慢性泪囊炎发病机制研究进展
The Research Progress on the Pathogenesis of Chronic Dacryocystitis
DOI: 10.12677/MD.2020.103018, PDF, HTML, XML, 下载: 418  浏览: 1,179 
作者: 白亚亚:延安大学,延安大学附属医院,陕西 延安
关键词: 慢性泪囊炎发病机制预后Chronic Dacryocystitis Pathogenesis Prognosis
摘要: 慢性泪囊炎(CD)是鼻泪管狭窄或阻塞继发的微生物感染,其发病机制对患者的诊断、治疗和预后都有着非常重要的意义。本文通过阅读大量近几年国内外关于慢性泪囊炎的文献,总结归纳出了泪囊炎的组织病理学、微生物学、免疫学的三方面特征。
Abstract: Chronic dacryocystitis (CD) is a microbial infection secondary to nasolacrimal duct stenosis or ob-struction, and its pathogenesis is of great significance to the diagnosis, treatment and prognosis of patients. By reading a large number of literatures about chronic dacryocystitis at home and abroad in recent years, this paper summarizes the histopathological, microbiological and immunological characteristics of dacryocystitis.
文章引用:白亚亚. 慢性泪囊炎发病机制研究进展[J]. 医学诊断, 2020, 10(3): 111-116. https://doi.org/10.12677/MD.2020.103018

1. 引言

慢性泪囊炎(CD)是最常见的泪囊病,占泪道阻塞疾病约3%~4%,多见于30岁以上的女性 [1] [2],是鼻泪管狭窄或阻塞继发的微生物感染。主要临床表现为患者出现溢泪、粘液或脓性分泌物,严重影响患者的眼部舒适度和生活质量,同时也可诱发急性泪囊炎、角膜炎、眼眶蜂窝织炎等严重的眼部并发症。此外,慢性泪囊炎是白内障、青光眼等眼内手术的禁忌证 [3]。但目前临床上针对慢性泪囊炎的治疗效果不甚满意,因此对于其病因治疗就显得尤为重要。慢性泪囊炎发病机制中泪道阻塞和感染一直是研究重点,然可从免疫紊乱方面进行研究。本文就慢性泪囊炎组织病理学、微生物学、免疫学三方面进行阐述。

2. 组织病理学

2.1. 泪囊、鼻泪管、鼻粘膜

慢性泪囊炎的组织病理学特征可影响其预后、治疗等方面,因此非常重要。Knop等人发泪囊上皮多达5层 [4],正常泪道上皮包括基底细胞、杯状细胞和由连接复合体紧密结合的表层柱状细胞。这些细胞产生广泛的粘蛋白和抗菌肽,在上皮层形成一个特殊的保护层 [5]。慢性泪囊炎患者泪囊上皮粘蛋白产量增加,它的过量产生可能会导致厌氧环境,这可能是慢性炎症持续存在的一个因素 [6] [7]。泪囊壁最常见的病理改变是上皮脱落坏死、炎症和基质纤维化 [8] [9]。其中在大多数被观察的泪囊中,有一定程度的杯状细胞缺失 [9]。泪囊、鼻泪管及鼻粘膜均有炎症细胞浸润,根据慢性炎症评分(Chronic inflammation score, CIS) [2] [10],其中鼻粘膜约92%为轻度慢性炎症细胞浸润,泪囊壁大部分为中度慢性非特异性炎症 [2] [11] [12]。绝大多数(约97%)泪囊囊泡丧失明显的腺泡形态 [8]。1.42%的慢性泪囊炎有泪囊壁肿瘤样组织病理改变,其中恶性肿瘤的发生率是良性肿瘤的2.24倍 [12],常见的肿瘤病变可能包括乳头状瘤、淋巴增生性疾病和移行细胞癌等 [2] [12],还有一些其他比较少见的改变如泪囊结节、淋巴瘤等 [13] [14]。尽管如此,目前对慢性泪囊炎患者行常规病理检查稍未达成统一意见。

