冠心病患者血清ANGPTL6水平及其与冠脉病变严重程度的关系
ANGPTL6 Level in Patient with Coronary Heart Disease and Its Relationship with the Severity of Coronary Artery Lesions
摘要: 背景和目的:血管生成素相关生长因子(ANGPTL6)能增加能量消耗,抵抗肥胖;加强胰岛素敏感性;改善缺血小鼠肢体再灌注,降低截肢及长期心血管并发症的风险。研究预测ANGPTL6可能与心血管疾病有关。然而,目前在冠心病方面的研究很少。本研究旨在确定ANGPTL6在冠心病患者血清中的表达水平,以及其与冠状动脉狭窄程度、临床参数间的关系。方法:收集2018年1月至2018年12月期间入住青岛市市立医院心内科患者500例。所有患者均接受冠脉造影检查,从中筛选出年龄、性别、体重指数糖尿病史、高血压病史,吸烟史等无明显统计学差异的120例患者,采用酶联免疫法测定急性心肌梗死(AMI)、稳定型心绞痛(SAP)和正常对照组各40例患者血清ANGPTL6浓度。根据造影结果,用Gensini评分评估冠状动脉狭窄程度,分析ANGPTL6与Gensini评分相关性。结果:AMI患者血清ANGPTL6表达水平低于对照组,差异具有统计学意义(P < 0.05)。SAP组ANGPTL6浓度与对照组之间无明显差异(P > 0.05)。AMI和SAP患者血清ANGPTL6浓度与Gensini评分显著负相关(r = −0.514, P < 0.05; r = −0.467, P < 0.05)。结论:冠心病患者血清ANGPTL6水平与冠状动脉严重程度呈负相关,提示ANGPTL6与冠心病具有潜在相关性。
Abstract: Background and Objective: Angiogenin-related growth factor (ANGPTL6) can increase energy consumption to resist obesity, improve insulin sensitivity and reduce insulin resistance; it also improves limb reperfusion in ischemic mice, greatly reducing the risk of amputation and long-term cardiovascular complications. Many studies have predicted that ANGPTL6 might be associated with cardiovascular diseases. However, few studies had been done so far on coronary heart disease. Our study aimed to determine the level of ANGPTL6 in coronary heart disease, and its relationship with the degree of coronary artery stenosis and clinical indicators. Methods: A total of 500 patients admitted to the department of cardiology of Qingdao Municipal Hospital from January 2018 to December 2018 were collected. All patients received coronary angiography, from which 120 patients with no statistically significant differences in age, gender, body mass index, history of diabetes, history of hypertension, and history of smoking were screened. Serum ANGPTL6 level in 40 cases of acute myocardial infarction (AMI), 40 cases of stable angina pectoris (SAP) and 40 cases of normal control group were measured by enzyme-linked immunoassay. According to the angiography results, the degree of coronary artery stenosis was calculated by Gensini score, and the correlation between ANGPTL6 and Gensini score was analyzed. Results: The serum ANGPTL6 level of AMI was lower than the control group (P < 0.05). ANGPTL6 concentration had no significant difference between stable angina pectoris and normal group (P > 0.05). In patients with acute myocardial infarction and stable angina pectoris, ANGPTL6 concentration was significantly correlated with Gensini score (r = −0.514, P < 0.05; r = −0.467, P < 0.05). Conclusion: In patients with coronary heart disease, its level is negatively correlated with coronary artery severity, suggesting that ANGPTL6 might be potentially associated with coronary heart disease.
文章引用:任蕾, 夏芳芳, 邢明青, 戴红艳. 冠心病患者血清ANGPTL6水平及其与冠脉病变严重程度的关系[J]. 临床医学进展, 2020, 10(5): 714-723. https://doi.org/10.12677/ACM.2020.105111

1. 引言

冠心病由于粥样斑块累及冠状动脉继发高死亡率备受关注。目前许多相关血清预测因子已被研究。其中瘦素可刺激氧化应激和炎症反应,血清高表达与冠状动脉粥样硬化的复杂性、缺血性和出血性卒中的存在以及不良临床结果呈正相关 [1]。FGF21对氧化应激引起的内皮损伤、动脉粥样硬化斑块形成和缺血性心肌细胞损伤具有保护作用 [2]。瘦素、FGF21等脂肪因子参与肥胖和胰岛素抵抗过程,影响动脉粥样硬化形成。

