碳气凝胶在油水分离中的应用研究进展
Research Progress of Carbon Aerogels in Oil-Water Separation
DOI: 10.12677/MS.2020.108083, PDF, HTML, XML, 下载: 416  浏览: 2,157 
作者: 孟 潇, 熊 忠*:青岛大学化学化工学院,山东 青岛;青岛大学生物多糖纤维形成与生态纺织国家重点实验室,山东 青岛;青岛大学海洋纤维新材料研究院,山东 青岛;山东省海洋生物基纤维与生态纺织技术协同创新中心,山东 青岛;郭昕园, 王 媛:青岛大学化学化工学院,山东 青岛
关键词: 碳气凝胶吸附油水分离乳液分离机理Carbon Aerogel Adsorption Oil-Water Separation Emulsion Separation Mechanism
摘要: 碳气凝胶是一种新型、性能优异的三维纳米多孔碳材料,具有密度低、孔隙率高、比表面积大等特性,已经被应用于传感器、储能和环保等多种领域。作为理想的吸附材料,其在油水分离领域也得到广泛应用。本文介绍了有机聚合物、碳材料、生物质以及复合碳气凝胶四种类型碳气凝胶的制备过程和优缺点,并从油水污染物类型出发,综述了碳气凝胶对油水不混溶物和乳液的分离机理以及应用研究进展。
Abstract: Carbon aerogels, as a new type of three-dimensional nanoporous carbon materials with excellent performance, have been applied in many fields such as sensors, energy storage, and environmental protection. They are also widely used in the field of oil-water separation as ideal adsorption materials. In this paper, the preparation process, advantages and disadvantages of four carbon aerogels, including organic polymers, carbon materials, biomass and composite carbon aerogels, are introduced. According to various oil-water pollutants including oil-water immiscible mixture and emulsion, the separation mechanism and application progress of carbon aerogels are reviewed.
文章引用:孟潇, 郭昕园, 王媛, 熊忠. 碳气凝胶在油水分离中的应用研究进展[J]. 材料科学, 2020, 10(8): 684-696. https://doi.org/10.12677/MS.2020.108083

1. 引言

随着人类社会的快速发展,排入到水域中的各种工业和生活废水日益增多,对人类健康及生态环境造成了极大影响 [1]。同时大规模石油泄漏事故的频繁发生,对海洋生态造成了不可估量的危害。据统计,在过去五十年中因严重运输事故导致的石油泄漏估计达586万吨,图1展示了每年的漏油数量 [2]。

Figure 1. Number of oil spills in worldwide [2]

图1. 全球石油泄漏的数量 [2]

典型的石油泄漏事故有:1991年的海湾战争中石油泄漏约为1100万桶,2010年墨西哥湾的深水地平线事故泄漏原油约为378万桶。由此引发的严重生态灾难已经引起了全球各国的关注 [3]。这些泄漏的石油及废水中包含的有机污染物处理难度大,环境破坏性强,而且大多具有毒性,一旦排放入水中将会造成大面积水体污染。因此,开发高效、多功能、低成本的油水分离材料和工艺显得尤为必要 [4]。

因油水物化性质的差异,排入水中的含油废水和泄漏的原油会与水体形成复杂的混合物 [5]。根据油水混合物的分散状态不同,一般可将其分为两种类型:油水不混溶物(分散相粒径d > 100 μm)和油水相混的乳液(分散相粒径d < 20 μm)。针对前者,其处理方法包括油栅法 [6]、撇油法 [7]、生物降解法 [8] 及直接燃烧去除表面浮油法等 [9]。这些方法可以有效阻止漏油的进一步扩散,但存在成本高、耗时长、去除效率低的缺点。另外,油栅法和撇油法会受到溢油位置的限制,脱油时间长效率低。生物法降解速度缓慢不能及时处理漏油,而燃烧法则会导致二次污染物的产生等 [10]。油水相混的乳液包括油包水乳液(W/O)和水包油乳液(O/W)两种,这其中又分为含表面活性剂的乳液和不含表面活性剂的乳液。前者因为表面活性剂的乳化作用,形成的混合物稳定,液滴尺寸复杂,难于进行分离。乳液的油水分离法有离心 [11]、重力分离 [12]、浮选 [13]、过滤和吸附 [14] 等物理法,中和 [15] 和絮凝 [16] 等化学法,电解分离和电磁分离 [17] 等电化学法,以及活性污泥法和生物转盘法等 [18] 生物处理法。尽管大多数方法已经应用于实际的工业处理,但存在着能耗高、设备昂贵且分离效率低等局限性 [19]。上述方法中,过滤法和吸附法是最常用和有效的两种方法 [14]。过滤法常以分离膜作为基底,利用膜的孔径大小选择性地分离各种粒径的液滴。根据孔径尺寸不同,分离膜分为微滤膜(孔径:0.025~14 μm)、超滤膜(孔径:0.001~0.02 μm)、纳滤膜(孔径:~0.002 μm)和反渗透膜(孔径:0.0001~0.001 μm)等,可以实现对不同类型的油水混合物进行分离。过滤法操作简便,分离效率高且选择性强,但也存在一些缺点,如:膜易被油污污染降低分离效率,分离通量受膜孔径大小限制,压力驱动耗能高以及膜回收困难等 [20]。吸附法使用三维多孔材料作为分离基质。多孔材料具有丰富的孔隙结构和良好的润湿性,原料来源广泛,成本低廉,在处理油类废水方面优势巨大,应用前景广泛。然而,传统的吸附材料存在选择性低、疏水能力弱、吸附容量小、机械性能差等缺点,如:氧化石墨烯气凝胶易堆积,吸油稳定性差 [21];纯硅气凝胶机械性能差,吸油后难以回收利用 [22]。因此,研究和制备具有优异机械性能、良好润湿性和高孔隙率等特性的吸附材料显得尤为必要 [23]。

