一级侧支循环数目与颈动脉狭窄术后灌注相关性研究
Study on the Relationship between the Number of Primary Collateral Circulation and Perfusion after Carotid Stenosis
DOI: 10.12677/ACM.2020.106161, PDF, HTML, XML, 下载: 416  浏览: 707 
作者: 管仁航, 张竹青, 栗世方*:青岛大学附属医院神经外科,山东 青岛
关键词: 一级侧支循环动脉动脉血质子自旋标记成像脑血流量颈动脉内膜剥脱术Primary Collateral Artery ASL CBF CEA
摘要: 目的:利用动脉血质子自旋标记成像技术(Proton spin labeled Perfusion Imaging of Cerebral Arterial Blood, ASL)技术,探究一级侧支循环数目与颈动脉内膜剥脱术(carotid endarterectomy, CEA)术后脑血流量(cerebral blood flow, CBF)和过度灌注状态发生的相关性研究。方法:通过患者病例资料,获得患者术前、术后1.5 s的CBF的改善率,患者脑内一级侧支循环动脉的数目,患者术前术后临床表现。利用统计学分析患者一级侧支循环动脉数目与术后CBF改善率和术后过度灌注状态的发生的相关性。结果:28例患者颈动脉狭窄均得到改善。患者术侧、健侧1.5 s的CBF改善率均有统计学意义(P < 0.05),且术侧改善率明显大于健侧(P < 0.05)。术侧一级侧支循环数目与1.5 s CBF改善率的表达呈正相关(r= 0.593, P < 0.05);一级侧支循环数目与过度灌注状态的发生之间表达呈正相关,(r = 0.653, P < 0.05)。结论:患者一级侧支循环动脉数目越多,术后CBF改善越明显,发生过度灌注几率越大。
Abstract: Objective: To explore the relationship between the number of primary collateral circulation and cerebral blood flow (flow, CBF) after carotid endarterectomy (carotid endarterectomy, CEA) by using arterial blood proton spin labeling technique (Proton spin labeled Perfusion Imaging of Cerebral Arterial Blood, ASL). And to explore the correlation between the number of primary collateral circulation and the occurrence of hyperperfusion state. Methods: Through the case data of the patients, the improvement rate of 1.5 s CBF before and after operation, the number of primary collateral arteries in the brain and the clinical manifestations of the patients before and after operation were obtained. Statistical analysis was used to analyze the correlation between the number of primary collateral arteries and the improvement rate of postoperative CBF and the occurrence of postoperative hyperperfusion. Results: Carotid artery stenosis was improved in 28 patients. The CBF improvement rate of 1.5 s in the operative side of the patients was statistically significant (P < 0.05), but there was no significant difference in the contralateral side (P > 0.05). There was a positive correlation between the number of primary collateral circulation and the improvement rate of 1.5 s CBF (r = 0.593, P < 0.05), and between the number of primary collateral circulation and the occurrence of hyperperfusion (r = 0.653, P <0.05). Conclusion: The more the number of primary collateral arteries in patients, the more obvious the improvement of postoperative CBF and the higher the incidence of overperfusion.
文章引用:管仁航, 张竹青, 栗世方. 一级侧支循环数目与颈动脉狭窄术后灌注相关性研究[J]. 临床医学进展, 2020, 10(6): 1065-1073. https://doi.org/10.12677/ACM.2020.106161

1. 引言

颈内动脉狭窄属于一种神经外科疾病,病理基础为动脉粥样硬化斑块的形成。斑块的生长以及斑块内新生血管结构上不完整 [1],导致斑块内血管出血 [2],发生破溃 [3],加重狭窄影响颅内供血。长时间的脑血流量不足(cerebral blood flow, CBF),将会引起短暂性脑缺血发作或脑卒中 [4]。而一些患者未在发病初期就发生严重的症状,经研究表明这些患者的侧支循环较为发达。这些侧支循环的开放代偿,挽救了患者的缺血的脑组织。颈动脉内膜切除术(carotid endarterectomy, CEA)是神经外科临床上治疗颈动脉狭窄的主要手术方式 [5]。颈动脉内膜切除术在切除斑块的同时,还可以改善脑组织灌注,降低缺血性卒中发生概率。但术后改变的脑内血管动力学会引起头痛,精神亢奋等过度灌注状态,导致过度灌注综合征(cerebral hyperperfusion syndrome, CHS) [6]。