血管生成素相关生长因子ANGPTL6,又称AGF,是血管生成素家族成员。其基因编码于人类染色体19p13.2,大部分由肝细胞分泌,在大脑、心肌细胞、造血细胞和血浆中少量分布 [3] [4] [5]。研究证实,ANGPTL6缺乏小鼠表现出明显的肥胖和胰岛素抵抗。高表达ANGPTL6可抑制小鼠肝细胞的糖异生 [6]。ANGPTL6被认为是治疗糖尿病和肥胖症的有效药物,尤其在代谢综合征治疗方面 [7]。ANGPTL6通过激活ERK 1/2-eNOS-NO通路诱导血管生成和表皮增殖,增加肌肉组织毛细血管网,改善细胞供氧需求 [3] [8],从而增加缺血肢体的血流量。研究发现,体外补充ANGPTL6小鼠缺血肢体截肢率降低了80% [9]。Bourcier等报道家族性颅内动脉瘤与罕见的ANGPTL6基因突变促进血管再生有关 [10]。Nie等发现下肢血管疾病患者血清ANGPTL6明显升高,高水平的ANGPTL6与心血管疾病总死亡率呈正相关 [11]。虽然这些发现提示ANGPTL6与血管疾病之间存在明显的相关性,但直接有关冠心病的研究至今未被报道。本研究分别探讨了AMI和SAP患者血清中ANGPTL6水平的变化,以期明确其在冠心病的研究价值。

2. 对象和方法

2.1. 研究对象

收集2018年1月至2018年12月期间入住青岛市市立医院心内科患者500例。所有患者均接受冠脉造影检查,从中筛选出年龄、性别、体重指数、糖尿病史、高血压病史,吸烟史等无明显统计学差异的120例患者,包括AMI组、SAP组及正常对照组各40例。实验组包括AMI组、SAP组。AMI组按照《2018 ACC急性心肌梗死指南》诊断标准:出现急性心肌缺血的临床证据且伴有心肌损伤,检出肌钙蛋白升高超过99%参考值上限,并至少存在以下5种情况之一:1) 新发缺血的心电图改变;2) 心肌梗死的典型症状;3) 新出现病理性Q波;4) 与缺血性病因相一致的丢失心肌的影像学证据或节段性室壁运动异常;5) 通过尸检或血管造影发现冠状动脉血栓。SAP组入选标准:根据国际心脏病学会指定的满足冠心病的诊断标准,当冠状动脉CTA或CAG检查的结果提示冠状动脉内径动脉粥样斑块阻塞程度超过50%即可判定为狭窄性病变,且符合以下3种情况任意一项:首次出现症状,但已处于长期稳定状态(例如症状持续数月)的患者。有阻塞性或非阻塞性冠状动脉疾病(Coronary artery disease, CAD)病史的患者,经治疗后无症状,需要定期随访;有SAP或心绞痛相关症状(如胸闷、胸痛)的患者。冠脉造影结果正常作为对照组。受试者均排除以下疾病史:心肌梗死或器质性心脏病、1个月内出血或手术、恶性肿瘤、心力衰竭、炎症性疾病、神经精神疾病、消化系统疾病、肾肝功能衰竭或障碍。

记录并整理基线资料及实验室指标,包括计算吸烟指数(日吸烟数 × 年),监测血压、血糖。

2.2. 样本收集

收集样本并保存。依次标记后,提取ANGPTL6样品,并将其与乙醇四乙酸和放线菌酶混合注入试管中。离心3000转,静置于−4℃环境中10分钟,置于−80℃环境中备用。

2.3. 实验室检测

ELISA法测定血清ANGPTL6浓度。试剂盒购自CUSABIO (武汉华美公司),测量范围为0.312~20 ng/ml。根据说明书稀释血样(1:10)。常规方法检测FBG、TC、TG、HDL、LDL、BUN、Scr、BNP、血常规指标。

2.4. 超声心动图

心脏超声计算LVEF%。LVEF%根据公式(EDV − ES) × 100%/EDV获得,心室舒张末容积(EDV)、心室收缩末容积(ES)。

2.5. Gensini评分

冠状动脉狭窄严重程度采用Gensini评分系统进行定量评估 [12]。冠状动脉评分均值由两位专家根据冠脉造影结果获得。

2.6. 数据分析

所有数据使用PASS20.0软件进行处理。均数±标准差表示计量资料,百分数表示计数资料。采用单因素方差分析,判断多组之间差异是否达到显著性水平;采用Pearson相关分析,检验各参数间的相关性。使用散点图来发现参数间相关性的一般趋势。所有假设均在p < 0.05水平差异具有统计学意义。