2.2. 睑板腺、鼻骨

睑板腺腺泡单位密度显著降低,平均炎症细胞密度和腺泡单位最短直径值显著增高 [15]。慢性泪囊炎不同部位的组织病理学特征不尽相同,但在任何情况下不会引起鼻骨组织病理改变 [2]。

3. 微生物学及其敏感抗菌药物

回顾过去十年发表的文献,慢性泪囊炎最常见的病原体是细菌,其中46%~90%的病原体是革兰氏阳性菌,2.5%~40%的病原体是革兰氏阴性菌 [16] [17] [18]。不同的地区慢性泪囊炎的微生物谱不同。在美国 [18]、印度 [19]、泰国 [20] 以金黄色葡萄球菌最常见,其次为铜绿假单胞菌,而在我国以凝固酶阴性葡萄球菌最常见,其次为金黄色葡萄球菌、铜绿假单胞菌和流感嗜血杆菌 [21],最近的研究表明,在我国慢性泪囊炎中革兰氏阳性菌的发病率增加,这可能与鼻泪管阻塞引起凝固酶阴性葡萄球菌致病潜力增加有关 [22]。大量研究表明耐甲氧西林金黄色葡萄球菌发病率在不同地区有着不同程度的上升趋势 [18] [19] [21],绝大多数形成生物膜而可能增加在手术或眼外伤后发生持续的、多重耐药菌的感染,如眼内炎、全眼球炎、感染性角膜炎和蜂窝织炎 [10]。抗生素治疗:革兰氏阴性菌株对被检抗菌药物的敏感性较好,中国平均为80% [11]、印度平均>90% [19]。革兰氏阳性菌情况并非如此,其耐药水平相对较高 [9] [21]。根据美国和中国的报告,耐甲氧西林金黄色葡萄球菌(MRSA)和耐甲氧西林凝固酶阴性葡萄球菌(MRCNS)的耐药性最为显著 [22] [23],且为多重耐药的重要眼部病原体 [23] [24]。MRSA和MRCNS均对万古霉素敏感 [9] [21] [24] [25]。最有效的抗生素可能因地区和可用性的不同而不同,环丙沙星是泰国治疗泪囊炎最有效的初始治疗方法 [26],在西班牙为阿莫西林–克拉维酸 [27],在埃及是加替沙星、氧氟沙星、阿米卡星 [28],在伊朗是阿莫西林–克拉维酸和第三代头孢菌素或环丙沙星 [29],在印度是诺氟沙星 [30],甲氧苄啶/磺胺甲恶唑在加州北部儿童中的应用在 [31]。在美国,最有效的静脉用抗生素为哌拉西林/他唑巴坦和头孢曲松,最有效的口服抗生素是左氧氟沙星和阿莫西林/克拉维酸 [18]。在中国,加替沙星是对所有革兰氏阳性、革兰氏阴性和厌氧菌最有效的抗生素 [21]。第四代氟喹诺酮类药物在难治性泪囊炎中的经验性使用是合理的。如果无效则使用万古霉素 [21]。这是由于半数以上的MRSA和MRCNS可能对第四代氟喹诺酮类药物耐药 [23]。值得注意的是,以往的研究表明,红霉素是大多数泪道菌对抗生素敏感的抗生素之一 [32] [33],而近年来发现由于红霉素的滥用使其耐药性由之前的10.5%上升到20.7% [21],且当怀疑革兰氏阳性感染时,红霉素不应被推荐用于泪囊炎的预防或治疗 [21]。一般来说,泪囊炎是在没有培养的基础上行经验性地治疗的,但这种疾病中的许多生物对普通口服抗生素具有抗药性 [18],因此,临床医生必须做好改变抗生素的准备,最好是根据泪囊培养和敏感性测试的结果,从泪囊炎部位提取的培养物提供了较高的微生物生长量,可以作为抗生素治疗的基础。获得培养物和敏感性是有效治疗泪囊炎的重要手段,并可及时更换抗生素。