我们收集了青岛大学附属医院28例颈内动脉狭窄患者的临床表现、影像学、手术等资料,研究目的在于探究一级侧支循环动脉数目与CEA术后CBF改善率的相关性以及一级侧支循环动脉与术后过度灌注发生的相关性。

2. 研究和方法

2.1. 研究对象

青岛大学附属医院神经外科从2017年5月至2019年8月间均行MRI平扫,动脉CTA,PLD (标记后延迟时间) = 1.5 s 3D ASL检查的28例,年龄65.89 ± 7.37岁,全部术前服用阿司匹林,抑制率达到50%的患者。

纳入标准:① 临床表现为颈内动脉狭窄的患者;② 完善颈部+头部CTA,颅脑MR平扫和1.5 s ASL的患者;③ 颅脑MR提示观察区域ROI无脑梗死患者;④ 本次症状表现的责任血管为单侧者;⑤ 患者同意并签署知情同意书。

排除标准:① 患有风湿性心脏病、房颤、心律失常,心源性脑梗死;② 合并脑淀粉样血管病、Moyamoya病等脑血管异常疾病,合并脑出血、脑肿瘤、颅内感染、神经脱髓鞘、痴呆、帕金森病;③ 排除因操作问题造成成像误差的患者;④ 伴严重心、肺、肾、肝等疾病,癌症、严重贫血和造血系统疾病;⑤ 造影剂过敏。

该研究应获得青岛大学附属医院研究机构的伦理委员会批准。

2.2. 数据采集

采用GE SignaHDxt 3.0T超导型MRI扫描仪,8通道头线圈,取仰卧舒适体位进。采用准连续式Spiral采集数据快速自旋回波(FSE)信号读取方式:R = 4521 ms,TE = 9.8 ms,FOV = 24.0 cm,带宽62.5 Hz,NEX = 3.0,分辨率512 × 8,层数30,层厚4.0 mm,PLD时间分别为1525 ms,单个PLD ASL扫描时间4 min 22 sec。

检查时间为行标准颈内动脉内膜剥脱术术前及术后第二天,ASL检查位于CTA检查之后。将1.5 s ASL原始数据上传至影像归档和通信系统(Picture Archiving and Communication Systems, PACS),采用 AWsever 2.0 ReadyView工具包对患者的ASL图像进行后处理,由两位神经影像学诊断医师在1.5 s ASL伪彩图同层面勾画双侧脑灌注量差异明显的大脑皮层为兴趣区并多次测量患侧及健侧镜像区域的CBF值求取平均值;计算CBF改善率=(术后CBF−术前CBF)/术前CBF。

一级侧支循环动脉测定:在脑动脉CTA的重建VR像上计数一级侧支循环的数量:在观测到的图像上,若前交通动脉或后交通动脉有明确的起止点,全段血管显像判断为存在;若起止点不全或血管断续显像,但原始图像可显示起止点和全段血管,同样视为存在;若血管不显像或不能判断起止点,考虑为缺如。统计所得数据。

2.3. 过度灌注的诊断标准

1) 脑血流过度灌注:以CBF改善率>100%视为脑血流过度灌注。2) 脑过度灌综合征:CBF改善率>100%,并同时伴下列临床表现之一者,患侧偏头痛、神经功能、癫痫发作、意识障碍和颅内出血;并经神经影像学排除术中和术后急性缺血性卒中 [7]。

2.4. 统计学方法

采用SPSS 19.0统计软件对患者术侧1.5 s健侧1.5 s进行统计学分析,采用t检验方法,P < 0.05认为差异有统计学意义。术后CBF改善率与一级侧支循环的数量的相关性检验采用Kendall和Spearman相关分析,P < 0.05为差异有统计学意义,存在一定的相关性。

3. 结果

3.1. 术后两侧1.5 s CBF改善率独立样本T-检验结果

健侧和术侧1.5 s CBF改善率符合正态分布(P > 0.05),行独立样本T-检验,结果提示研究对象健侧1.5 s CBF改善率平均值与总体平均值相比差异具有统计学意义(P < 0.05),术侧1.5 s CBF改善率平均值与总体平均值相比差异具有统计学意义(P < 0.05),详见表1