碳气凝胶(又称炭气凝胶,carbon aerogel)是一种新型、具有独特三维网状多孔结构的纳米碳材料,具有导电性能好、密度低且可控(0.03~0.80 g∙m−3)、孔隙率高(可达到99%)、比表面积大(可达到2500 m2∙g−1)等特点,并且其孔洞结构可以在纳米尺度上进行设计和构造,已经被广泛应用在超级电容器、储氢、催化剂及其载体、石油泄漏处理等领域 [24],并成为近年来油水分离材料研究的热点,展现出了极大的应用潜力。目前研究者们以有机聚合物、碳材料以及生物质等为原材料,通过不同的策略设计和合成了多种类型的碳气凝胶 [25] [26]。本文总结并归纳了碳气凝胶的类型及制备流程,并针对不同类型的油水混合物综述了近年来其在油水分离领域的研究进展,最后提出了目前油水分离用碳气凝胶存在的问题以及未来的发展方向。

2. 碳气凝胶的类型

碳气凝胶作为一种性能优异的纳米多孔碳材料,最早在1989年由美国Lawrance Livermore实验室的Pekala制备 [27]。研究者以间苯二酚和甲醛(Resorcinol-formaldehyde, RF)为原料通过溶胶–凝胶法(Sol-gel)合成并碳化得到RF碳气凝胶。这一通过有机前驱体热解过程制备多孔材料的方法引起了研究者们极大的兴趣。高温碳化过程不仅可以保持气凝胶原本的三维网状结构,而且进一步形成了丰富的孔隙结构。与传统硅气凝胶相比,碳气凝胶孔隙率高、比表面积大,性能更加优异。发展至今,碳气凝胶的制备工艺得到不断改进和完善,制备方法也更加简便,制备原材料已经不再局限于有机聚合物。为寻求更加低价的原料以及快速的反应流程,各种各样的碳材料和天然生物质材料已经被用于制备碳气凝胶。目前碳气凝胶的原料主要分为有机聚合物、碳材料、生物质及复合碳气凝胶四类,下文综述了这四种碳气凝胶的制备工艺和优缺点。

2.1. 有机聚合物碳气凝胶

传统碳气凝胶的制备以有机化合物如间苯二酚和甲醛为前驱体 [27],制备过程主要分为三个阶段:1) 第一阶段通过溶胶–凝胶法制备出具有三维空间结构的湿凝胶;2) 第二阶段是以超临界干燥、冷冻干燥、常压干燥等干燥方式对湿凝胶进行干燥处理,制得有机气凝胶;3) 第三阶段是将气凝胶在惰性气体(N2、Ar等)氛围下高温(700℃~900℃)碳化得到碳气凝胶。传统碳气凝胶的结构性能受原料配比及浓度、催化剂及反应温度等影响,而且湿凝胶的干燥方式也是制备的关键因素。超临界干燥法能够较好地保护其网络多孔结构,减少变形和坍塌,得到的材料孔隙率最高,但操作过程繁琐,费用高且耗时长。常压干燥可以降低碳气凝胶的生产成本,在大规模批量生产方面具有优势。Shen [28] 等人在50℃条件下对制备的RF湿凝胶进行常压干燥后碳化得到的RF碳气凝胶具有500~600 m2∙g−1的比表面积,孔隙结构良好。但这种方法会造成骨架的坍塌和破碎,对三维结构的破坏较大。冷冻干燥因其操作简便,成本相对较低且对材料结构破坏较小成为目前制备气凝胶的常用干燥方式 [29]。Yamamoto [30] 等人在263 K低温下冷冻干燥24 h后经碳化后制备的RF碳气凝胶BET可达到750 m2∙g−1,介孔体积为0.10~1.30 cm3∙g−1,与超临界干燥方式得到的孔结构差别不大。除干燥方式外还可以通过活化法进一步改善碳气凝胶的比表面积及物化性能,以造孔的方式获得具有更大比表面积的碳气凝胶。常用的活化方法有KOH化学活化 [31] 和CO2物理活化法 [32],也可将两种方法同时使用。近年来的有机原料除了间苯二酚和甲醛外,还包括三聚氰胺和甲醛 [33]、间苯酚和甲醛 [34]、混甲酚和甲醛 [35]、2,4-二羟基苯甲酸和甲醛等 [36]。

有机聚合物碳气凝胶制备原料成本较高,工艺复杂且成产周期长,难以大规模批量生产,不能满足油水分离对吸附材料的大量需求。制备所用原料大多为有机化合物,具有挥发性或毒性,会对环境和人体造成破坏,如被列为有毒有害水污染物的甲醛、致癌物三聚氰胺等。这些不足限制了其在废水处理上的进一步应用。

2.2. 碳材料气凝胶

随着碳纳米管、石墨烯等纳米碳材料的兴起,利用这些性能卓越的碳材料制备碳气凝胶引起了热潮。石墨烯具有优异的光学、电学、力学特性,被认为是一种革命性的材料,在传感器、电子、光子学、能源生产和存储以及环境领域具有巨大的应用前景 [37]。传统的石墨烯气凝胶脆性大,片层之间容易堆积导致比表面积降低,吸附能力弱,限制了其应用。Mattias等人 [38] 通过ZnO模板法获得了低密度(0.18 mg∙cm−3)的微管石墨烯气凝胶,以模板导向的方法可以使气凝胶具有有序的层次结构,但该方法限制了材料的可扩展性,难以大规模制备石墨烯气凝胶。近年来,通过将多种碳材料组装制备出的气凝胶展现出良好的特性。Sun等人 [39] 利用石墨烯和碳纳米管协同组装制备了一种全碳气凝胶,通过溶胶–冷冻的方式制备了GGO/CNTs分散体,经冷冻干燥和蒸汽化学还原,最后在160℃下真空干燥成功制备了碳气凝胶UFA (ultra-flyweight aerogel)。由于石墨烯和碳纳米管优异性能的相互协同,使得UFA具有良好的弹性(应变达82%)、导电性(~0.6 S∙m−1)和极低的密度(ρ ≥ 0.16 mg∙cm−3),同时孔隙率达到99.9%。目前,研究者们对石墨烯材料的微观性能调控及组装机制的了解仍有不足,但随着未来对其研究的更加深入,此类碳材料的应用会更加广泛 [40]。

