循环血MicroRNA与辐射剂量相关性研究进展
Advances in Studies on the Correlation between Circulating Blood MicroRNA and Radiation Dose
DOI: 10.12677/ACM.2020.108250, PDF, HTML, XML, 下载: 547  浏览: 759 
作者: 刘明浩, 朱 磊, 杨 超, 王佳楠*:火箭军特色医学中心涉核人员治疗科,北京
关键词: MicroRNA核辐射分子标志物MicroRNA Nuclear Radiation Molecular Markers
摘要: 随着军队核武器、核电站、核医学等技术的发展,涉核人员对于核辐射安全有着更高的标准及需求,然而对于涉核人员辐射剂量评估,目前所使用的传统方法存在一定局限性。MicroRNA (miRNA)是一类内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,它们在动植物中参与转录后基因表达调控。研究发现循环血miRNA具有很好的稳定性,并且参与多种生物过程,在核辐射早期照射后,循环血某些特定miRNA会发生特异性改变,且miRNA变化程度与辐射剂量存在相关性。大量研究报道miRNA与肿瘤发生、发展相关,而核辐射远期生物学效应包括使肿瘤发病率升高。可见miRNA是核辐射损伤早期评估及远期效应随访的潜在分子标准物,且应用实时定量PCR技术对循环血miRNA检查具有快速、准确、灵敏度高等优势,如果miRNA成为成熟辐射生物剂量计,可以更快速、准确地对辐射暴露风险进行评估,并可以进一步评估辐射剂量,对急性放射病进行明确分型分度,可有效指导临床治疗。本文对与核辐射损伤相关的microRNA进行归纳总结。
Abstract: With the development of military nuclear weapons, nuclear power plants, nuclear medicine and other technologies, nuclear personnel have higher standards and requirements for nuclear radiation safety. MicroRNAs are a class of non-coding single-stranded RNA molecules encoded by endogenous genes with a length of about 22 nucleotides, which are involved in the regulation of post-transcriptional gene expression in animals and plants. Studies have found that circulating blood microRNAs have good stability and participate in a variety of biological processes. Specific microRNAs in circulating blood will undergo specific changes after early radiation exposure, and there is a correlation between the change degree of microRNAs and radiation dose. A large number of studies have reported that microRNAs are associated with tumor genesis and development, while the long-term biological effects of nuclear radiation include increased tumor incidence. Therefore, miRNA is a potential molecular standard for early evaluation and long-term effect follow-up of nuclear radiation injury. Real time quantitative PCR has the advantages of rapid, accurate and high sensitivity in the detection of circulating blood miRNA. If miRNA becomes a mature radiation biodosimeter, it can evaluate the radiation exposure risk more quickly and accurately. It can further evaluate the radiation dose and classify the acute radiation sickness, and effectively guide the clinical treatment. This paper summarizes the microRNAs related to nuclear radiation damage.
文章引用:刘明浩, 朱磊, 杨超, 王佳楠. 循环血MicroRNA与辐射剂量相关性研究进展[J]. 临床医学进展, 2020, 10(8): 1671-1677. https://doi.org/10.12677/ACM.2020.108250

1. MicroRNA

MicroRNA (miRNA)为一类内源性的具有调控功能的非编码RNA。最早1993年Lee及其同事通过对秀丽隐杆线虫的基因筛选鉴定出miRNA [1] [2]。Lin-14蛋白的低表达对幼虫从L1期进化到L2期发挥重要作用,Lin-4被转录后并没有被翻译成具有生物活性的蛋白质,而是产生了2条长度分别为21和61个核苷酸(Pre-miRNA),Pre-miRNA通过依赖RanGTP/Exportin5转运机制从细胞核转运到细胞浆 [3] [4],RNA聚合酶ⅢDICER将其加工后形成两条RNA链,一条组装到含有argonaute的沉默复合体内,形成成熟的miRNA,另一条链降解。随后,Wightman及其同事发现mRNA的3端的非翻译区(3'-UTRs)区中多个位点之间可以与MiRNA反义互补,在转录后水平与靶基因3'非编码区结合,当miRNA与其靶向mRNA3'-UTRs完全或几乎完全互补时,可导致目的mRNA被降解,当miRNA与靶向mRNA3'-UTRs区不完全互补时,则负调控翻译过程,阻碍蛋白质的翻译,抑制蛋白质合成,参与机体造血,脂肪代谢,器官的形成,细胞发育、增殖、分化、凋亡等一系列重要生物学进程 [5] [6]。miRNA可以通过不同的载体被释放到循环血中(外周血液中),如外泌体、微泡、脂蛋白、凋亡小体或与蛋白质结合,循环血miRNA被认为是肿瘤早期诊断及自身免疫性疾病的潜在生物标记物 [7] [8] [9]。