4. 免疫紊乱

随着研究的深入,免疫应答在慢性泪囊炎发病机制中的作用逐渐被揭开。CD4+T细胞对疾病有广泛的免疫效应 [34],CD4+T细胞的两个主要亚细胞群即Th1细胞和Th2细胞在许多疾病中都有发现,Th1细胞和Th2细胞及其分泌的细胞因子有协同和交叉调控作用 [35]。已知Th1和Th2细胞的生物学作用主要与其分泌的细胞因子IFN-γ和IL-4有关 [36]。一旦这种协同和交叉调控的平衡被破坏,宿主对感染的抵抗力或易感性可能受到影响。某些抗原,如细菌和病毒,可能诱导一个主要的淋巴细胞亚群,并导致Th1/Th2状态失衡,这通常涉及过敏性疾病和自身免疫性疾病 [34]。黏膜系统,包括肠黏膜、胃粘膜和鼻粘膜,不断接触来自环境的数百万抗原。为了抵御潜在的抗原,粘膜系统具有独特的免疫系统,其中Th1/Th2状态的平衡起着关键作用 [37]。Yang X [9] 等人认为Th1或Th2细胞分泌的细胞因子可能在泪囊炎的发病机制中发挥重要作用,可作为治疗的靶点。他们对35例泪囊标本进行IFN-γ和IL-4染色,免疫细胞化学结果显示IFN-γ的表达明显强于IL-4,有些标本的IL-4(白细胞介素4)甚至完全阴性。5例泪囊感染标本的定量PCR结果表明,IFN-γ的mRNA水平明显高于IL-4。因此IFN-γ的蛋白和mRNA表达水平均显著高于IL-4,说明Th1细胞在慢性泪囊炎中发挥着更重要的调控作用。同时他们也证明了随着CIS的增加,CD4+和CD8+细胞数量增加,但CD4/CD8比值无明显变化,且CD4和CD8细胞数量与症状持续时间无关。为了防止病原体的侵入,泪道粘膜在局部防御机制中起着重要作用 [38]。第一道防线是泪道上皮 [39],但上皮细胞在免疫反应中的作用在很大程度上还不清楚。据报道,上皮细胞中存在CD3+T淋巴细胞、B淋巴细胞、巨噬细胞、分泌IgA的浆细胞和两种类型的LDALT(扩散型和滤泡型) [4]。Ali MJ等人 [40] 发现在泪囊内淋巴浸润以弥漫为主(81%),其次是结节型(15.5%)。最常见的部位为上皮下和上皮内(46.5%)。明显的淋巴滤泡浸润和次级淋巴滤泡浸润均占28%。所有泪囊标本均以B淋巴细胞浸润为主,其次为T淋巴细胞。大部分泪囊(66.5%)有轻度浆细胞浸润,但也有许多人(31.5%)浆细胞明显浸润。第二道防线是泪道引流相关淋巴组织(LDALT),它含有分散的淋巴细胞或典型的淋巴滤泡,构成粘膜相关淋巴组织(MALT)的一部分。泪道引流相关淋巴组织(LDALT)一词是由knop等人首次提出的 [4],并逐渐被人们所研究。人泪道引流中有组织的淋巴组织与黏膜相关淋巴组织(MALT)的形态和免疫表型一致,现已成为一个公认的实体 [41] [42] [43] [44]。黏膜相关淋巴组织(MALT)存在于身体的所有黏膜表面,提供免疫和防御机制,以抵御入侵的生物体,而泪道引流相关淋巴组织(LDALT)是黏膜相关淋巴组织(MALT)的一部分 [41] [42] [43] [44],其功能是介导细胞和体液免疫反应。泪道引流相关淋巴组织LDALT的变化可显著影响局部免疫反应、眼表完整性和淋巴细胞再循环 [40] [44]。结膜相关淋巴组织和LDALT形成一个功能单元,共同保护着与环境微生物不断接触的眼表 [40] [45] [46]。泪囊的凝集素细胞化学显示出与结膜不同的细胞表面糖复合物,由于它们在细胞间识别和防御机制中发挥重要作用,因此推测泪囊的分子防御机制可能不同 [46]。鼻泪管的MALT也被称为泪腺相关淋巴组织(TALT),被认为是在受到微生物或过敏反应的攻击时获得的 [44]。Paulsen等人 [47] 发现在无症状的病人中有TALT,而在有症状的泪管狭窄或疤痕中消失,这增加了人们对他们的存在不太可能造成疤痕的怀疑 [47]。从另一个角度来看,TALT的存在可能对有症状狭窄的泪管有部分的保护作用。淋巴细胞及其细胞因子介导物在许多炎症状态下都会影响眼表 [48]。Ali MJ1等人 [40] 认为眼表有可能通过LDALT影响泪囊和鼻泪管炎症,这一可能性有待进一步探讨。Ishikawa等人 [40] [49] 在对实验性泪囊炎的研究中发现,99%的血管增生和94%的淋巴管扩张并超过了6个月,这反映了淋巴细胞再循环的继续。Yang X [9] 等人在41例泪囊标本中观察到有组织的淋巴滤泡形成;这些标本含有活性生发中心,其周围分布着外套层(mantle zone)、边缘带和滤泡旁的高内皮小静脉(HEVs)。泪囊腔内有明显的滤泡组织,淋巴滤泡上的上皮细胞被淋巴细胞浸润,形成滤泡相关上皮。此外,LDALT具有弥漫或有组织的淋巴细胞排列,这种种迹象表明与慢性泪囊炎与免疫失衡有关。