2.3. 生物质碳气凝胶

生物质是由生物体或者类生物体组成的生物物质,包括所有的植物、微生物以及由这些有生命物质代谢、排泄产生的废弃物,是地球上最广泛存在的物质,也是人类可以利用的可再生能源之一 [41]。在20世纪初,Bergius首次通过水热法将纤维素制备成煤炭类材料 [42],而后利用各种纤维素制备碳气凝胶的研究得到了进一步的发展。自然界的多种生物质材料,如剑麻纤维 [44]、甜瓜纤维 [44]、香蒲 [45] 和杨树絮凝 [46] 等已经被用于制备碳气凝胶。生物质原料资源丰富,成本低廉,碳含量丰富且性能优越,具有生物降解性、可持续性以及绿色可再生性等特点,是碳气凝胶制备中最具发展潜力的材料 [47]。以生物质作为碳气凝胶的制备原料,不但可以以一种经济节约且环境友好的方式解决各种废弃物堆积造成的环境问题,而且其本身具有天然物质的优良性能,无需经过繁琐的处理过程便可得到性质优异的多孔材料。生物质基碳气凝胶制备过程一般通过三步法实现:1) 将生物质材料收集纯化去除杂质,通过溶胶–凝胶法制备湿凝胶;2) 经冷冻干燥或者常压干燥方式等得到气凝胶;3) 在惰性气体氛围下高温热解得到生物质基碳气凝胶 [47]。

研究者们利用丰富的生物质资源,已经制备了诸多生物质基碳气凝胶。Li等人 [46] 使用管状结构的杨树絮,经乙酸活化后制备湿凝胶,而后在60℃烘箱内去除水分,最后在1000℃下高温碳化制备出压敏导电碳气凝胶PSC (pressure-sensitive and conductive),具体制备过程见图2。该材料拥有高导电性(0.47 S∙cm−1),高压缩性(80%),低密度(4.3 mg∙cm−3),并对多种油类和有机液体具有高吸附容量(80~161 g∙g−1)。生物质碳气凝胶目前存在的问题包括力学性能较差、孔隙率小等,但其仍然是未来最具前景的碳气凝胶。

Figure 2. Schematic illustration for preparation of the PSC aerogels [46]

图2. PSC碳气凝胶制备示意图 [46]

2.4. 复合碳气凝胶

为解决单一材料碳气凝胶的不足,实现多功能化,研究者们开始探索将不同类型的材料掺杂,制备出性能更为优越的复合碳气凝胶。Xu等人 [48] 为解决传统碳纳米纤维CNF (cellulose nanofibers)强度和模量低的不足,利用聚乙烯醇PVA的水溶性和氧化石墨烯GO优异的力学性能,通过简单的冷冻干燥和高温碳化处理,制备出超疏水复合碳气凝胶CNF/PVA/GO (图3)。掺杂处理提高了其疏水能力(水接触角:156˚),且增加了比表面积和吸附量,孔隙率达到98.98%,吸油能力可达到自身重量的97倍,同时也提高了材料的机械强度。碳气凝胶的掺杂包括:常用的金属及其氧化物掺杂,如Fe [49]、CoO [50]、MoO2 [51] 等;杂原子掺杂,如N [52]、Si [53] 等。与单一碳气凝胶材料相比,掺杂类复合碳气凝胶可以利用其他原料进行性能改善和加强。通过掺杂过程中的协同作用,碳气凝胶的性能更加优越,这也是未来碳气凝胶材料研究的主流。

Figure 3. The synthetic steps for preparing super-hydrophobic CNF/PVA/GO carbon aerogel [48]

图3. 超疏水性CNF/PVA/GO碳气凝胶的合成步骤 [48]

3. 碳气凝胶在油水分离领域的应用

吸附法油水分离技术目前已经成为处理含油废水的最有前途的方法之一 [54]。为弥补传统材料吸附效率低、吸附容量小的不足,比表面积大、孔隙率高、密度低且具有良好吸附性能的三维多孔网络碳气凝胶已被应用在油水分离领域。碳气凝胶具有较好的孔隙结构和润湿性,在原位吸油方面具有其它材料不可比拟的优势。油水混合物形态复杂,油水不混溶物按密度的大小会在水上形成连续的油膜或者在水下形成聚集的油滴,而乳液包括水包油乳液和油包水乳液两种 [55]。实际生活和工业废水成分更为复杂,有机溶剂、乳化剂、金属离子、微生物和细菌等共存,有些颗粒组分可以起到乳化作用,所以含油废水更多的是以乳液形式存在 [56]。

3.1. 不混溶油水分离

碳气凝胶在处理不混溶油水污染物时,碳气凝胶疏水亲油的特性可选择性吸附油滴而将水排斥在外,从而达到分离目的,而且其丰富的多孔结构为储油提供了足够容量。更关键的是,碳气凝胶可在原位进行废水处理,只需在处理后将吸附剂进行回收,避免了大规模转移污染源而造成的成本增加等问题。一些具有高弹性等优良力学性能的碳气凝胶在吸附后可以通过挤压 [57]、蒸馏 [58]、燃烧 [59] 等方式对碳气凝胶进行回收再生。Yang等人 [60] 使用一次性竹筷为前驱体,通过简单的水热和碳化处理制备出了纤维碳气凝胶MCF (multi-functional carbon fiber aerogel)。该材料具有可压缩性(应变达90%)、弹性以及良好的疏水性(水接触角:145˚ ± 2˚),对多种油类和有机溶剂均具有较高吸附量,如图4(c)中MCF对一系列石油产品(汽油、柴油、泵油等)和有机溶剂(己烷、癸烷、甲苯等)的吸附量可达到自身重量的30~129倍,且对水上原油及水下氯仿均可在几秒内完成吸附。另外可使用蒸馏法对碳气凝胶进行再生,5次循环后MCF的除油率仍保持在99%以上。MCF碳气凝胶制备成本低廉,制备方法简单,吸附能力较好,符合经济环保的要求,是一种可持续发展的材料。

