|
[1]
|
Tamtaji, O.R., Behnam, M., Pourattar, M.A., Hamblin, M.R., Mahjoubin-Tehran, M., Mirzaei, H. and Asemi, Z. (2020) PIWI-Interacting RNAs and PIWI Proteins in Glioma: Molecular Pathogenesis and Role as Biomarkers. Cell Communication and Signaling, 18, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Özcan, H., Emiroğlu, B.G., Sabuncuoğlu, H., Özdoğan, S., Soyer, A. and Saygı, T. (2021) A Comparative Study for Glioma Classification Using Deep Convolutional Neural Networks. Mathematical Biosciences and Engineering, 18, 1550-1572. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, S. and Ding, X. (2017) TRPC Channels and Glioma. In: Wang, Y., Ed., Transient Receptor Potential Canonical Channels and Brain Diseases, Vol. 976, Springer, Dordrecht, 157-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xu, S., Tang, L., Li, X., Fan, F. and Liu, Z. (2020) Immunotherapy for Glioma: Current Management and Future Application. Cancer Letters, 476, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, X., Mao, Y.G., Yu, Z.Q., Wu, J. and Chen, G. (2020) Potential Rules of Anesthetic Gases on Glioma. Medical Gas Research, 10, 50-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hopkins, A.L. (2007) Network Pharmacology. Nature Biotechnology, 25, 1110-1111.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fang, T., Liu, L. and Liu, W. (2020) Network Pharmacology-Based Strategy for Predicting Therapy Targets of Tripterygium wilfordii on Acute Myeloid Leukemia. Medicine, 99, Article ID: e23546.
[Google Scholar] [CrossRef]
|
|
[8]
|
Zhu, J., Li, B., Ji, Y., Zhu, L., Zhu, Y. and Zhao, H. (2019) β-Elemene Inhibits the Generation of Peritoneum Effusion in Pancreatic Cancer via Suppression of the HIF1A-VEGFA Pathway Based on Network Pharmacology. Oncology Reports, 42, 2561-2571. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yu, H., Hu, K., Zhang, T. and Ren, H. (2020) Identification of Target Genes Related to Sulfasalazine in Triple-Negative Breast Cancer through Network Pharmacology. Medical Science Monitor, 26, Article ID: e926550.
[Google Scholar] [CrossRef]
|
|
[10]
|
Tan, J., Qin, X., Liu, B., Mo, H., Wu, Z. and Yuan, Z. (2020) Integrative Findings Indicate Anti-Tumor Biotargets and Molecular Mechanisms of Calycosin against Osteosarcoma. Biomedicine & Pharmacotherapy, 126, Article ID: 110096.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ma, Y., Li, G., Yu, M., Cao, K., Li, Q., Sun, X., et al. (2021) Anti-Lung Cancer Targets of Radix Paeoniae Rubra and Biological Molecular Mechanism: Network Pharmacological Analyses and Experimental Validation. OncoTargets and Therapy, 14, 1925-1936. [Google Scholar] [CrossRef]
|
|
[12]
|
Wang, C.-Z., et al. (2016) Red Ginseng and Cancer Treatment. Chinese Journal of Natural Medicines, 14, 7-16.
|
|
[13]
|
Zhang, Y., Wu, Y., Fu, Y., Lin, L., Lin, Y., Zhang, Y., et al. (2020) Anti-Alzheimer’s Disease Molecular Mechanism of Acori Tatarinowii Rhizoma Based on Network Pharmacology. Medical Science Monitor Basic Research, 26, Article ID: e924203. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, J., Deng, X, Sun, X., Dong, J. and Huang, J. (2020) Inhibition of Autophagy Enhances Timosaponin AIII-Induced Lung Cancer Cell Apoptosis and Anti-Tumor Effect in Vitro and in Vivo. Life Sciences, 257, Article ID: 118040.
[Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, J., Liu, Q., Qian, R., Liu, S., Hu, W. and Liu, Z. (2020) Paeonol Antagonizes Oncogenesis of Osteosarcoma by Inhibiting the Function of TLR4/MAPK/NF-κB Pathway. Acta Histochemica, 122, Article ID: 151455.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kim, J.W., Han, S.W., Cho, J.Y., Chung, I.J., Kim, J.G., Lee, K.H., et al. (2020) Korean Red Ginseng for Cancer-Related Fatigue in Colorectal Cancer Patients with Chemotherapy: A Randomised Phase III Trial. European Journal of Cancer, 130, 51-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lin, Y., Zhao, W.-R., Shi, W.-T., Zhang, J., Zhang, K.-Y., Ding, Q., et al. (2020) Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated from Anemarrhena asphodeloides Bunge: A Review. Frontiers in Pharmacology, 11, Article No. 764. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ru, J., Li, P., Wang, J., Li, B., Huang, C., Li, P., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, H., Wang, J., Zhou, W., Wang, Y. and Yang, L. (2013) Systems Approaches and Polypharmacology for Drug Discovery from Herbal Medicines: An Example Using Licorice. Journal of Ethnopharmacology, 146, 773-793.
[Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, M.X., Jin, L.T., Wang, T.J., Feng, Y.J., Pan, C.P., Zhao, D.M. and Shao, J. (2018) Identification of Potential Core Genes in Triple Negative Breast Cancer Using Bioinformatics Analysis. OncoTargets and Therapy, 11, 4105-4112.
[Google Scholar] [CrossRef]
|
|
[22]
|
Cheng, J., Meng, J., Zhu, L. and Peng, Y. (2020) Exosomal Noncoding RNAs in Glioma: Biological Functions and Potential Clinical Applications. Molecular Cancer, 19, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Norden, A.D. and Wen, P.Y. (2006) Glioma Therapy in Adults. Neurologist, 12, 279-292.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fotis, C., Antoranz, A., Hatziavramidis, D., Sakellaropoulos, T. and Alexopoulos, L.G. (2018) Network-Based Technologies for Early Drug Discovery. Drug Discovery Todayy, 23, 626-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Boezio, B., Audouze, K., Ducrot, P. and Taboureau, O. (2017) Network-Based Approaches in Pharmacology. Molecular Informatics, 36, Article ID: 1700048. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ge, Q., Chen, L., Yuan, Y., Liu, L., Feng, F., Lv, P., et al. (2020) Network Pharmacology-Based Dissection of the Anti-Diabetic Mechanism of Lobelia Chinensis. Frontiers in Pharmacology, 11, Article No. 347.
[Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Imran, M., Salehi, B., Sharifi-Rad, J., Aslam Gondal, T., Saeed, F., Imran, A., et al. (2019) Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 24, Article No. 2277. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, X., Yang, Y., An, Y. and Fang, G. (2019) The Mechanism of Anticancer Action and Potential Clinical Use of Kaempferol in the Treatment of Breast Cancer. Biomedicine & Pharmacotherapy, 117, Article ID: 109086.
[Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, S., Si, L., Jia, Y., Jian, W., Yu, Q., Wang, M., et al. (2019) Kaempferol Exerts Anti-Proliferative Effects on Human Ovarian Cancer Cells by Inducing Apoptosis, G0/G1 Cell Cycle Arrest and Modulation of MEK/ERK and STAT3 Pathways. Journal of the Balkan Union of Oncology, 24, 975-981.
|
|
[30]
|
Zhu, L. and Xue, L. (2019) Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncology Research, 27, 629-634.
[Google Scholar] [CrossRef]
|
|
[31]
|
Sharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K. and Sen, E. (2007) Kaempferol Induces Apoptosis in Glioblastoma Cells through Oxidative Stress. Molecular Cancer Therapeutics, 6, 2544-2553.
[Google Scholar] [CrossRef]
|
|
[32]
|
Lin, C.-W., Shen, S.-C., Chien, C.-C., Yang, L.-Y., Shia, L.-T. and Chen, Y.-C. (2010) 12-O-Tetradecanoylphorbol- 13-Acetate-Induced Invasion/Migration of Glioblastoma Cells through Activating PKCα/ERK/NF-κB-Dependent MMP-9 Expression. Journal of Cellular Physiology, 225, 472-481.
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Santos, B.L., Oliveira, M.N., Coelho, P.L., Pitanga, B.P., da Silva, A.B., Adelita, T., et al. (2015) Flavonoids Suppress Human Glioblastoma Cell Growth by Inhibiting Cell Metabolism, Migration, and by Regulating Extracellular Matrix Proteins and Metalloproteinases Expression. Chemico-Biological Interactions, 242, 123-138.
[Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schindler, R. and Mentlein, R. (2006) Flavonoids and Vitamin E Reduce the Release of the Angiogenic Peptide Vascular Endothelial Growth Factor from Human Tumor Cells. The Journal of Nutrition, 136, 1477-1482.
[Google Scholar] [CrossRef] [PubMed]
|