5. 结语

近年来,研究者对慢性泪囊炎的关注以及探索使我们对其发病机制有了新的认知。如慢性泪囊炎感染以革兰氏阴性菌占绝大多数,而以往对的研究表明,大多数微生物为革兰氏阳性菌且最常见是的葡萄球菌属。再如Th1细胞及分泌因子IFN-γ在慢性泪囊炎中发挥着重要的调控作用。这多种机制研究有助于慢性泪囊炎的治疗及新药开发。由于免疫紊乱机制的相关研究尚处于起步阶段,治疗相关药物还有待进一步研发,其治疗效果也需要更多研究证实。

参考文献

[1] Eshraghi, B., Abdi, P., Akbari, M. and Fard, M.A. (2014) Microbiologic Spectrum of Acute and Chronic Dacryocystitis. International Journal of Ophthalmology, 7, 864-867.
[2] Chakrabarti, S., Dasgupta, S., Banerjee, M. and Pal, D. (2016) Role of Histomorphology and Chronic Inflammation Score in Chronic Dacryocystitis. Journal of Clinical and Diagnostic Research, 10, EC01-EC03.
https://doi.org/10.7860/JCDR/2016/19515.8089
[3] Hou, K., Ai, T., Liu, R., Xiang, N., Jin, J., Hu, W.K. and Luo, B. (2017) Modeling Chronic Dacryocystitis in Rabbits by Nasolacrimal Duct Obstruction with Self-Curing Resin. Journal of Ophthalmology, 2017, Article ID: 3438041.
[4] Knop, E. and Knop, N. (2001) Lacrimal Drain-age-Associated Lymphoid Tissue (LDALT): A Part of the Human Mucosal Immune System. Investigative Ophthal-mology & Visual Science, 42, 566-574.
[5] Paulsen, F.P., Pufe, T., Schaudig, U., et al. (2001) Detection of Natural Peptide Antibiotics in Human Nasolacrimal Ducts. Investigative Ophthalmology & Visual Science, 42, 2157-2163.
[6] Ishikawa, M., Kubo, Maeda, Sawada, Uchio, E. and Yoshitomi, T. (2011) Structural Changes in the Lacrimal Sac Epithelium and Associated Lymphoid Tissue during Experimental Dacryocystitis. Clinical Opthamology, 5, 1567-1574.
https://doi.org/10.2147/OPTH.S26048
[7] Kaneko, Y., Yanagihara, K., Seki, M., et al. (2003) Clarithromycin Inhibits Overproduction of Muc5ac Core Protein in Murine Model of Diffuse Panbronchiolitis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 285, L847-L853.
https://doi.org/10.1152/ajplung.00216.2002
[8] Ali, M.J., Mulay, K., Pujari, A. and Naik, M.N. (2013) De-rangements of Lacrimal Drainage-Associated Lymphoid Tissue (LDALT) in Human Chronic Dacryocystitis. Ocular Immunology and Inflammation, 21, 417-423.
[9] Yang, X., Wang, L.Z., Li, L.H. Yu, Z. and Xiao, C.W. (2018) The Imbalance of Lymphocyte Subsets and Cytokines: Potential Immunologic Insights into the Pathogenesis of Chronic Dacryocystitis. Investigative Ophthalmology & Visual Science, 59, 1802-1809.
[10] Amin, R.M., Hussein, F.A., Idriss, H.F., Hanafy, N.F. and Abdallah. D.M. (2013) Pathological, Immunohistochemical and Microbiological Analysis of Lacrimal Sac Biopsies in Patients with Chronic Dacrocystitis. International Journal of Ophthalmology, 6, 817-826.
[11] Costea, C.F., Dumitrescu, G.F., Turliuc, M.D., Dimitriu, G., Chihaia, M.A., Indrei, L., Dumitrescu, N., Cucu, A., Cărăuleanu, A., Gavrilescu, C.M. and Costache, I.I. (2017) A 16-Year Retrospective Study of Dacryocystitis in Adult Patients in the Moldavia Region, Romania. Romanian Journal of Morphology and Embryology, 58, 537-544.