为了进一步增强碳气凝胶的吸附选择性和降低回收难度,Dai等人 [61] 以可再生的爆米花为原料,将其浸泡于一定浓度Fe(NO3)3溶液中磁化后再经碳化制备出具有磁性的碳材料。为增强其疏水性能,提高油水分离能力,利用辛基三氯氢硅的水解对其进行表面改性,最终制备得到了超疏水(151.6˚)、低密度(0.095 g∙cm−3)的磁性碳气凝胶3DSMPC (3D macroscopic superhydrophobic magnetic porous carbon aerogel)。该材料对溢油和有机溶剂具有较高吸附量,对发动机油、玉米油和氯乙烷的最大吸附量分别可达到10.02、10.28和10.83 g∙g−1。此外由于其具有磁性和优异的超疏水性能,可实现对油类的定向选择性吸附,具有较大的发展潜力。图5(f)展示了碳气凝胶吸附饱和后,可以利用磁铁从水中提取该吸附剂,该方法降低了回收难度。诸如此类的改性碳气凝胶的研究正受到越来越多的关注。表1列举了一系列文献报道的碳气凝胶制备方法及对应吸油容量。

Figure 4. Using chopsticks fiber carbon aerogel to remove crude oil from water surface (a) and chloroform (Sudan red dye) in (b); (c) Adsorption capacity of various oils and organic solvents [60]

图4. 使用竹筷纤维碳气凝胶去除水面上的原油(a)和氯仿(苏丹红染色) (b) (c)对多种油及有机溶剂的吸附容量 [60]

Figure 5. Elective absorption process of cyclohexane (dyed with Sudan III) in water by 3DSMPC [61]

图5. 用3DSMPC对苏丹III染色的环己烷在水中选择性吸附的研究 [61]

Table 1. Preparation of various carbon aerogels and their adsorption capacity for organic solvents and oils

表1. 多种碳气凝胶的制备及对有机溶剂和油类的吸附容量

3.2. 乳液分离

3.2.1. 水包油乳液分离

乳液类型不同,其分离机理不同,碳气凝胶的分离效率也存在差异。一般来说乳液分离主要有过滤 [62] 和吸附 [63] 两种方式,过滤分离的机理是“尺寸筛分”效应,材料孔道的尺寸通常小于分散相尺寸,可以利用分离层的截留作用达到分离目的。过滤法分离乳液利用分离材料对油水具有相反的亲疏能力,当亲水疏油的材料接触到水包油液滴时,液滴中的水分可以快速被捕获,随着水分的聚集材料会在其表面形成一层“水化层”,使得亲水疏油能力更强,油滴被排斥在外部,而水分由于重力作用被分离到另外一侧。亲油疏水材料对油包水乳液的分离机理也类似 [64]。吸附分离乳液的机理是将油滴吸附破乳从而实现油水分离,油滴没有被截留而是被储存在了吸附剂内部 [65]。制备阶段的碳化过程使得碳气凝胶具有亲油疏水的浸润性,其在分离水包油乳液时是通过吸附分离的方式来进行分离的。利用碳气凝胶疏水亲油的表面性能,与水包油乳液接触时,油滴被吸附储存而水被排斥在外面从而达到破乳分离效果。另外,乳液的稳定性也会影响碳气凝胶的分离效果,水包油乳液体系的形态是油以小液滴形式分散在水中,其稳定程度受油水比、搅拌时间和强度以及乳化剂的类型和添加量等影响。一般来说乳液越稳定,碳气凝胶对其破乳难度越高,分离效率越低 [64]。碳气凝胶具有的良好润湿性和吸附性能,以及丰富的孔洞结构使得在分离具有较小的液滴粒径的乳液时效果突出。

Yang等人 [66] 以木质素颗粒、甲醛和三聚氰胺为原料制备了三聚氰胺甲醛聚合物气凝胶,为增强其孔隙结构和疏水性能,通过进一步热解得到了富氮碳气凝胶NRC (nitrogen-rich carbon aerogels),热解处理后其表面由超亲水(水接触角:48.9˚)变为疏水状态(水接触角:127.2˚)。该碳气凝胶具有大孔隙(80 μm)和大孔隙通道(5 μm)的双孔结构,可以有效地捕获和吸收微米级别的油滴,用于水包油乳液的分离。如图6所示,将NRC置于无表面活性剂的水包三苯乳液中,在25℃条件下静置15 min后乳化液逐渐变为透明,液滴吸收动力学显示随着温度升高,该材料的破乳效果越好,在50℃时,10 min便可达到破乳效果,其分离效率远高于其他材料。

Figure 6. (a) Photographs of toluene-in-water surfactant-free emulsion before and after absorption with NRC carbon aerogel; (b) Droplet absorption kinetics of NRC at 5, 25, and 50˚C; The optical microscopic images of the emulsion (c) before and (d) after absorption with NRC [66]

图6. (a) 用NRC碳气凝胶吸收前后水包三苯乳液(无表面活性剂)样品的照片;(b) NRC在5、25、50℃的液滴吸收动力学;被NRC吸收(c)前和后(d)的乳液光学显微图像 [66]

3.2.2. 油包水(W/O)乳液

油包水乳液中水滴作为分散相分散于连续油相中,乳液液滴的粒径从几十纳米到几微米不等。碳气凝胶对此类乳液的分离大多采用吸附和过滤相结合的分离方式,其固有的亲油疏水特性在分离过程中可排斥水分而将油滴吸附存储在内部达到破乳效果,其表面形成稳定的薄油膜层可以进一步防止水分接触,最终油相在重力作用和毛细作用力驱动下不断过滤通过而水分则被截留在另一侧。碳气凝胶的分离效率除受乳液稳定性及自身孔径大小等影响外,油相的类型、黏度、表面张力也会影响其分离效果。通常随着油相黏度的增大,乳液分离难度变大,分离通量越小,而相应的材料保油能力提高,因此需要具有高孔隙率和分级多孔结构的碳气凝胶以应对不同油相的油包水乳液 [67]。碳气凝胶对于此类乳液相较于水包油乳液分离难度较低,通过材料表面疏水亲油的润湿性和设计合适的孔洞结构便可达到分离目的 [64]。