目前,已有超过2000个microRNAs被证实能调节人类基因组中约三分之一基因的表达,获取目前已知miRNA相关信息途径简便,MiRBase (http://www.miRBase.org/)是一个综合性的microRNA注册网站,提供所有可能的序列、注释、命名和目标预测数据,方便学者对相关miRNA进行查询 [5]。由于miRNAs在循环血中具有显著的稳定性、一定的组织特异性及遗传保守性,众多研究表明其可以成为不同类型疾病(肿瘤、自身免疫性疾病、动脉粥样硬化等)较为理想的诊断分子标志物 [10] [11] [12]。研究发现某些特定的miRNAs被包装成囊泡,可以与多种脂质和蛋白质结合,可以在循环血中稳定存在并容易被检测到 [12]。

2. 传统核辐射生物剂量计

通过急性放射病临床症状对辐射剂量进行评估是最为简单的方法,但其主观性强,缺乏敏感性及特异性,且国际放射防护委员会(ICRP)要求评估方法在辐射事故后至少可以检测到1 Gy的辐射剂量 [13],单纯依靠临床症状显然无法完成,因此实验室检查尤为重要。目前传统实验室检查主要包括细胞水平及分子水平生物剂量计。

2.1. 细胞水平

分别为染色体畸变分析、微核分析、早熟凝集染色体分析等 [14]。染色体畸变分析是电离辐射损伤和估算剂量的最佳指标,也是目前国际上公认的电离辐射生物剂量估算的“金标准” [15],染色体畸变是指生物细胞中染色体在数目和结构上发生的变化,上世纪60年代研究发现辐射可以引起人类外周血淋巴细胞染色体畸变,其中双着丝粒是辐射最为敏感的染色体畸变类型 [16]。其优势在于不受性别、年龄影响,且自发率低,活体、离体照射后结果较为一致。但该方法仍然存在技术复杂、检测速度慢,不适合在大规模辐射事故时使用。

上世纪末Howell与Jolly等人首次发现无着丝粒的染色体片段或因纺锤体受损而丢失的整个染色体,在细胞分裂后期仍留在子细胞的胞质内形成微核。微核分析是检测染色体或有丝分裂器损伤的一种遗传毒性试验方法。既往认为微核是由毒性物质作用产生 [17],近十余年研究发现辐射也可以使细胞产生微核并且与辐射轻度呈正相关 [18] [19]。作为生物剂量计有点是微核法的优点是容易识别,计数较快,但缺点是其自发产生率较高,检测过程需要大量细胞样本,报告时间大于72小时,不能鉴别全身和局部照射,结果受到被检者性别及年龄影响 [20] [21],无法应用在早期DNA损伤并且较难估算6 Gy以上辐射剂量。

早熟染色体凝集是指M期细胞与间期融合后,M期细胞中的细胞促分裂因子可诱导间期细胞的染色体发生凝缩,产生的染色体就叫做早熟凝集染色体。早熟凝集染色体分析可以分析未曾被修复的早期DNA损伤,上世纪末Darroudi F研究了三种细胞遗传学方法(双着丝粒法、微核法和早熟染色体凝集法)对猕猴(Macaca mulatta)全身和局部照射后的评估效果,结果发现早熟凝集染色体分析技术能够将全身照射与部分照射区分开来 [22]。该方法最大的缺点是两个细胞的染色体相重叠,很难进行区分,虽然报道称化学诱导法可以解决上述问题 [23],但其计数繁琐,实验成功率低。

