抗滑桩合理桩间距分析
Analysis of Pile Space of Anti-Slide Piles
DOI: 10.12677/HJCE.2021.101001, PDF, HTML, XML, 下载: 700  浏览: 1,857 
作者: 孙承吉, 于建泉:山东高速股份有限公司,山东 济南;刘明朋*:山东大学,山东 济南;江建宏:山东省交通规划设计院有限公司,山东 济南;刘远强:烟台市水利建筑勘察设计院,山东 烟台
关键词: 抗滑桩土拱效应合理桩间距极限平衡理论极限承载力Anti-Slide Pile Soil Arching Effect Reasonable Pile Spacing Ultimate Balance Theory Ultimate Bearing Capacity
摘要: 土拱效应是抗滑桩发挥支挡作用的前提。而桩间距与桩的土拱效应是密切相关的。然而,前人的研究对桩侧摩擦土拱的考虑不够充分且大多将土拱的轴应力视为均匀分布的。考虑桩端直接土拱和桩侧摩擦土拱同时作用,本文提出了一种计算合理桩间距的新方法。本方法考虑了两种土拱的整体剪切破坏与屈服条件并使用Moho-Coulomb准则分别推导了直接土拱拱脚的内缘点与外缘点的屈服应力。基于极限平衡理论,提出了合理桩间距的控制方程。案例研究表明,本文的计算结果更符合工程实际。最后根据本文的公式推导了两种土拱的极限承载力之比。
Abstract: The soil arching effect is the prerequisite for the anti-slide pile to play the supporting role. Pile space is closely related to the soil arching behind piles. However, previous studies rarely considered the friction soil arching effect between piles and regarded the axis stress uniformly distributed. Considering end-bearing soil arching and friction soil arching simultaneously, a new method was proposed to calculate the reasonable pile spacing. The said method considered the general shear failure and the yielding failure of these two soil arching. The yielding stress of inner-edge point and outer-edge point at arch-foot of the end-bearing soil arching were taken into consideration respectively. Based on the ultimate balance theory, the controlling equations of pile spacing were established. The case study showed that the method in this research conforms better to practice compared to previous researches. Finally, the ratio of the ultimate bearing capacity of the two soil arches was deduced according to the formulas in this research.
文章引用:孙承吉, 刘明朋, 于建泉, 江建宏, 刘远强. 抗滑桩合理桩间距分析[J]. 土木工程, 2021, 10(1): 1-11. https://doi.org/10.12677/HJCE.2021.101001

参考文献

[1] Keawsawasvong, S. and Ukritchon, B. (2017) Undrained Limiting Pressure behind Soil Gaps in Contiguous Pile Walls. Computers and Geotechnics, 83, 152-158.
https://doi.org/10.1016/j.compgeo.2016.11.007
[2] Li, C.D., Tang, H.M., Hu, X.L. and Wang, L.Q. (2013) Numerical Modelling Study of the Load Sharing Law of Anti-Sliding Piles Based on the Soil Arching Effect for Erliban Landslide, China. KSCE Journal of Civil Engineering, 17, 1251-1262.
https://doi.org/10.1007/s12205-013-0074-
[3] Terzaghi, K. (1936) Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-Door. Proceeding of 1st International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, Harvard University, Cambridge, June 1936, 307-311.
[4] Liang, R.Y. and Yamin, M. (2010) Three-Dimensional Finite Element Study of Arching Behavior in Slope/Drilled shafts System. International Journal for Numerical & Analytical Methods in Geomechanics, 34, 1157-1168.
https://doi.org/10.1002/nag.851
[5] Şahin, A. (2011) Mathematical Models and Solution Algorithms for Computational Design of RC Piles under Structural Effects. Applied Mathematical Modeling, 35, 3611-3638.
https://doi.org/10.1016/j.apm.2011.01.037
[6] Yamin, M. (2007) Landslide Stabilization Using a Single Row of Rock-Socketed Drilled Shafts and Analysis of Laterally Loaded Drilled Shafts Using Shaft Deflection Data. PhD Thesis, The University of Akron, Akron.
[7] 周德培, 肖世国, 夏雄. 边坡工程中抗滑桩合理桩间距的探讨[J]. 岩土工程学报, 2004, 26(1): 132-135. http://dx.chinadoi.cn/10.3321/j.issn:1000-4548.2004.01.025
[8] 蒋良潍, 黄润秋, 蒋忠信. 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006, 27(3): 445-450. http://dx.chinadoi.cn/10.3969/j.issn.1000-7598.2006.03.021
[9] Chen, G.F., Zou, L.C., Wang, Q. and Zhang, G.D. (2020) Pile-Spacing Calculation of Anti-Slide Pile Based on Soil Arching Effect. Advances in Civil Engineering, 2020, Article ID: 7149379.
https://doi.org/10.1155/2020/7149379
[10] 王成华, 陈永波, 林立相. 抗滑桩间土拱力学特性与最大桩间距分析[J]. 山地学报, 2001, 19(6): 556-559. http://dx.chinadoi.cn/10.3969/j.issn.1008-2786.2001.06.013
[11] 赵明华, 廖彬彬, 刘思思. 基于拱效应的边坡抗滑桩桩间距计算[J]. 岩土力学, 2010, 31(4): 1211-1216. http://dx.chinadoi.cn/10.3969/j.issn.1000-7598.2010.04.036
[12] 邓先华, 简文星. 基于摩擦拱的抗滑桩间距计算模型研究[J]. 路基工程, 2014(3): 31-36. http://dx.chinadoi.cn/10.13379/j.issn.1003-8825.2014.03.07
[13] Wu, J.J., Li, C.D., Liu, Q.T. and Fan, F.S. (2017) Optimal Isosceles Trapezoid Cross Section of Laterally Loaded Piles Based on Friction Soil Arching. KSCE Journal of Civil Engineering, 21, 2655-2664.
https://doi.org/10.1007/s12205-017-1311-5
[14] 邱子义, 韩同春, 豆红强, 李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 559-565. http://dx.chinadoi.cn/10.3785/j.issn.1008-973X.2016.03.021
[15] 赵明华, 彭文哲, 杨超炜, 肖尧. 考虑桩侧及桩后土拱联合作用的抗滑桩桩间距研究[J]. 公路交通科技, 2019, 36(3): 87-94+116. http://dx.chinadoi.cn/10.3969/j.issn.1002-0268.2019.03.013
[16] Zhang, H.Q., Chen, J.G., Ma, H.J., Yang, Z.J. and Li, H. (2019) A New Method to Determine a Reasonable Pile Spacing of Stabilizing Piles and Earth Pressure on Sheet Piles. Journal of Engineering Science & Technology Review, 12, 37-44.
https://doi.org/10.25103/jestr.121.05