Xu等人 [68] 以悬铃木纤维为生物质前驱体,采用酸化处理和高温碳化的方法制备出具有高孔隙率(98.8%)、低密度(8.3 mg∙cm−3)的超疏水(水接触角:151˚)超亲油性碳气凝胶VCAs (versatile carbon aerogels),该材料还拥有较好的力学性能,在承受80%的应变下仅产生微小变形,重复循环达100次。VCAs作为一种成本低廉的碳气凝胶,对多种油类和有机溶剂具有较高的吸附能力(30~150 g∙g−1),其超疏水特性可以用于油水分离。研究者设计了如图7所示的煤油包水乳液,VCAs仅在重力作用下就可实现对乳液的快速分离,其分离通量达到6250 L m-2∙h−1,高于绝大多数油水分离材料。并且该材料的高孔隙率和合适的互连孔结构在对不同黏度油相的乳液分离时也具有较高的渗透通量,如:用聚α-烯烃02/10/40 (PAO 02、PAO 10和PAO 40)配制不同黏度的油水乳液(W/02)、(W/10)和(W/40),该材料的分离效率均在99.99%以上,展现出了高效的乳液分离能力。可再生的原料、简便的制备工艺和优异的性能为VCAs碳气凝胶在传感器、油水分离等领域提供了极大的应用潜力。

Figure 7. (a) A setup of separating water-in-kerosene emulsion by the VCAs carbon aerogel; (b) (c) Photographs and optical microscopy images, and (d) (e) droplet size distribution of water-in-kerosene (W/K) emulsion before and after filtration [68]

图7. (a)VCAs碳气凝胶分离煤油包水乳液的装置;(b) (c)照片和光学显微镜图像,(d) (e)煤油包水(W/K)乳液过滤前后的液滴大小分布 [68]

4. 总结与展望

本文对近年来不同类型的碳气凝胶及制备工艺做了介绍,并综述了其对不同形式油水污染物的油水分离应用进展。作为一种具有优异理化特性的三维多孔纳米碳材料,碳气凝胶已经在油水分离领域受到了广泛关注和研究。碳气凝胶在处理含油废水方面具有极大潜力,但仍然存在着很多的挑战:

1) 实际应用中,含油废水成分更为复杂,包含多种金属离子、有机试剂、染料和细菌等,且油水乳液也不仅仅是单一的两相乳液,而是分散程度更为复杂的三相及多相乳液。碳气凝胶大多只具有单一的润湿性,在处理这类废水时尤为困难。因此制备出可同时吸附多种废物组分的智能可切换润湿性碳气凝胶是未来研究的趋势;

2) 油水分离可能处于酸、碱、盐、高温和超低温等恶劣的环境条件中,碳气凝胶在这些极端的条件下进行稳定的油水分离也存在困难;

3) 在油水分离过程中,碳气凝胶表面会被油污污染且孔隙易被堵塞,随着分离过程的进行其渗透通量逐渐降低,分离效果变差,因此研究具有抗粘附、防油污能力的碳气凝胶十分必要。