2.2. 分子水平

分别为血型糖蛋白A (Glycophorin A, GPA)基因突变分析、黄嘌呤磷酸核糖基转移酶(xanthine phosphoribosyltransferase, HPRT)基因突变分析、γ-H2AX“焦点”数目分析等 [14]。GPA基因突变分析是体细胞突变分析技术的一种。红系前体细胞被辐射照射后GPA基因突变可致等位基因仅表达1个位点、不表达甚至缺失,从而形成细胞表面表达半合子血型糖蛋白形成的红细胞。既往针对辐射暴露人群调查发现,受照剂量与GPA突变指数呈正相关 [24]。GPA基因突变分析优点是速度快、稳定性高、所需标本量小且可用于远后剂量评估;缺点是受个体辐射敏感性影响较大。

1985年Stout JT等人首次发现并报道HPRT基因突变,HPRT在DNA合成修复通路中发挥重要作用,其编码基因位于X染色体上 [25]。我国学者研究发现放疗剂量累积在0~40 Gy范围内,HPRT基因突变率明显升高,呈现理想的剂量–效应关系 [26]。既往研究报道对30名辐射暴露者进行HPRT基因突变分析,发现40年后仍可以在这些幸存者体内可以检测到人类T细胞中的HPRT突变 [27]。可见HPRT基因突变分析优点是可以用于远后剂量评估;缺点是个体化因素影响较大(如吸烟等有害因素)。

DNA双链断裂是辐射造成DNA损伤类型之一,DNA双链一旦发生断裂将会影响其遗传信息复制。H2AX的磷酸化是真核细胞对于DNA双链断裂做出的反应,DNA损伤时位于丝氨酸139位C端保守区域内的H2AX磷酸化会形成γ-H2AX。因此,γ-H2AX的产生是DNA双链断裂的一个标志,通过荧光染料DAPI标记的抗体可以与γ-H2AX结合 [28],在荧光显微镜下为可见的“焦点”从而被检查到,其“焦点”与辐射暴露程度相一致 [29],该检测技术成为γ-H2AX“焦点”数目分析。其优点是低剂量情况下敏感性好,缺点目前相关研究较少,该技术时间依赖性及稳定性有待验证。

尽管目前临床上对于急性放射病的诊治取得了显著进步,但照射剂量大于6 Gy的急性放射病,除对症外仍缺乏有效的特异性治疗 [30],治疗的时间窗对于此类患者的预后极为重要,例如早期的抗放、促排、阻止吸收药物的使用;在核辐射照射后24小时内粒细胞集落刺激因子的治疗 [31] [32] 等。但由于缺乏特异性及敏感性理想的辐射评估分子标志物,目前核辐射剂量评估方法仍无法满足临床诊治需求。治疗方案选择的前提是确定诊断其是否被辐射照射及照射剂量,可以按照照射剂量对患者进行急性放射病分型分度,有利于指导进一步临床治疗 [33] [34]。因此,需要进一步研究新辐射型生物剂量计,可以有效、快速、高通量的对辐射剂量进行评估,满足大规模辐射事故临床需求。

3. 循环血MicroRNA在辐射后变化

最早在2011年Templin等人 [35] 研究了在不同辐射剂量条件下小鼠外周血中microRNA (miRNA)的表达特征,分别用0.5、1.5、5.0 Gy γ射线(剂量率为0.0136 Gy/s)或0.1、0.5 Gy (56) Fe离子(剂量率为0.00208 Gy/s)照射小鼠,照射后6 h和24 h全血中提取总RNA,每种照射条件下使用三只动物,实时定量聚合酶链反应检测差异表达的miRNA。结果发现miRNA表达具有辐射类型特异性、剂量和时间依赖性。辐射暴露后小鼠血液中miR-150水平显著下降(P < 0.05)。基于差异表达miRNA的分类预测辐射类型或剂量,准确率在75%到100%之间。基因分析表明,辐射诱导的miRNA参与了多种生物学过程的调控,如mRNA转录调控、核酸代谢和发育。电离辐射诱发小鼠血液miRNA信号具有辐射类型和辐射剂量特异性。上述结果提示辐射反应的复杂性和miRNA在其中的重要性。MiR-150对辐射的敏感性在局部放射治疗的研究中得到了相同的结果,细胞水平检测发现细胞内miR-150水平显著升高。由此推测miR-150在循环血中显著下降可能由于辐射暴露后miR-150滞留于细胞内,参与细胞辐射损伤后修复,这表明miR-150在降低辐射损伤方面可能起着重要作用,当然如要证实上述假设还需更加深入的机制研究。同年Liu.C等人研究发现幼鼠和成年鼠对辐射的不同反应与miR-34a有关。该研究发现辐射可诱发幼鼠和成年鼠体内不同器官组织miR-34a水平升高且miR-34a在循环血中稳定存在,miR-34a通过促进细胞凋亡和降低细胞增殖能力,在不同组织中发挥了关键作用。MiR-34a的辐射敏感性作用机制是以p53基因依赖方式进行的,miR-34a下游靶点可能是抗凋亡分子Bcl-2,miR-34a的过度表达和Bcl-2的敲除可显著提高不同细胞的放射敏感性,而miR-34a的抑制可保护细胞免受辐射损伤。可见,miR-34a不是是辐射损伤的潜在新标志物,也是潜在辐射防护的一个新的靶点 [36]。