Table 1. Independent sample T-test of postoperative 1.5 s CBF improvement rate

表1. 术后1.5 s CBF改善率独立样本T-检验

3.2. 术后两侧1.5 s CBF改善率配对样本T-检验结果

术侧术后1.5 s CBF改善率平均值明显大于健侧,进行配对样本T-检验,结果显示差异有统计学意义(P < 0.05),详见表2

Table 2. Statistical results of postoperative 1.5 s CBF improvement rate

表2. 术后1.5 s CBF改善率统计结果

3.3. 一级侧支循环数目术侧及健侧过度灌注状态发生率关系

统计数据发现健侧不存在过度灌注状态的发生。术后术侧发生过度灌注的有9例,占研究对象的32.14%。其中有1支一级侧支循环的研究对象发生过度灌注的比例占0.88%,有2支一级侧枝循环时术侧过度灌注发生率占50%,当研究对象存在3支一级侧支循环时,术后术侧过度灌注发生率为100%。具体见图1

Figure 1. The ratio between the number of primary collateral circulation and the incidence of hyperperfusion on the operative side

图1. 一级侧支循环数目与术侧过度灌注发生率构成比图

3.4. 一级侧支循环数目与双侧1.5 s CBF改善率的相关性分析

以一级侧支循环数目为自变量,健侧1.5 s CBF改善率为因变量,不存在统计学意义(P > 0.05)。以一级侧支循环数目为自变量,1.5 s CBF改善率为因变量,运用spearman相关性分析得出一级侧支循环数目与术侧1.5 s CBF改善率成正相关(r = 0.593, P < 0.05) (见表3)。

Table 3. Spearman correlation analysis between the number of primary collateral arteries and the improvement rate of 1.5 s CBF

表3. 一级侧支循环动脉数目与术侧1.5 s CBF改善率的spearman相关性分析结果

3.5. 一级侧支循环数目与过度灌注状态发生相关性

以一级侧支循环数目为自变量,是否发生过度灌注状态为因变量,运用Kendall相关性分析得出一级侧支循环数目与过度灌注状态发生成正相关(r = 0.653, P < 0.05) (见表4)。

Table 4. Results of Kendall correlation analysis between the number of primary collateral arteries and the occurrence of hyperperfusion

表4. 一级侧支循环动脉数目与是否发生过度灌注状态的Kendall相关性分析结果

4. 病例

患者男性,59岁,头痛发作性口角抽动,面部麻木3天,左侧颈内动脉狭窄,行左侧颈内动脉内膜剥脱术。术后,患者术侧1.5 s的CBF较术前增加了227.08%,该患者有3条一级侧支循环,原来需要对侧支循环代偿的血供现在不需要了,故健侧灌注下降。该患者术后血压上升至174/100 mmHg,有明显头痛症状,及时给与盐酸尼卡地注射液降压处理,血压控制在130/80 mmHg,3天后症状逐渐消失(详见图2表5)。

Figure 2. Imaging data. (A) Shows the stenosis of the internal carotid artery in the CTA, circle before operation, (B) shows the patency of the blood vessels in the original stenosis site after CEA, (C) shows the preoperative 1.5 s ASL, in the circle shows the preoperative bilateral ROI area cerebral blood flow perfusion, (D) shows the postoperative 1.5 s ASL, the circle shows the bilateral ROI cerebral blood flow perfusion image, (E) shows the magnetic resonance image, in the bilateral target ROI area, there is no cerebral infarction and the infarction interference is excluded. (F) shows the CTA imaging of the cerebral artery. The double arrow refers to the bilateral posterior communicating artery, the box is the anterior communicating artery, and there are three first-order collateral circulations

图2. 影像学资料。(A) 为术前CTA,圈中所示为颈内动脉狭窄部位;(B) 为术后前CTA,圆圈中所示为CEA术后原狭窄部位血管恢复通畅情况;(C) 为术前1.5 s ASL,圈中为术前双侧ROI区脑血流灌注量;(D) 为术后1.5 s ASL,圆圈中为术后双侧ROI区脑血流灌注图像;(E) 为磁共振像,在双侧目标ROI区,无脑梗死,排除梗死干扰;(F)为脑动脉CTA成像,双箭头所指为双侧后交通动脉,方框为前交通动脉,3条一级侧枝循环

Table 5. Perfusion volume and CBF improvement rate of patients (ml/100 g/min)

表5. 患者灌注量及CBF改善率(ml/100 g/min)