[12] Koturović, Z., Knežević, M. and Rašić, D.M. (2017) Clinical Significance of Routine Lacrimal Sac Biopsy during Dacryocystorhinostomy: A Comprehensive Review of Literature. Bosnian Journal of Basic Medical Sciences, 17, 1-8.
[13] Sáenz González, A.F., Busquet, I.D.N., Arámbulo, O. and Badal Alter, J.M. (2018) Chronic Dacryocystitis Caused by Sarcoidosis. Archivos de la Sociedad Espanola de Oftalmologia, 94, 188-191.
[14] Krishna, Y., Irion, L.D., Karim, S., Dharmsena, A., McCormick, A. and Coupland, S.E. (2017) Chronic Lymphocytic Leukaemia/Small-Cell Lymphocytic Lymphoma of the Lacrimal Sac: A Case Series. Ocular Oncology and Pathology, 3, 224-228.
[15] Hong, J.X., Yu, Z.Q., Cui, X.H., Qian, T.T., Le, Q.H., Wei, A., Liu, Z.G., Sun, X.H., Deng, S. and Xu, J.J. (2014) Meibomian Gland Alteration in Patients with Primary Chronic Dacryocystitis: An in Vivo Confocal Microscopy Study. Current Eye Research, 40, 1-8.
[16] Fridkin, S.K., Hageman, J., Mcdougal, L.K., et al. (2003) Epidemiological and Microbiological Characterization of infections Caused by Staphylococcus aureus with Reduced Susceptibility to Vancomycin, United States, 1997-2001. Clinical Infectious Diseases, 36, 429-439.
https://doi.org/10.1086/346207
[17] Murphy, J., Ali, M.J. and Psaltis, A.J. (2014) Biofilm Quantification on Nasolacrimal Silastic Stents after Dacryocystorhinostomy. Ophthalmic Plastic and Reconstructive Surgery, 31, 396-400.
[18] Chung, S.Y., Rafailov, L., Turbin, R.E. and Langer, P.D. (2019) The Microbiologic Profile of Dacryocystitis. Orbit, 38, 72-78.
https://doi.org/10.1080/01676830.2018.1466901
[19] Mitra, S., Chayani, N., Mohapatra, D., Barik, M.R., Sharma, S. and Basu, S. (2019) High Prevalence of Biofilm-Forming MRSA in the Conjunctival Flora in Chronic Dacryocystitis. Seminars in Ophthalmology, 34, 74-79.
[20] Briscoe, D., Rubowitz, A. and Assia, E. (2005) Changing Bacterial Isolates and Antibiotic Sensitivities of Purulent Dacryocystitis. Orbit, 24, 95-98.
https://doi.org/10.1080/01676830590926585
[21] Chen, L.J., Fu, T.S., Gu, H., Jie, Y., Sun, Z.M., Jiang, D.D., Yu, J.B., Zhu, X.X., Xu, J.J. and Hong, J.X. (2018) Trends in Dacryocystitis in China: A STROBE-Compliant Article. Medicine, 97, e11318.
[22] Chang, V.S., Dhaliwal, D.K., Raju, L., et al. (2015) Antibiotic Resistance in the Treatment of Staphylococcus aureus Keratitis: A 20-Year Review. Cornea, 34, 698-703.
https://doi.org/10.1097/ICO.0000000000000431
[23] Hong, J., Xu, J., Hua, J., et al. (2013) Bacterial Keratitis in Shanghai. Ophthalmology, 120, 647.
https://doi.org/10.1016/j.ophtha.2012.10.038
[24] Lichtinger, A., Yeung, S.N., Kim, P., et al. (2012) Shifting Trends in Bacterial Keratitis in Toronto: An 11-Year Review. Ophthalmology, 119, 1785-1790.