近期Beata Ma1achowska等人发表的荟萃分析结果表明,miR-30a、miR-30c、miR-29a、miR-29b、miR-150、miR-200b和miR-320a与辐射暴露呈剂量或时间依赖性一致,且在不同物种间表现相似 [37],具有一定的遗传保守性,提示存在将动物模型结果应用于人类的可能性。Fendler W [38] 等人利用小鼠模型系统证实了循环血miRNAs可以有效预测辐射对动物长期生存能力的影响。该团队在小鼠和非人类灵长类动物中鉴定出了7种辐射敏感性miRNAs。对这些miRNAs的基因组分析显示,有七种转录因子组合可以在人类、小鼠和非人类灵长类动物中调节这些miRNAs。此外,三种miRNAs (miR-133b、miR-215和miR-375)的组合可以准确地识别非人类灵长类动物是暴露于辐射。基于性别的分层雌性猕猴对辐射的敏感度较高,并发性miR-16-2可能通过某种机制影响性别对辐射敏感性,从而影响辐射暴露的结果。MiR-30a和miR-126可以预测辐射诱导的死亡率,预示着该两种miRNA可能成为急性放射病潜在的预后标志物。

虽然很难将miRNAs的细胞外表达与其生物学功能联系起来,但是与辐射暴露相关的miRNAs的主要种类似乎是参与辐射损伤的修复过程。多项研究报道miR-30c也被报道通过细胞凋亡途径参与辐射对生物体影响,但对其报道最多还是与冠状动脉粥样硬化性心脏病相关性,对于患有此种疾病患者不宜应用miR-30c进行辐射剂量评估 [39] [40] [41]。一种miRNA调控多种基因或同一种基因调控多种miRNA,miRNA参与多种生物代谢过程,因此将miRNA应用于生物剂量计如何排除各种疾病对结果影响,需要找到辐射敏感的非疾病相关miRNA。

MiR-200b和miR-320a虽然在辐射剂量评估方面敏感性及特异性不高(OR值分别为1.34及1.13) [37],但其可能与辐射引起的生物学过程机制相关。研究报道miR-200b在恶性胆管细胞中高表达,增强了对吉西他滨的敏感性,吉西他滨是一种合成嘧啶核苷,可导致DNA合成的抑制,表面miR-200b参与了DNA合成调控 [42]。MiR-320a则直接在辐射条件下可诱导肿瘤细胞凋亡,抑制肿瘤细胞增殖,且与照射剂量呈线性正相关 [43]。

我国学者使用miRNA-PCR阵列分析照射后24小时miRNA的表达谱。从接受0.5~2 Gy全身辐射照射的动物身上采集血样。选择12个放射敏感性miRNAs进行进一步验证,在暴露于0.1~2 Gy的辐射照射后,发现对辐射照射有显著反应的5种miRNA (miR-183-5p、miR-9-3p、miR-200b-5p、miR-342-3p和miR-574-5p)。其利用这5个miRNA建立了一种通用模型,在辐射暴露后早期阶段预测辐射程度并具有较高的敏感性和特异性,说明循环血miRNA是早期预测暴露程度的潜在分子标志物 [44]。

