销售额 [26],也就是说,大约占制药业年收入的1/4,其中五种此类药物的新适应症每种产生超过10亿美元的收入。

2.3. 老药新用的研究方法

老药新用的研究方法,使用计算机 [27],基于药物、疾病、靶标3大类各有几个小类方法,总结如图3

Figure 3. Various in silico approaches involved in drug repurposing [27] and more specific computer research methods [28] [29] [30]

图3. 涉及药物再利用的各种计算机方法 [27] 和计算机更为具体研究方法 [28] [29] [30]

2.4. 老药新用的经典

阿司匹林是老药新用的最古老的例子 [31]。1897年,德国拜耳首次合成商标物阿司匹林,将其作为止痛药并销售至全球。1971年,英国科学家John Vame发现阿司匹林能够预防血小板的凝结,降低血栓带来的危险,因此获得1982年诺贝尔奖,开启了阿司匹林的高光时刻,从心血管系统到神经系统,阿司匹林的作用范围一步步扩大。目前美国市场上各种阿司匹林单复方制剂品种有60余种,上百个规格 [32]。全球阿司匹林年消耗量近年来基本维持在5万吨左右,相当于每年服下1500亿片阿司匹林药片。与青霉素、安定并列为医药史上的三大经典药物 [33]。

3. 氯硝柳胺的老药新用

氯硝柳胺具有较强的抗增殖、促进凋亡、抗炎、抗细胞迁移、促进线粒体氧化磷酸化解偶联、诱导自噬、改变细胞物质能量代谢等药理学活性,且对体内多种信号通路有调节作用 [34]。Wei Chen等 [35] [36] 给出的氯硝柳胺的老药新用,这些疾病和症状可能包括癌症、细菌和病毒感染、代谢性疾病,如II型糖尿病、NASH和NAFLD、动脉收缩、子宫内膜异位症、神经病理性疼痛、类风湿性关节炎、硬化性皮肤移植物抗宿主病和系统性硬化。分述如下:

3.1. 癌症 [37] [38] [39]

数据表明,氯硝柳胺能够损伤肿瘤细胞线粒体、抑制肿瘤细胞增殖和诱导凋亡,这使其成为一种可行的替代方案。氯硝柳胺对10种癌症具有一定的抗癌活性。

结肠、乳房、前列腺、胶质母细胞瘤、骨肉瘤、卵巢、白血病、肾上腺皮质癌、肺、口腔癌。肿瘤学中重新利用的非癌症药物有235种 [40]。

3.2. 糖尿病

美国大约3420万人患有糖尿病,占总人口的1/10。还有8800万人,即三分之一的美国人,对他们来说,糖尿病前期是一个严重的问题。考虑到代谢状况的普遍性,寻找各种治疗机会来提供充足的结果是有意义的。

氯硝柳胺乙醇胺盐表现出更好的水溶性,减轻了小鼠的2型糖尿病症状。在以高脂肪饮食喂养的小鼠中进行的治疗提供了高能量消耗、更好的脂质氧化和代谢。氯硝柳胺乙醇胺在控制高血糖、血糖控制和减少疾病进展方面是有效的。

3.3. 帕金森病(PD)

线粒体丝氨酸/苏氨酸蛋白激酶PINK1催化活性的任何突变,都可能导致PD的早期发病。激活这种蛋白质的小分子可以提供神经保护作用。因此,氯硝柳胺具有治疗这种疾病的潜力。