5. 讨论

随着经济与社会发展,脑卒中日益成为人类死亡的主要原因之一。其高致残率给患者的家庭和社会仍然带来了巨大的负担。颈内动脉硬化狭窄是缺血性脑梗死的基础疾病 [8]。随着动脉粥样硬化加重,颈内动脉斑块内新生血管无法满足营养供给,就会出现斑块破裂,进而表现出急性脑缺血发作,脑梗死的相应临床表现 [9],影像学表现为中心坏死,周围水肿的低灌注区,若不做及时处理,则低灌注区会进一步发展成为坏死区 [10]。脑内血管狭窄发生后,在血流动力等因素的作用下侧支循环随之开始建立或开放,以增加脑灌注。此现象会对患者的治疗及预后产生重要影响 [11]。目前临床治疗颈内动脉狭窄的方法有颈动脉内膜剥脱术(CEA)和颈动脉支架成形术(carotid artery stent, CAS) [12] [13]。颈动脉内膜切除术在切除颈动脉粥样斑块的同时,还可以去除不稳定斑块导致的栓子来源,降低初次或复发缺血性卒中发生率。

在本研究中的28例研究对象,我们全部采用CEA治疗颈内动脉狭窄,手术顺利,经手术后CTA提示狭窄得到解除,但术后仍有过度灌注的发生。在国外于1975年,Leviton [14] 和Sundt [15] 等就已经报道颈动脉内膜切除术后会发生脑过度灌注综合征,其发生率在0.20%~18.90% [16]。脑过度灌注综合征临床最常见的症状为患侧头痛,意识改变、呕吐、视力下降、癫痫、意识障碍、高血压等 [17]。Meyers 认为脑血流自动调节能力障碍可能是脑过度灌注综合征的发病机制 [18],Waltz在动物模型中也得出相应的结论 [19],重度狭窄的动脉无法为其供血区域完全供血,使其远端血管长期处于扩张状态,自身调节能力受损。当术后患者供血突然增加,远端血管无法正常收缩,血管受损,造成颅内出血,是神经CEA治疗后最危险的并发症之一 [20]。

ASL技术比扫描技术拥有标记效率高、图像信噪比高、磁化传递效应轻、射频能量沉积少、无需额外硬件设备等诸多优势 [21],通过对动脉血中的H质子进行磁标记,标记的H质子流量与脑的灌注量成比例,比对标记前后采集的图像,从而反映组织的灌注成像 [22] [23],明确具体位置的CBF和动脉通过时间 [24]。在空间和时间分辨率上都优于其他技术 [25]。同时在世界各地很多文章 [26] [27] [28] 都表示ASL对脑内侧枝循环供血成像方面有极高的特异性。

利用ASL技术得到患者术前及术后双侧1.5 s的CBF图像,分别作术后健侧和术侧1.5 s的CBF改善率的独立T检验,发现双侧1.5 s CBF的改善率均有统计学意义(P < 0.05)。即患者经过颈内动脉内膜剥脱术后,脑灌注较前明显改善,达到手术预期,阻止了患者因脑供血不足导致远期脑梗死的发生。统计术后健侧和术侧1.5 s CBF改善率的配对样本T-检验,术侧术后1.5 s CBF改善率平均值明显大于健侧,且差异有统计学意义(P < 0.05),即患者术侧1.5 s CBF改善率明显高于健侧术后1.5 s CBF改善率。健侧术后CBF可增高、降低。健侧术后CBF升高由于患者侧支循环数目较多,术后患侧供血较之前明显升高,使灌注压明显高于对侧,从而造成健侧CBF增高;健侧术后CBF降低,考虑术前术侧血供多数来源于健侧代偿,术后术侧血供增加,健侧无需继续代偿术侧,故健侧CBF反而降低。这也说明了侧支循环在CEA术后重建脑灌注具有重要作用。