4. 结论及展望

近几十年,随着辐射生物剂量计领域不断的发展,一些传统的检测技术已经被广泛认可,具有一定的特异性和敏感性,但仍然存在某些缺点及局限性,如检测速度慢、技术复杂、受个体差异影响较大等,逐渐无法满足日益增长的辐射安全需求。miRNA作为近年发现的具有重要调节功能的小分子物质,可以在循环血中稳定存在,并且多项研究发现循环血中存在辐射敏感的miRNA,为研发新型辐射生物剂量计提供新的方向。循环血作为新的生物剂量计优势是循环血方便采集,miRNA可以通过高密度荧光标记探针的方法进行检测,并可以制成生物芯片,检测速度快,可以完成高通量生物剂量估算,尤其满足大规模辐射事故情况下检测需求。相信随着我国科技创新能力的不断发展,相关科技人员的不懈努力,不久的将来miRNA一定可以成为理想的生物剂量计,快速、准确地评估辐射剂量,在大规模应急情况下对辐射暴露人群进行生物剂量估算,进一步指导分型、分度诊治,通过针对性临床治疗改善预后。

NOTES

*通讯作者。

参考文献

[1] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[2] Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA Genes Are Transcribed by RNA Polymerase II. The EMBO Journal, 23, 4051-4060.
https://doi.org/10.1038/sj.emboj.7600385
[3] Bohnsack, M.T., Czaplinski, K. and Gorlich, D. (2004) Exportin 5 Is a RanGTP-Dependent dsRNA-Binding Protein That Mediates Nuclear Export of Pre-miRNAs. RNA, 10, 185-191.
https://doi.org/10.1261/rna.5167604
[4] Lund, E., Guttinger, S., Calado, A., et al. (2004) Nuclear Export of MicroRNA Precursors. Science, 303, 95-98.
https://doi.org/10.1126/science.1090599
[5] Bhaskaran, M. and Mohan, M. (2014) MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51, 759-774.
https://doi.org/10.1177/0300985813502820
[6] Finnegan, E.F. and Pasquinelli, A.E. (2013) MicroRNA Biogenesis: Regulating the Regulators. Critical Reviews in Biochemistry and Molecular Biology, 48, 51-68.
https://doi.org/10.3109/10409238.2012.738643
[7] Pereira, D.M., Rodrigues, P.M., Borralho, P.M., et al. (2013) Delivering the Promise of miRNA Cancer Therapeutics. Drug Discovery Today, 18, 282-289.
https://doi.org/10.1016/j.drudis.2012.10.002
[8] Huang, Y.K. and Yu, J.C. (2015) Circulating MicroRNAs and Long Non-Coding RNAs in Gastric Cancer Diagnosis: An Update and Review. World Journal of Gastroenterology, 21, 9863-9886.
https://doi.org/10.3748/wjg.v21.i34.9863
[9] McDonald, A.C., Raman, J.D., Shen, J., et al. (2019) Circulating MicroRNAs in Plasma before and after Radical Prostatectomy. Urology Oncology, 37, 811-814.
https://doi.org/10.1016/j.urolonc.2019.07.001
[10] Balzano, F., Deiana, M., Dei, G.S., et al. (2015) MiRNA Stability in Frozen Plasma Samples. Molecules, 20, 19030-19040.
https://doi.org/10.3390/molecules201019030
[11] Enelund, L., Nielsen, L.N. and Cirera, S. (2017) Evaluation of MicroRNA Stability in Plasma and Serum from Healthy Dogs. Microrna, 6, 42-52.
https://doi.org/10.2174/2211536606666170113124114
[12] Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518.
https://doi.org/10.1073/pnas.0804549105
[13] Eakins, J.S. and Ainsbury, E.A. (2018) Quantities for Assessing High Doses to the Body: A Short Review of the Current Status. Journal of Radiological Protection, 38, 731-742.
https://doi.org/10.1088/1361-6498/aabffe
[14] 段志凯, 张忠新, 张睿凤, 等. 常用辐射剂量计的研究现状[J]. 癌变·畸变·突变, 2016, 28(4): 325-328.
[15] 王平, 吕玉民. 染色体畸变指标作为辐射生物剂量计在国内的发展与展望[J]. 中国卫生检验杂志, 2019, 29(15): 1919-1920.
[16] Agrawala, P.K., Adhikari, J.S. and Chaudhury, N.K. (2010) Lymphocyte Chromosomal Aberration Assay in Radiation Biodosimetry. Journal of Pharmacy & Bioallied Sciences, 2, 197-201.
https://doi.org/10.4103/0975-7406.68501
[17] Fenech, M. (2006) Cytokinesis-Block Micronucleus Assay Evolves into a “Cytome” Assay of Chromosomal Instability, Mitotic Dysfunction and Cell Death. Mutation Research, 600, 58-66.