https://doi.org/10.1016/j.ophtha.2012.03.031
[25] Elsahn, A.F., Yildiz, E.H., Jungkind, D.L., et al. (2010) In Vitro Susceptibility Patterns of Methicillin-Resistant Staphylococcus aureus and Coagulase-Negative Staphylococcus Corneal Isolates to Antibiotics. Cornea, 29, 1131-1135.
https://doi.org/10.1097/ICO.0b013e3181d2ce25
[26] Pornpanich, K., Luemsamran, P., Leelaporn, A., et al. (2016) Microbiology of Primary Acquired Nasolacrimal Duct Obstruction: Simple Epiphora, Acute Dacryocystitis, and Chronic Dacryocystitis. Clinical Ophthalmology, 10, 337-342.
https://doi.org/10.2147/OPTH.S100280
[27] Pinar-Sueiro, S., Fernández-Hermida, R.V., Gibelalde, A., et al. (2010) Study on the Effectiveness of Antibiotic Prophylaxis in External Dacryocystorhinostomy: A Review of 697 Cases. Ophthalmic Plastic & Reconstructive Surgery, 26, 467-472.
https://doi.org/10.1097/IOP.0b013e3181d644cf
[28] Amin, R.M., Hussein, F.A., Idriss, H.F., Hanafy, N.F. and Abdallah, D.M. (2013) Pathological, Immunohistochemical and Microbiologicalal Analysis of Lacrimal Sac Biopsies in Patients with Chronic Dacrocystitis. International Journal of Ophthalmology, 6, 817-826.
[29] Razavi, M.E., Ansa-ri-Astaneh, M.R., Farzadnia, M., Rahmaniyan, H. and Moghiman, T. (2010) Bacteriological Evaluation of Adult Dacryocystitis in Iran. Orbit, 29, 286-290.
https://doi.org/10.3109/01676831003664293
[30] Shah, C.P. and Santani, D. (2011) A Comparative Bacteriological Profile and Antibiogram of Dacryocystitis. Nepalese Journal of Ophthalmology, 3, 134-139.
https://doi.org/10.3126/nepjoph.v3i2.5265
[31] Amato, M., Pershing, S., Walvick, M. and Tanaka, S. (2013) Trends in Ophthalmic Manifestations of Methicillin-Resistant Staphylococcus aureus (MRSA) in A Northern California Pediatric Population. Journal of AAPOS, 17, 243-247.
https://doi.org/10.1016/j.jaapos.2012.12.151
[32] Pinar-Sueiro, S., Sota, M., Lerchundi, T.X., et al. (2012) Dacryocystitis: Systematic Approach to Diagnosis and Therapy. Current Infectious Disease Reports, 14, 137-146.
https://doi.org/10.1007/s11908-012-0238-8
[33] Chaudhry, I.A., Shamsi, F.A. and Al-Rashed, W. (2005) Bacte-riology of Chronic Dacryocystitis in a Tertiary Eye Care Center. Ophthalmic Plastic & Reconstructive Surgery, 21, 207-210.
https://doi.org/10.1097/01.IOP.0000161718.54275.7D
[34] Zhu, J. and Paul, W.E. (2010) Heterogeneity and Plasticity of T Helper Cells. Cell Research, 20, 4-12.
https://doi.org/10.1038/cr.2009.138
[35] Wei, H., Sun, R., Xiao, W., et al. (2004) Type Two Cytokines Predomi-nance of Human Lung Cancer and its Reverse by Traditional Chinese Medicine TTMP. Cellular & Molecular Immu-nology, 1, 63-70.