侧支循环动脉包括一级侧支循环动脉、二级侧支循环动脉和三级侧支循环动脉。一级侧支循环动脉包括前交通动脉和后交通动脉;二级侧支循环评估包括软脑膜侧支、眼动脉、枕动脉、颈升动脉 [29];三级侧支循环动脉包括末端毛细血管网。本研究中统计患者脑动脉CT血管造影(CTA)中含有一级侧支循环动脉的数目。根据数目分为1条,2条,3条,3个实验组,并统计每组包含人数和CBF改善率。发现健侧1.5 s CBF改善率与一级侧支循环术数目无统计学意义,故只统计术侧1.5 s CBF改善率和过度灌注发生的患者。经spearman相关分析显示,术侧1.5 s的CBF改善率与一级侧支循环数目之间的表达存在正相关关系(P < 0.05),患者一级侧支循环动脉数目越多,术后灌注量越多。但某些患者出现过度灌注 [30],同时这些患者有头痛、恶心、精神亢奋等过度灌注综合征的临床表现。利用Kendall分析一级侧支循环数目与术侧过度灌注状态发生的相关性,发现两者之间呈正相关(P < 0.05)。结合两者本研究得出:在预防过度灌注发生的前提下,患者的灌注量与一级侧支循环动脉数目正相关。

一级侧支循环数目多,患者术后CBF改善率也会相应增高,同时患者发生过度灌注的机率也就越大。反之根据一级侧枝循环数目可以达到预防过度灌注的发生,减少患者的痛苦。这同样适合目前对于过度灌注综合征以预防发生为主,对症处理为辅的处理原则 [31]。

本研究中仍有不足之处:1) 研究中所有患者均经过脑血管CTA评估动脉狭窄及一级侧支循环动脉数目情况,虽然CTA能探究颈内动脉狭窄程度,但对于评价侧支循环动脉数目并非金标准,无法明确各级侧支循环对于患者术后CBF改善率的影响。2) 本研究纳入的病例数目较少,无法全面分析一级侧支循环动脉对CEA术后CBF改善率的影响,接下来的研究需要扩大病例数目,增加可靠性。3) 人工手动画图存在一定的偏倚,造成一定的差异。