3.4. 病毒

2020年以来,氯硝柳胺可用于治疗COVID-19 [41] [42] [43],抑制SARS状病毒 [44],以及腺病毒感染 [45] 等方面疾病。

4. 氯硝柳胺的老药新用展望

氯硝柳胺在癌症、糖尿病、帕金森及病毒等方面,作为老药新用的研究进展颇丰,有望在开辟新型治疗、剂型、产量等开辟新药市场,值得药物生产企业关注。

NOTES

*通讯作者。

参考文献

[1] https://pubchem.ncbi.nlm.nih.gov/compound/niclosamide
[2] 国家药典委员会. 中华人民共和国药典[M]. 第一部. 北京: 中国医药科技出版社, 2015: 248.
[3] Cartwright, A.C. (2016) The British Pharmacopoeia, 1864 to 2014. Isis, Vol. 107.
https://doi.org/10.1086/688369
[4] European Pharmacopoeia Commission (2019) European Pharmacopoeia. 10th Edition, European Directorate for Quality Medicines, Strasbourg, 68-97.
[5] WHO (2020) The International Pharmacopoeia (Ph.Int.)-Radi Pharmareutirals. https://digicollections.net/phint/2020/index.html#d/b.6.1.248
[6] Sail, V. and Hadden, M.K. (2012) Chapter Eighteen. Notch Pathway Modulators as Anticancer Chemotherapeutics. In: Annual Reports in Medicinal Chemistry, Vol. 47, Elsevier, Amsterdam, 267-280.
https://doi.org/10.1016/B978-0-12-396492-2.00018-7
[7] Gönnert, R. and Scluaufstätter, E. (1958) A New Molluscicide: Molluscicide Bayer 73. Proceedings 6th International Congress for Tropical Medicine Malaria, Lisbon, Vol. 2, 197-202.
[8] Schraufstaetter, E. and Goennert, R. (1959) Gastropoden-Bekaempfungsmittel. DE1024745, 1958; Gastropod Combating Composition. GB824345.
[9] Schraufstatter, E. and Gonnert, R. (1963) Method of Combating Gastropods. US3079297.
[10] Scluaufstätter, E. and Gönnert, R. (1964) Gastropod Combating Salicylanilides. US3147300.
[11] Bekhli, A.F., et al. (1965) Synthesis of Phenasal. Meditsinskaia promyshlennost’SSSR, 19, 25-27. (In Russian)
[12] Florey, K. (2005) Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, Cambridge, Vol. 32, 67-96.
[13] Kar, A. (2004) Advanced Practical Medicinal Chemistry/Theory Methodology Purification Usages. New Age International (P) Ltd., New Delhi, 281.
[14] 陈循军, 尹国强, 崔英德. 氯硝柳胺的合成工艺研究[J]. 精细石油化工进展, 2005, 6(7): 47-49.
[15] Strufe, R., Scluaufstätter, E. and Gönnert, R. (1963) Alkanolamine Salts of Salicyl Anilides and Process for Their Production. US3113067.
[16] Doan, T.L., et al. (2011) Chap. 23. The Future of Drug Repositioning: Old Drugs, New Opportunities. In: Macor, J.E., Ed., Annual Reports in Medicinal Chemistry (Book Series), Vol. 46, Elsevier Inc., Amsterdam, 385-401.
https://doi.org/10.1016/B978-0-12-386009-5.00004-7
[17] Thayer, A.M. (2012) Drug Repurposing. Chemical & Engineering News, 90, 15-25.
https://doi.org/10.1021/cen-09040-cover
[18] Chong, C.R. and Sullivan Jr., D.J. (2007) New Uses for Old Drugs. Nature, 448, 645-646.
https://doi.org/10.1038/448645a
[19] Ashburn, T. and Thor, K. (2004) Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nature Reviews Drug Discovery, 3, 673-683.
https://doi.org/10.1038/nrd1468
[20] Chisholm, K.M., Chang, K.W., Truong, M.T., Kwok, S., West, R.B. and Heerema-McKenney, A.E. (2012) β-Adrenergic Receptor Expression in Vascular Tumors. Modern Pathology, 25, 1446-1451.
https://doi.org/10.1038/modpathol.2012.108
[21] Drug Repurposing. https://cdcn.org/repurpose
[22] Barratt, M.J. and Frail, D.E. (2012) Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9781118274408
[23] Persidis, A. (2015) Myths and Realities of Repositioning. Arrowhead 4th Annual Drug Repositioning, Repurposing & Rescue Conference, Chicago, 27-28 May 2015.
[24] Graul, A.I., Sorbera, L., Pina, P., et al. (2010) The Year’s New Drugs & Biologics—2009. Drug News & Perspectives, 23, 7-36.
https://doi.org/10.1358/dnp.2010.23.1.1440373
[25] BCC Research (2016, January) Global Markets for Drug Repurposing. https://www.bccresearch.com/market-research/pharmaceuticals/drug-repurposing-markets-report.html