https://doi.org/10.1016/j.mrfmmm.2006.05.028
[18] Song, E.Y., Rizvi, S.M., Qu, C.F., et al. (2008) The Cytokinesis-Block Micronucleus Assay as a Biological Dosimeter for Targeted Alpha Therapy. Physics in Medicine & Biology, 53, 319-328.
https://doi.org/10.1088/0031-9155/53/2/001
[19] Willems, P., August, L., Slabbert, J., et al. (2010) Automated Micronucleus (MN) Scoring for Population Triage in Case of Large Scale Radiation Events. International Journal of Radiation Biology, 86, 2-11.
https://doi.org/10.3109/09553000903264481
[20] Bonassi, S., Fenech, M., Lando, C., et al. (2001) Human MicroNucleus Project: International Database Comparison for Results with the Cytokinesis-Block Micronucleus Assay in Human Lymphocytes: I. Effect of Laboratory Protocol, Scoring Criteria, and Host Factors on the Frequency of Micronuclei. Environmental and Molecular Mutagenesis, 37, 31-45.
https://doi.org/10.1002/1098-2280(2001)37:1<31::AID-EM1004>3.0.CO;2-P
[21] Fenech, M., Holland, N., Chang, W.P., et al. (1999) The Human MicroNucleus Project—An International Collaborative Study on the Use of the Micronucleus Technique for Measuring DNA Damage in Humans. Mutation Research, 428, 271-283.
https://doi.org/10.1016/S1383-5742(99)00053-8
[22] Darroudi, F., Natarajan, A.T., Bentvelzen, P.A., et al. (1998) Detection of Total- and Partial-Body Irradiation in a Monkey Model: A Comparative Study of Chromosomal Aberration, Micronucleus and Premature Chromosome Condensation Assays. International Journal of Radiation Biology, 74, 207-215.
https://doi.org/10.1080/095530098141582
[23] Rybaczek, D. and Kowalewicz-Kulbat, M. (2011) Premature Chromosome Condensation Induced by Caffeine, 2-Aminopurine, Staurosporine and Sodium Metavanadate in S-Phase Arrested HeLa Cells Is Associated with a Decrease in Chk1 Phosphorylation, Formation of Phospho-H2AX and Minor Cytoskeletal Rearrangements. Histochemistry and Cell Biology, 135, 263-280.
https://doi.org/10.1007/s00418-011-0793-3
[24] Kyoizumi, S., Kusunoki, Y., Hayashi, T., et al. (2005) Individual Variation of Somatic Gene Mutability in Relation to Cancer Susceptibility: Prospective Study on Erythrocyte Glycophorin a Gene Mutations of Atomic Bomb Survivors. Cancer Research, 65, 5462-5469.
https://doi.org/10.1158/0008-5472.CAN-04-1188
[25] Stout, J.T. and Caskey, C.T. (1985) HPRT: Gene Structure, Expression, and Mutation. Annual Review of Genetics, 19, 127-148.
https://doi.org/10.1146/annurev.ge.19.120185.001015
[26] 武丽蕊, 王兰朋, 李红霞, 等. HPRT基因突变对宫颈癌放疗损伤的评估[J]. 癌变·畸变·突变, 2011, 23(6): 465-467.
[27] Hakoda, M., Akiyama, M., Kyoizumi, S., et al. (1988) Increased Somatic Cell Mutant Frequency in Atomic Bomb Survivors. Mutation Research, 201, 39-48.
https://doi.org/10.1016/0027-5107(88)90109-1
[28] Zhao, J., Guo, Z., Zhang, H., et al. (2013) The Potential Value of the Neutral Comet Assay and Gamma H2AX Foci Assay in Assessing the Radiosensitivity of Carbon Beam in Human Tumor Cell Lines. Radiology and Oncology, 47, 247-257.
https://doi.org/10.2478/raon-2013-0045
[29] Moroni, M., Maeda, D., Whitnall, M.H., et al. (2013) Evaluation of the Gamma-H2AX Assay for Radiation Biodosimetry in a Swine Model. International Journal of Molecular Sciences, 14, 14119-14135.
https://doi.org/10.3390/ijms140714119