[36] Baba, S., Kagoya, R., Kondo, K., Suzukawa, M., Ohta, K. and Yamasoba, T. (2015) T-Cell Phenotypes in Chronic Rhinosinusitis with Nasal Polyps in Japanese Patients. Allergy, Asthma & Clinical Immunology, 11, Article No. 33.
https://doi.org/10.1186/s13223-015-0100-2
[37] Neurath, M.F., Finotto, S. and Glimcher, L.H. (2002) The Role of Th1/Th2 Polarization in Mucosal Immunity. Nature Medicine, 8, 567-573.
https://doi.org/10.1038/nm0602-567
[38] Yasuhiro, T., Emiko, T., Kunihiro, N., et al. (2017) Immunoglobulin G4-Related Dacryocystitis. Canadian Journal of Ophthalmology, 52, e188-e190.
[39] Perra, M.T., Serra, A., Sirigu, P. and Turno, F. (1995) A Histochemical and Immunohistochemical Study of Certain Defense Mechanisms in the Human Lacrimal Sac Epithelium. Archives of Histology and Cytology, 58, 517-522.
[40] Ali, M.J., Mulay, K., Pujari, A., et al. (2013) Derangements of Lacrimal Drainage-Associated Lymphoid Tissue (LDALT) in Human Chronic Dacryocystitis. Ocular Immunology and Inflammation, 21, 417-423.
https://doi.org/10.3109/09273948.2013.797473
[41] Chandler, J.W. and Gillette, T.E. (1983) Immunologic De-fense Mechanisms of the Ocular Surface. Ophthalmology, 90, 585-591.
https://doi.org/10.1016/S0161-6420(83)34510-3
[42] Knop, E. and Knop, N. (1996) MALT Tissue of the Con-junctiva and Nasolacrimal System in Rabbit and Human. Vision Research, 1996, 36-60.
[43] Knop, N. and Knop, E. (2000) Conjunctiva-Associated Lymphoid Tissue in the Human Eye. Investigative Ophthalmology & Visual Science, 41, 1270-1279.
[44] Paulsen, F.P., Paulsen, J.I., Thale, A.B., et al. (2000) Mucosa-Associated Lymphoid Tissue (MALT) in the Human Efferent Tear Ducts. Virchows Archiv, 437, 185-189.
https://doi.org/10.1007/s004280000248
[45] Paulsen, F.P., Hinz, M., Schaudig, U., et al. (2002) TFF Peptides in the Human Efferent Tear Ducts. Investigative Ophthalmology & Visual Science, 43, 3359-3364.
[46] Maeda, S., Ishikawa, M., Abe, T., et al. (1998) Lectin Cytochemistry of the Rabbit Conjunctiva and Lacrimal Sac. Japanese Journal of Ophthalmology, 42, 443-449.
https://doi.org/10.1016/S0021-5155(98)00051-3
[47] Paulsen, F.P., Schaudig, U., Maune, S., et al. (2003) Loss of Tear Ductassociated Lymphoid Tissue in Association with the Scarring of Symptomatic Dacryostenosis. Ophthalmology, 110, 85-92.
https://doi.org/10.1016/S0161-6420(02)01442-2
[48] Sacks, E.H., Jakobiec, F.A., Wieczorek, R., et al. (1989) Immunophenotypic Analysis of the Inflammatory Infiltrate in Ocular Cicatricial Pemphigoid: Further Evidence for a T-Cell-Mediated Disease. Ophthalmology, 96, 236-243.
https://doi.org/10.1016/S0161-6420(89)32922-8
[49] Ishikawa, M., Kubo, M., Maeda, S., et al. (2011) Structural Changes in the Lacrimal Sac Epithelium and Associated Lymphoid Tissue during Experimental Dacryocystitis. Clinical Ophthalmology, 5, 1567-1574.
https://doi.org/10.2147/OPTH.S26048