NOTES

*通讯作者。

参考文献

[1] Sluimer, J.C., Kolodgie, F.D., Bijnens, A.P., Maxfield, K., Pacheco, E., Kutys, B., Duimel, H., Frederik, P.M., van Hinsbergh, V.W., Virmani, R. and Daemen, M.J. (2009) Thin-Walled Microvessels in Human Coronary Atherosclerotic Plaques Show Incomplete Endothelial Junctions Relevance of Compromised Structural Integrity for Intraplaque Microvascular Leakage. Journal of the American College of Cardiology, 53, 1517-1527.
https://doi.org/10.1016/j.jacc.2008.12.056
[2] Kurata, M., Nose, M., Shimazu, Y., Aoba, T., Kohada, Y., Yorioka, S., Suehiro, S., Fukuoka, E., Matsumoto, S., Watanabe, H., Kumon, Y., Okura, T., Higaki, J. and Masumoto, J. (2014) Microvasculature of Carotid Atheromatous Plaques: Hemorrhagic Plaques Have Dense Microvessels with Fenestrations to the Arterial Lumen. Journal of Stroke & Cerebrovascular Diseases, 23, 1440-1446.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.12.003
[3] Naim, C., Douziech, M., Therasse, E., Robillard, P., Giroux, M.F., Arsenault, F., Cloutier, G. and Soulez, G. (2014) Vulnerable Atherosclerotic Carotid Plaque Evaluation by Ultrasound, Computed Tomography Angiography, and Magnetic Resonance Imaging: An Overview. Canadian Association of Radiologists Journal, 65, 275-286.
https://doi.org/10.1016/j.carj.2013.05.003
[4] Caplan, L.R. and Hennerici, M. (1998) Impaired Clearance of Emboli (Washout) Is an Important Link between Hypoperfusion, Embolism, and Ischemic Stroke. Archives of Neurology, 55, 1475-1482.
https://doi.org/10.1001/archneur.55.11.1475
[5] Bush, R.L., Kougias, P., Guerrero, M.A., Lubbe, D.F., Zhou, W., Lumsden, A.B. and Lin, P.H. (2005) A Comparison of Carotid Artery Stenting with Neuroprotection versus Carotid Endarterectomy under Local Anesthesia. The American Journal of Surgery, 190, 696-700.
https://doi.org/10.1016/j.amjsurg.2005.07.005
[6] 陈忠, 杨耀国. 对我国颈动脉狭窄性疾病治疗的探讨与展望[J]. 中华血管外科杂志, 2017, 2(2): 69-73.
[7] 宁雅婵, 张建, 谷涌泉, 汪忠镐. 颈动脉重建术后脑过度灌注综合征的研究进展[J]. 中国微创外科杂志, 2020, 20(3): 262-264.
[8] Eckstein, H.H. (2012) Evidence-Based Management of Carotid Stenosis: Recommendations from International Guidelines. The Journal of Cardiovascular Surgery, 53, 3-13.
[9] Narula, J., Nakano, M., Virmani, R., Kolodgie, F.D., Petersen, R., Newcomb, R., Malik, S., Fuster, V. and Finn, A.V. (2013) Histopathologic Characteristics of Atherosclerotic Coronary Disease and Implications of the Findings for the Invasive and Noninvasive Detection of Vulnerable Plaques. Journal of the American College of Cardiology, 61, 1041-1051.
https://doi.org/10.1016/j.jacc.2012.10.054
[10] Copen, W.A., Gharai, L.R., Barak, E.R., Schwamm, L.H., Wu, O., Kamalian, S., Gonzalez, R.G. and Schaefer, P.W. (2009) Existence of the Diffusion-Perfusion Mismatch within 24 Hours after Onset of Acute Stroke: Dependence on Proximal Arterial Occlusion. Radiology, 250, 878-886.
https://doi.org/10.1148/radiol.2503080811
[11] Yeo, L.L.L., Paliwal, P., Teoh, H.L., Seet, R.C., Chan, B.P., Ting, E., Venketasubramanian, N., Leow, W.K., Wakerley, B., Kusama, Y., Rathakrishnan, R. and Sharma, V.K. (2015) Assessment of Intracranial Collaterals on CT Angiography in Anterior Circulation Acute Ischemic Stroke. American Journal of Neuroradiology, 36, 289-294.
https://doi.org/10.3174/ajnr.A4117
[12] North American Symptomatic Carotid Endarterectomy Trial (1991) Methods, Patient Characteristics, and Progress. Stroke, 22, 711-720.
https://doi.org/10.1161/01.STR.22.6.711
[13] European Carotid Surgery Trialists’ Collaborative Group (1998) Randomised Trial of Endarterectomy for Recently Symptomatic Carotid Stenosis: Final Results of the MRC European Carotid Surgery Trial (ECST). The Lancet, 351, 1379-1387.
https://doi.org/10.1016/S0140-6736(97)09292-1
[14] Leviton, A., Caplan, L. and Salzman, E. (1975) Severe Headache after Carotid Endarterectomy. Headache, 15, 207-210.
https://doi.org/10.1111/j.1526-4610.1975.hed1503207.x
[15] Sundt, T.M., Sandok, B.A. and Whisnant, J.P. (1975) Carotid Endarterectomy. Complications and Preoperative Assessment of Risk. Mayo Clinic Proceedings, 50, 301-306.
[16] Xu, R.W., Liu, P., Fan, X.Q., Wang, Q., Zhang, J.B. and Ye, Z.D. (2016) Feasibility and Safety of Simultaneous Carotid Endarterectomy and Carotid Stenting for Bilateral Carotid Stenosis: A Single-Center Experience using a Hybrid Procedure. Annals of Vascular Surgery, 33, 138-143.