[30] Singh, V.K., Romaine, P.L. and Seed, T.M. (2015) Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health Physics, 108, 607-630.
https://doi.org/10.1097/HP.0000000000000279
[31] Williams, J.P., Brown, S.L., Georges, G.E., et al. (2010) Animal Models for Medical Countermeasures to Radiation Exposure. Radiation Research, 173, 557-578.
https://doi.org/10.1667/RR1880.1
[32] Lopez, M. and Martin, M. (2011) Medical Management of the Acute Radiation Syndrome. Reports of Practical Oncology and Radiotherapy, 16, 138-146.
https://doi.org/10.1016/j.rpor.2011.05.001
[33] Singh, V.K. and Hauer-Jensen, M. (2016) Gamma-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status. International Journal of Molecular Sciences, 17, 663.
https://doi.org/10.3390/ijms17050663
[34] Singh, V.K., Newman, V.L., Romaine, P.L., et al. (2016) Use of Biomarkers for Assessing Radiation Injury and Efficacy of Countermeasures. Expert Review of Molecular Diagnostics, 16, 65-81.
https://doi.org/10.1586/14737159.2016.1121102
[35] Templin, T., Amundson, S.A., Brenner, D.J., et al. (2011) Whole Mouse Blood MicroRNA as Biomarkers for Exposure to Gamma-Rays and (56)Fe Ion. International Journal of Radiation Biology, 87, 653-662.
https://doi.org/10.3109/09553002.2010.549537
[36] Liu, C., Zhou, C., Gao, F., et al. (2011) MiR-34a in Age and Tissue Related Radio-Sensitivity and Serum miR-34a as a Novel Indicator of Radiation Injury. International Journal of Biological Sciences, 7, 221-233.
https://doi.org/10.7150/ijbs.7.221
[37] Malachowska, B., Tomasik, B., Stawiski, K., et al. (2019) Circulating MicroRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology, Biology, Physics, 2, 390-402.
https://doi.org/10.1016/j.ijrobp.2019.10.028
[38] Fendler, W., Malachowska, B., Meghani, K., et al. (2017) Evolutionarily Conserved Serum MicroRNAs Predict Radiation-Induced Fatality in Nonhuman Primates. Science Translational Medicine, 9, eaal2408.
https://doi.org/10.1126/scitranslmed.aal2408
[39] Li, X.H., Ha, C.T. and Xiao, M. (2016) MicroRNA-30 Inhibits Antiapoptotic Factor Mcl-1 in Mouse and Human Hematopoietic Cells after Radiation Exposure. Apoptosis, 21, 708-720.
https://doi.org/10.1007/s10495-016-1238-1
[40] Acharya, S.S., Fendler, W., Watson, J., et al. (2015) Serum MicroRNAs Are Early Indicators of Survival after Radiation-Induced Hematopoietic Injury. Science Translational Medicine, 7, 269-287.
https://doi.org/10.1126/scitranslmed.aaa6593
[41] Li, X.H., Ha, C.T., Fu, D., et al. (2015) Delta-Tocotrienol Suppresses Radiation-Induced MicroRNA-30 and Protects Mice and Human CD34+ Cells from Radiation Injury. PLoS ONE, 10, e122258.
https://doi.org/10.1371/journal.pone.0122258
[42] Meng, F., Henson, R., Lang, M., et al. (2006) Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology, 130, 2113-2129.
https://doi.org/10.1053/j.gastro.2006.02.057
[43] Hu, Z., Tie, Y., Lv, G., et al. (2018) Transcriptional Activation of miR-320a by ATF2, ELK1 and YY1 Induces Cancer Cell Apoptosis under Ionizing Radiation Conditions. International Journal of Oncology, 53, 1691-1702.
https://doi.org/10.3892/ijo.2018.4497
[44] Wei, W., He, J., Wang, J., et al. (2017) Serum MicroRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation. Radiation Research, 188, 342-354.
https://doi.org/10.1667/RR14702.1