[26] Zhao, K. and So, H.-C. (2019) Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. In: Methods in Molecular Biology (Book Series), Vol. 1903, Springer, Berlin, 219-237.
https://doi.org/10.1007/978-1-4939-8955-3_13
[27] Saraswathy, G.R., et al. (2020) Chapter 4. Unveiling Potential Anticancer Drugs through in Silico Drug Repurposing Approaches. In: To, K.K.W. and Cho, W.C.S., Eds., Drug Repurposing in Cancer Therapy: Approaches and Applications, Elsevier Inc., Amsterdam, 81-119.
https://doi.org/10.1016/B978-0-12-819668-7.00004-X
[28] Vanhaelen, Q. (2019) Computational Methods for Drug Repurposing. Springer Science, Berlin.
https://doi.org/10.1007/978-1-4939-8955-3
[29] Jarada, T.N., Rokne, J.G. and Alhajj, R. (2021) SNF-NN: Computational Method to Predict Drug-Disease Interactions Using Similarity Network Fusion and Neural Networks. BMC Bioinformatics, 22, Article No. 28.
https://doi.org/10.1186/s12859-020-03950-3
[30] Scheffler, B., Glas, M. and Wieland, A. (2017) Niclosamide and Its Derivatives for Use in the Treatment of Solid Tumors. US 9,844,522.
[31] Jourdan, J.-P., Bureau, R., Rochais, C. and Dallemagne, P. (2020) Drug Repositioning: A Brief Overview. Journal of Pharmacy and Pharmacology, 72, 1145-1151.
https://doi.org/10.1111/jphp.13273
[32] 张伦. 阿司匹林国内外的应用、生产和市场[J]. 化工时刊, 1997, 11(4): 29-32.
[33] 数据: 全球每年被吃掉1500亿片阿司匹林为何用量这么大? [EB/OL]. http://www.mnjkw.cn/yaopin/1913181.html, 2018-01-02.
[34] 轩秀晨, 黄卉, 吕桂香. 氯硝柳胺的药理学作用及机制研究进展[J]. 医学综述, 2021, 27(15): 3055-3060.
[35] Chen, W., Mook Jr., R.A., Premont, R.T., et al. (2018) Niclosamide: Beyond an Anthelmintic Drug. Cellular Signalling, 41, 89-96.
https://doi.org/10.1016/j.cellsig.2017.04.001
[36] Niclosamide—A Drug for More than One Purpose. https://www.niclosamide.org/niclosamide-a-drug-for-more-than-one-purpose
[37] Barbosa, E.J., Lobenberg, R., de Araujo, G.L.B., et al. (2019) Niclosamide Repositioning for Treating Cancer: Challenges and Nano-Based Drug Delivery Opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 141, 58-69.
https://doi.org/10.1016/j.ejpb.2019.05.004
[38] Chan, M.M., Chen, R. and Fong, D. (2018) Targeting Cancer Stem Cells with Dietary Phytochemical—Repositioned Drug Combinations. Cancer Letters, 433, 53-64.
https://doi.org/10.1016/j.canlet.2018.06.034
[39] Li, Y.H., Li, P.K., Roberts, M.J., et al. (2014) Multi-Targeted Therapy of Cancer by Niclosamide: A New Application for an Old Drug. Cancer Letters, 349, 8-14.
https://doi.org/10.1016/j.canlet.2014.04.003
[40] Pantziarka, P., Sukhtame, V., Meheus, L., et al. (2017) Repurposing Non-Cancer Drugs in Oncology—How Many Drugs Are out There?
https://doi.org/10.1101/197434
[41] Braga, L., Ali, H., Secco, I., et al. (2021) Drugs That Inhibit TMEM16 Proteins Block SARS-CoV-2 Spike-Induced Syncytia. Nature, 594, 88-93.
https://doi.org/10.1038/s41586-021-03491-6
[42] Yu, S., Piao, H., Rejinold, N.S., et al. (2021) Niclosamide-Clay Intercalate Coated with Nonionic Polymer for Enhanced Bioavailability toward COVID-19 Treatment. Polymers (Basel), 13, 1044.
https://doi.org/10.3390/polym13071044
[43] Al-kuraishy, H.M., Al-Gareeb, A.I., Alzahrani, K.J., et al. (2021) Niclosamide for Covid-19: Bridging the Gap. Molecular Biology Reports, 48, 8195-8202.
https://doi.org/10.1007/s11033-021-06770-7
[44] Triggle, D.J. (2006) Comprehensive Medicinal Chemistry II, Vol. 8, Sets. Elsevier, Amsterdam, Vol. 7, 273.
[45] Marrugal-Lorenzo, J.A., Serna-Gallego, A., Berastegui-Cabrera, J., et al. (2019) Repositioning Salicylanilide Anthelmintic Drugs to Treat Adenovirus Infections. Scientific Reports, 9, Article No. 17. https://www.nature.com/scientificreports
https://doi.org/10.1038/s41598-018-37290-3