https://doi.org/10.1016/j.avsg.2015.11.017
[17] Buczek, J., Karlinski, M., Kobayashi, A., Bialek, P. and Czlonkowska, A. (2013) Hyperperfusion Syndrome after Carotid Endarterectomy and Carotid Stenting. Cerebrovascular Diseases, 35, 531-537.
https://doi.org/10.1159/000350736
[18] Meyers, P.M., Higashida, R.T., Phatouros, C.C., Malek, A.M., Lempert, T.E., Dowd, C.F. and Halbach, V.V. (2000) Cerebral Hyperperfusion Syndrome after Percutaneous Transluminal Stenting of the Craniocervical Arteries. Neurosurgery, 47, 335-343; discussion 343-345.
https://doi.org/10.1097/00006123-200008000-00013
[19] Waltz, A.G. (1968) Effect of Blood Pressure on Blood Flow in Ischemic and in Nonischemic Cerebral Cortex: The Phenomena of Autoregulation and Luxury Perfusion. Neurology, 18, 613-621.
https://doi.org/10.1212/WNL.18.7.613
[20] Sundt Jr., T.M., Sharbrough, F.W., Piepgras, D.G., Kearns, T.P., Messick Jr., J.M. and O’Fallon, W.M. (1981) Correlation of Cerebral Blood Flow and Electroencephalographic Changes during Carotid Endarterectomy: With Results of Surgery and Hemodynamics of Cerebral Ischemia. Mayo Clinic Proceedings, 56, 533-543.
[21] 娄昕, 吕晋浩. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50(11): 817-824.
[22] Pfefferbaum, A., Chanraud, S., Pitel, A.L., Shankaranarayanan, A., Alsop, D.C., Rohlfing, T. and Sullivan, E.V. (2010)) Volumetric Cerebral Perfusion Imaging in Healthy Adults: Regional Distribution, Laterality, and Repeatability of Pulsed Continuous Arterial Spin Labeling (PCASL). Psychiatry Research: Neuroimaging, 182, 266-273.
https://doi.org/10.1016/j.pscychresns.2010.02.010
[23] Ferre, J.C., Bannier, E., Raoult, H., Mineur, G., Carsin-Nicol, B. and Gauvrit, J.Y. (2013) Arterial Spin Labeling (ASL) Perfusion: Techniques and Clinical Use. Diagnostic and Interventional Imaging, 94, 1211-1223.
https://doi.org/10.1016/j.diii.2013.06.010
[24] Lanzman, B. and Heit, J.J. (2017) Advanced MRI Measures of Cerebral Perfusion and Their Clinical Applications. Topics in Magnetic Resonance Imaging, 26, 83-90.
https://doi.org/10.1097/RMR.0000000000000120
[25] Wu, W.C., Fernandez-Seara, M., Detre, J.A., Wehrli, F.W. and Wang, J. (2007) A Theoretical and Experimental Investigation of the Tagging Efficiency of Pseudocontinuous Arterial Spin Labeling. Magnetic Resonance in Medicine, 58, 1020-1027.
https://doi.org/10.1002/mrm.21403
[26] Wang, D.J.J., Alger, J.R., Qiao, J.X., Gunther, M., Pope, W.B., Saver, J.L., Salamon, N. and Liebeskinda, D.S. for the UCLA Stroke Investigators (2013) Multi-Delay Multi-Parametric Arterial Spin-Labeled Perfusion MRI in Acute Ischemic Stroke—Comparison with Dynamic Susceptibility Contrast Enhanced Perfusion Imaging. NeuroImage: Clinical, 3, 1-7.
https://doi.org/10.1016/j.nicl.2013.06.017
[27] Akiyama, T., Morioka, T., Shimogawa, T., Kanazawa, Y., Murao, K., Arakawa, S., et al. (2016) Arterial Spin-Labeling Magnetic Resonance Perfusion Imaging with Dual Postlabeling Delay in Internal Carotid Artery Steno-occlusion: Validation with Digital Subtraction Angiography. Journal of Stroke & Cerebrovascular Diseases, 25, 2099-2108.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.06.005
[28] 周建国, 符大勇, 孟云, 黄部发, 马先军. 双时相ASL在DWI阴性TIA诊断中的临床应用价值[J]. 中国临床医学影像杂志, 2018, 29(2): 137-139.
[29] Liu, X., Pu, Y., Pan, Y., Zhang, Y., Dou, X., Tan, Y., Liu, L. and Wang, Y. (2016) Multi-Mode CT in the Evaluation of Leptomeningeal Collateral Flow and the Related Factors: Comparing with Digital Subtraction Angiography. Neurological Research, 38, 504-509.
https://doi.org/10.1080/01616412.2016.1187828
[30] Pennekamp, C.W.A., Tromp, S.C., Ackerstaff, R.G.A., Bots, M.L., Immink, R.V., Spiering, W., de Vries, J.P.P.M., Kappelle, L.J., Moll, F.L., Buhre, W.F. and de Borst, G.J. (2012) Prediction of Cerebral Hyperperfusion after Carotid Endarterectomy with Transcranial Doppler. European Journal of Vascular and Endovascular Surgery, 43, 371-376.
[31] Farooq, M.U., Goshgarian, C., Min, J. and Gorelick, P.B. (2016) Pathophysiology and Management of Reperfusion Injury and Hyperperfusion Syndrome after Carotid Endarterectomy and Carotid Artery Stenting. Experimental & Translational Stroke Medicine, 8, Article No. 7.
https://doi.org/10.1186/s13231-016-0021-2