参考文献

[1] Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O. and Kokot, S. (2003) Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials, 10, 159-170.
https://doi.org/10.1023/A:1027484117065
[2] ITOPF. The International Tankers Owners Pollution Federation Limited Oil Tankers Spill Statistics 2019. https://www.itopf.org/knowledge-resources/documents-guides/document/oil-tanker-spill-statistics-2018/
[3] Nelson, P. (2000) Australia’s National Plan to Combat Pollution of the Sea by Oil and Other Noxious and Hazardous Substances—Overview and Current Issues. Spill Science & Technology Bulletin, 6, 3-11.
https://doi.org/10.1016/S1353-2561(00)00072-4
[4] Lin, X. and Hong, J. (2019) Recent Advances in Robust Superwettable Membranes for Oil-Water Separation. Advanced Materials Interfaces, 6, Article ID: 1900126.
https://doi.org/10.1002/admi.201900126
[5] .Zhu, Y., Wang, D., Jiang, L. and Jin, J. (2014) Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation. NPG Asia Materials, 6, e101.
[6] Hubbe, M.A., Rojas, O.J., Merv, F. and Gupta, B.S. (2013) Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources, 8, 3038-3097.
https://doi.org/10.15376/biores.8.2.3038-3097
[7] Kinner, N.E., Belden, L. and Kinner, P. (2014) Unexpected Sink for Deepwater Horizon Oil May Influence Future Spill Response. Eos Transactions American Geophysical Union, 95, 176.
https://doi.org/10.1002/2014EO210005
[8] Zhang, W.F., Liu, N., Cao, Y.Z., Lin, X., Liu, Y.N. and Feng, L. (2017) Superwetting Porous Materials for Wastewater Treatment: From Immiscible Oil/Water Mixture to Emulsion Separation. Advanced Materials Interfaces, 4, Article ID: 1600029.
https://doi.org/10.1002/admi.201700029
[9] Prendergast, D.P. and Gschwend, P.M. (2014) Assessing the Performance and Cost of Oil Spill Remediation Technologies. Journal of Cleaner Production, 78, 233-242.
https://doi.org/10.1016/j.jclepro.2014.04.054
[10] Kajitvichyanukul, P., Hung, Y.T. and Wang, L.K. (2006) Oil Water Separation. In: Wang, L.K., Hung, YT. and Shammas, N.K., Eds., Advanced Physicochemical Treatment Processes, Handbook of Environmental Engineering, Humana Press, Totowa.
https://doi.org/10.1007/978-1-59745-029-4_16
[11] Hanafy, M. and Nabih, H.I. (2007) Treatment of Oily Wastewater Using Dissolved Air Flotation Technique. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29, 143-159.
https://doi.org/10.1080/009083190948711
[12] Xue, Z.X., Cao, Y.Z., Liu, N., Feng, L. and Jiang, L. (2014) Special Wettable Materials for Oil/Water Separation. Journal of Materials Chemistry A, 2, 2445-2460.
https://doi.org/10.1039/C3TA13397D
[13] Kwon, W.-T., Park, K., Han, S.D., Yoon, S.M., Kim, J.Y., Bae, W., et al. (2010) Investigation of Water Separation from Water-in-Oil Emulsion Using Electric Field. Journal of Industrial and Engineering Chemistry, 16, 684-687.
https://doi.org/10.1016/j.jiec.2010.07.018
[14] Onwurah, I.N.E., Ogugua, V.N., Onyike, N.B., Ochonogor, A.E. and Otitoju, O.F. (2007) Crude Oils Spills in the Environment, Effects and Some Innovative Clean-Up Biotechnologies. International Journal of Environmental Research, 1, 307-320.
https://doi.org/10.1504/IJEWM.2006.011134
[15] Geise, G.M., Lee, H.-S., Miller, D.J., Freeman, B.D., McGrath, J.E. and Paul, D.R. (2010) Water Purification by Membranes: The Role of Polymer Science. Journal of Polymer Science Part B: Polymer Physics, 48, 1685-1718.
https://doi.org/10.1002/polb.22037
[16] Suzuki, Y. and Maruyama, T. (2005) Removal of Emulsified Oil from Water by Coagulation and Foam Separation. Separation Science and Technology, 40, 3407-3418.
https://doi.org/10.1080/01496390500423755
[17] Chen, G. (2004) Electrochemical Technologies in Wastewater Treatment. Separation and Purification Technology, 38, 11-41.
https://doi.org/10.1016/j.seppur.2003.10.006
[18] Chan, Y.J., Chong, M.F., Law, C.L. and Hassell, D.G. (2009) A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater. Chemical Engineering Journal, 155, 1-18.
https://doi.org/10.1016/j.cej.2009.06.041
[19] Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E. and Anastopoulos, G. (2001) Investigation of the Effectiveness of Absorbent Materials in Oil Spills Clean up. Desalination, 140, 259-264.
https://doi.org/10.1002/adma.202001265
[20] Cai, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., et al. (2020) A Self-Cleaning Heterostructured Membrane for Efficient Oil-in-Water Emulsion Separation with Stable Flux. Advanced Materials, 32, e2001265.
https://doi.org/10.1002/adma.202001265
[21] Zhu, J., Yang, X., Fu, Z., He, J., Wang, C., Wu, W., et al. (2016) Three-Dimensional Macroassembly of Sandwich-Like, Hierarchical, Porous Carbon/Graphene Nanosheets towards Ul-tralight, Superhigh Surface Area, Multifunctional Aerogels. Chemistry, 22, 2515-2524.
https://doi.org/10.1002/chem.201504309
[22] Shalygin, A.S., Kozhevnikov, I.V., Gerasimov, E.Y., Andreev, A.S., Lapina, O.B. and Martyanov, O.N. (2017) The Impact of Si/Al Ratio on Properties of Aluminosilicate Aerogels. Microporous and Mesoporous Materials, 251, 105-113.
https://doi.org/10.1016/j.micromeso.2017.05.053
[23] Tian, X., Zhu, H., Meng, X., Wang, J., Zheng, C., Xia, Y., et al. (2020) Amphiphilic calcium Alginate Carbon Aerogels: Broad-Spectrum Adsorbents for Ionic and Solvent Dyes with Multiple Functions for Decolorized Oil-Water Separation. ACS Sustainable Chemistry & Engineering.
https://doi.org/10.1021/acssuschemeng.0c00129
[24] Dayong, G., Jun, S., Nianping, L., Guangming, W., Bin, Z., Zhihua, Z., et al. (2011) The Electrochemical Performance of Carbon-Aerogel-Based Nanocomposite Anodes Compound with Graphites for Lithium-Ion Cells. Journal of Reinforced Plastics and Composite, 30, 827-832.
https://doi.org/10.1177/0731684411404458
[25] White, R.J., Brun, N., Budarin, V.L., Clark, J.H. and Titirici, M.M. (2014) Always Look on the “Light” Side of Life: Sustainable Carbon Aerogels. ChemSusChem, 7, 670-689.
https://doi.org/10.1002/cssc.201300961
[26] Moreno-Castilla, C. and Maldonado-Hódar, F.J. (2005) Carbon Aerogels for Catalysis Applications: An Overview. Carbon, 43, 455-465.
https://doi.org/10.1016/j.carbon.2004.10.022
[27] Pekala, R.W. (1989) Organic Aerogels from the Polycondensa-tion of Resorcinol with Formaldehyde. Journal of Materials Science, 24, 3221-3227.
https://doi.org/10.1007/BF01139044
[28] Shen, J., Hou, J., Guo, Y., Hui, X., Wu, G. and Zhou, B. (2005) Micro-structure Control of RF and Carbon Aerogels Prepared by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 36, 131-136.
https://doi.org/10.1007/s10971-005-5284-3
[29] Kaeberlein M, Steffen KK, Hu D, Dang N, Kerr EO, Tsuchiya M, et al. (2006) Comment on “HST2 mediates SIR2-Independent Life-Span Extension by Calorie Restriction”. Science, 312, 1312.
https://doi.org/10.1126/science.1124608
[30] Yamamoto, T., Nishimura, T., Suzuki, T. and Tamon, H. (2001) Control of Mesoporosity of Carbon Gels Prepared by Sol–Gel Polycondensation and Freeze Drying. Journal of Non Crystalline Solids, 288, 46-55.
https://doi.org/10.1016/S0022-3093(01)00619-6
[31] Zu, G., Shen, J., Zou, L., Wang, F., Wang, X., Zhang, Y., et al. (2016) Nanocellulose-Derived Highly Porous Carbon Aerogels for Supercapacitors. Carbon, 99, 203-211.
[32] Kunowsky, M., Marco-Lozar, J.P., Oya, A. and Linares-Solano, A. (2012) Hydrogen Storage in CO2-Activated Amorphous Nanofibers and Their Monoliths. Carbon, 50, 1407-1416.
https://doi.org/10.1016/j.carbon.2011.11.013
[33] Matsuoka, T., Hatori, H., Kodama, M., Yamashita, J. and Miyajima, N. (2004) Capillary Condensation of Water in the Mesopores of Nitrogen-Enriched Carbon Aerogels. Carbon, 42, 2346-2349.
https://doi.org/10.1016/j.carbon.2004.04.031
[34] 李文翠, 郭树才, 朱玉东. 间甲酚甲醛气凝胶炭化工艺的研究[J]. 炭素技术, 2000(1): 9-11.
[35] 李文翠, 郭树才. 混甲酚甲醛炭气凝胶的制备及表征[J]. 燃料化学学报, 2000, 28(1): 33-35.
[36] Baumann, T.F., Fox, G.A., Satcher, J.H., Yoshizawa, N., Fu, R. and Dresselhaus, M.S. (2002) Synthesis and Characterization of Copper-Doped Carbon Aerogels. Langmuir, 18, 7073-7076.
https://doi.org/10.1021/la0259003
[37] Zhang, Y., Gao, W., Zuo, L., Zhang, L., Huang, Y., Lu, H., et al. (2016) In Situ Growth of Fe2O3 Nanoparticles on Highly Porous Graphene/Polyimide-Based Carbon Aerogel Nanocomposites for Effectively Selective Detection of Dopamine. Advanced Materials Interfaces, 3, Article ID: 1600137.
https://doi.org/10.1002/admi.201600137
[38] Mecklenburg, M., Schuchardt, A., Mishra, Y.K., Kaps, S. and Schulte, K. (2012) Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance (Adv. Mater. 26/2012). Advanced Materials, 24, 3437.
https://doi.org/10.1002/adma.201290158
[39] Sun, H., Xu, Z. and Gao, C. (2013) Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 25, 2554-2560.
https://doi.org/10.1002/adma.201204576
[40] Shen, Y., Fang, Q. and Chen, B. (2015) Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection. Environmental Science & Technology, 49, 67-84.
https://doi.org/10.1021/es504421y
[41] Gao, S., Li, X., Li, L. and Wei, X. (2017) A Versatile Biomass Derived Carbon Material for Oxygen Reduction Reaction, Supercapacitors and Oil/Water Separation. Nano Energy, 33, 334-342.
https://doi.org/10.1016/j.nanoen.2017.01.045
[42] Gao, Z., Zhang, Y., Song, N. and Li, X. (2016) Bio-mass-derived renewable carbon materials for electrochemical energy storage. Materials Research Letters, 5, 69-88.
https://doi.org/10.1080/21663831.2016.1250834
[43] Liu, Y., Peng, Y., Zhang, T., Qiu, F. and Yuan, D. (2018) Superhydrophobic, Ultralight and flexible Biomass Carbon Aerogels Derived from Sisal Fibers for Highly Efficient Oil-Water Separation. Cellulose, 25, 3067-3078.
https://doi.org/10.1007/s10570-018-1774-7
[44] Zhang, J., Li, B., Li, L. and Wang, A. (2016) Ultralight, Com-pressible and Multifunctional Carbon Aerogels Based on Natural Tubular Cellulose. Journal of Materials Chemistry A, 4, 2069-2074.
https://doi.org/10.1039/C5TA10001A
[45] Yang, J., Xu, P., Xia, Y. and Chen, B. (2018) Multi-functional Carbon Aerogels from Typha Orientalis for Oil/Water Separation and Simultaneous Removal of Oil-Soluble Pollutants. Cellulose, 25, 5863-5875.
https://doi.org/10.1007/s10570-018-1994-x
[46] Li, L., Hu, T., Sun, H., Zhang, J. and Wang, A. (2017) Pres-sure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Sep-aration. ACS Applied Materials & Interfaces, 9, 18001-18007.
https://doi.org/10.1021/acsami.7b04687
[47] Chen, T., Li, M., Zhou, L., Ding, X., Lin, D., Duan, T., et al. (2020) Bio-Inspired Biomass-Derived Carbon Aerogels with Superior Mechanical Property for Oil-Water Separation. ACS Sustainable Chemistry & Engineering, 8, 6458-6465.
https://doi.org/10.1021/acssuschemeng.0c00910
[48] Xu, Z., Zhou, H., Tan, S., Jiang, X., Wu, W., Shi, J., et al. (2018) Ultralight Super-Hydrophobic Carbon Aerogels Based on Cellulose Nanofibers/Poly(Vinyl Alcohol)/Graphene Oxide (CNFs/PVA/GO) for Highly Effective Oil-Water Separation. Beilstein Journal of Nanotechnology, 9, 508-519.
https://doi.org/10.3762/bjnano.9.49
[49] Wu, Z.Y., Xu, XX., Hu, B.C., Liang, H.W., Lin, Y., Chen, L.F., et al. (2015) Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electro-catalysis. Angewandte Chemie International Edition, 54, 8179-8183.
https://doi.org/10.1002/anie.201502173
[50] Liu, T., Guo, Y.-F., Yan, Y.-M., Wang, F., Deng, C., Rooney, D., et al. (2016) CoO Nanoparticles Embedded in Three-Dimensional Nitrogen/Sulfur Co-Doped Carbon Nanofiber Networks as a Bifunctional Catalyst for Oxygen Reduction/Evolution Reactions. Carbon, 106, 84-92.
https://doi.org/10.1016/j.carbon.2016.05.007
[51] Ye, T.-N., Lv, L.-B., Xu, M., Zhang, B., Wang, K.-X., Su, J., et al. (2015) Hierarchical Carbon Nanopapers Coupled with Ultrathin MoS2 Nanosheets: Highly Efficient Large-Area Electrodes for Hydrogen Evolution. Nano Energy, 15, 335-342.
https://doi.org/10.1016/j.nanoen.2015.04.033
[52] Hao, P., Zhao, Z., Leng, Y., Tian, J., Sang, Y., Boughton, R.I., et al. (2015) Graphene-Based Nitrogen Self-Doped Hierarchical Porous Carbon Aerogels Derived from Chitosan for high Performance Supercapacitors. Nano Energy, 15, 9-23.
https://doi.org/10.1016/j.nanoen.2015.02.035
[53] Yang, C.-M., Choi, W.-H., Na, B.-K., Cho, B.W. and Cho, W.I. (2005) Capacitive Deionization of NaCl Solution with CARBON Aerogel-Silicagel Composite Electrodes. Desalination, 174, 125-133.
https://doi.org/10.1016/j.desal.2004.09.006
[54] Ma, Q., Cheng, H., Fane, A.G., Wang, R., Zhang, H. (2016) Re-cent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 12, 2186-2202.
https://doi.org/10.1002/smll.201503685
[55] Guan, Y., Cheng, F. and Pan, Z. (2019) Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review. Polymers, 11, 806.
https://doi.org/10.3390/polym11050806
[56] Yang, W.-J., Yuen, A.C.Y., Li, A., Lin, B., Chen, T.B.Y., Yang, W., Lu, H.-D. and Yeoh, G.H. (2019) Recent Progress in Bio-Based Aerogel Absorbents for Oil/Water Separation. Cellulose, 26, 6449-6476.
https://doi.org/10.1007/s10570-019-02559-x
[57] Yuan, D., Zhang, T., Guo, Q., Qiu, F., Yang, D. and Ou, Z. (2018) Superhydrophobic Hierarchical Biomass Carbon Aerogel Assembled with TiO2 Nanorods for Selective Immis-cible Oil/Water Mixture and Emulsion Separation. Industrial & Engineering Chemistry Research, 57, 14758-14766.
https://doi.org/10.1021/acs.iecr.8b03661
[58] Gan, G., Li, X., Fan, S., Wang, L., Qin, M., Yin, Z., et al. (2019) Carbon Aerogels for Environmental Clean-Up. European Journal of Inorganic Chemistry, 2019, 3126-3141.
https://doi.org/10.1002/ejic.201801512
[59] Cai, T., Wang, H., Jin, C., Sun, Q. and Nie, Y. (2017) Fabrication of Nitrogen-Doped Porous Electrically Conductive Carbon Aerogel from Waste Cabbage for Supercapacitors And Oil/Water Separation. Journal of Materials Science: Materials in Electronics, 29, 4334-4344.
https://doi.org/10.1007/s10854-017-8381-5
[60] Yang, S., Chen, L., Mu, L., Hao, B. and Ma, P.-C. (2015) Low Cost Carbon Fiber Aerogel Derived from Bamboo for the Adsorption of Oils and Organic Solvents with Excellent Performances. RSC Advances, 5, 38470-38478.
https://doi.org/10.1039/C5RA03701H
[61] Dai, J., Zhang, R., Ge, W., Xie, A., Chang, Z., Tian, S., et al. (2018) 3D Macroscopic Superhydrophobic Magnetic Porous Carbon Aerogel Converted from Biorenewable Popcorn for Se-lective Oil-Water Separation. Materials & Design, 139, 122-131.
https://doi.org/10.1016/j.matdes.2017.11.001
[62] Zhang, T., Yuan, D., Guo, Q., Qiu, F., Yang, D. and Ou, Z. (2019) Preparation of a Renewable Biomass Carbon Aerogel Reinforced with Sisal for Oil Spillage Clean-Up: Inspired by Green Leaves to Green Tofu. Food and Bioproducts Processing, 114, 154-162.
https://doi.org/10.1016/j.fbp.2018.12.007
[63] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[64] 戴国琛, 张泽天, 高文伟, 李正军. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(4): 196-204.
[65] Ge, J., Zhao, H.Y., Zhu, H.W., Huang, J., Shi, L.A. and Yu, S.H. (2016) Advanced Sorbents for Oil-Spill Cleanup: Recent Advances and Future Per-spectives. Advanced Materials, 28, 10459-10490.
https://doi.org/10.1002/adma.201601812
[66] Yang, Y., Tong, Z., Ngai, T. and Wang, C. (2014) Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Applied Materials & In-terfaces, 6, 6351-6360.
https://doi.org/10.1021/am5016342
[67] 王建明, 葛圣松, 郑衡. 油水乳液破乳研究进展[J]. 石油化工腐蚀与防护, 2007, 24(5): 10-13.
[68] Xu, P., Qian, P., Yang, J., Li, J., Xia, Y., Qian, W., et al. (2019) Superhydrophobic and Compressible Carbon Aerogels Derived from Platanus orientalis for Oil Absorption and Emulsion Separation. Journal of the Taiwan Institute of Chemical Engineers, 103, 209-216.
https://doi.org/10.1016/j.jtice.2019.07.017
[69] Jing, Z., Ding, J., Zhang, T., Yang, D., Qiu, F., Chen, Q., et al. (2019) Flexible, Versatility and Superhydrophobic Biomass Carbon Aerogels Derived from Corn Bracts for Efficient Oil/Water Separation. Food and Bioproducts Processing, 115, 134-142.
https://doi.org/10.1016/j.fbp.2019.03.010
[70] Li, L., Li, B., Sun, H. and Zhang, J. (2017) Compressible and Conductive Carbon Aerogels from Waste Paper with Exceptional Performance for Oil/Water Separation. Journal of Materials Chemistry A, 5, 14858-14864.
https://doi.org/10.1039/C7TA03511J
[71] Xu, Z., Jiang, X., Tan, S., Wu, W., Shi, J., Zhou, H., et al. (2018) Preparation and Characterisation of CNF/MWCNT Carbon Aerogel as Efficient Adsorbents. IET Nanobiotechnology, 12, 500-504.
https://doi.org/10.1049/iet-nbt.2017.0234
[72] Yuan, D., Zhang, T., Guo, Q., Qiu, F., Yang, D. and Ou, Z. (2018) Recyclable Biomass Carbon@SiO2@MnO2 Aerogel with Hierarchical Structures for Fast and Selective Oil-Water Separation. Chemical Engineering Journal, 351, 622-630.
https://doi.org/10.1016/j.cej.2018.06.132