3. 结果

3.1. 研究对象一般资料的比较

表1比较所有受试者的临床基线数据。年龄、性别、BMI、FBG、SBP、DBP、TG、TC、HDL、LDL、HDL、WBC、CRP、BUN、Scr、吸烟指数、家族史、高血压病、糖尿病史三组间无明显差异(P > 0.05)。与对照组相比,AMI组患者LVEF%明显降低,WBC、BNP、CRP、Gensini评分明显升高,差异有统计学意义(p < 0.05)。与SAP组相比,AMI组患者WBC、BNP、Gensini评分明显升高,差异有统计学意义(p < 0.05)。SAP与对照组仅Gessini评分差异有统计学意义(p < 0.05)。

Table 1. Comparison of clinical baseline data of the three groups

表1. 三组患者临床基线资料比较

计量资料用平均数 ± 标准差表示;a为P < 0.05,与对照组比较;b为P < 0.05,与SAP组比较。

3.2. 血清ANGPTL6浓度

表2计算三组患者血清中ANGPTL6的浓度。AMI组血清ANGPTL6水平(49.05 + 9.02 ng/ml)明显低于对照组(56.71 + 15.04 ng/ml)和SAP组(58.03 + 8.94 ng/ml) (P < 0.05)。血清ANGPTL6水平在对照组和SAP组之间无统计学差异(P > 0.05)。

Table 2. Comparison of serumANGPTL6 concentration between the three groups

表2. 比较三组患者血清ANGPTL6水平差异

a为P < 0.05,与对照组比较;b为P < 0.05,与SAP组比较。

3.3. 血清ANGPTL6与Gessini评分等临床参数的关系

AMI组循环ANGPTL6水平与Gensini评分呈显著负相关(表3)。散点图显示,血清中ANGPTL6浓度与冠状动脉病变程度呈负相关性(图1)。SAP组循环ANGPTL6水平与Gensini评分、DBP显著相关(表4)。散点图显示,血清中ANGPTL6浓度与冠状动脉病变程度呈负相关性(图2)。AMI组和SAP组与血糖、血脂、血压、LVEF%、BNP无明显相关性。

Table 3. Correlation analysis of serum ANGPTL6 concentration and clinical parameters in patients with AMI group

表3. AMI患者组血清ANGPTL6浓度与临床参数的相关性分析

*:P < 0.05 (显著的相关性(双侧));**:P < 0.01 (显著的相关性(双侧))。

Figure 1. Relationship between ANGPTL6 concentration and severity of coronary artery lesions in AMI group

图1. AMI组ANGPTL6浓度与冠脉病变严重程度的关系

Table 4. Correlation between serum ANGPTL6 level and clinical parameters in SAP group

表4. SAP组患者血清ANGPTL6水平与临床参数的相关性

*:P < 0.05 (显著的相关性(双侧));**:P < 0.01 (显著的相关性(双侧))。

Figure 2. Relationship between ANGPTL6 concentration and severity of coronary artery lesions in SAP group

图2. SAP组ANGPTL6浓度与冠脉病变严重程度

4. 讨论

血管生成素样家族参与心血管疾病的调节。研究表明,下调ANGPTL2表达可清除衰老的血管内皮细胞,促进内皮细胞修复,减少动脉粥样硬化 [13]。ANGPTL3具有促进动脉粥样硬化和粥样硬化保护作用 [14]。血清ANGPTL4缺乏可能降低冠心病的发病率 [15]。本研究发现AMI组血清ANGPTL6水平明显降低。AMI组和SAP患者血清ANGPTL6浓度均与冠状动脉严重程度呈负相关,提示ANGPTL6可能参与冠心病进程。

ANGPTL6是一种糖脂相关的蛋白因子,糖尿病伴胰岛素抵抗患者循环中ANGPTL6明显升高,其血清浓度与HBA1c、空腹血糖水平呈负相关 [16]。研究发现,糖尿病合并下肢动脉疾病患者血清中ANGPTL6水平明显升高,高ANGPTL6水平与长期心血管并发症呈正相关 [11]。此外,ANGPTL6浓度在妊娠高血压患者中升高 [17]。学者提出ANGPTL6水平代偿性升高可避免心血管并发症的发生,推测ANGPTL6可能是心血管疾病的保护因子。我们的研究支持血清ANGPTL6浓度与冠心病相关。在AMI和SAP组,ANGPTL6与空腹血糖和低密度脂蛋白胆固醇也没有明显差异。这些结果或许可以解释为ANGPTL6作为糖脂代谢的影响因子干扰了在冠心病方面的预测价值。因此,有待对糖尿病和高脂血症患者分别进行更深入的临床研究。

Urano等证明ANGPTL6通过激活ERK 1/2-eNOS-NO通路促进NO的释放 [9]。NO不仅能调节血管张力,还能抑制血管平滑肌的增殖,血小板的聚集、粘附,白细胞与内皮细胞的相互作用 [18]。低表达NO可能有利于受损心肌细胞氧利用的恢复 [19]。AMI患者24小时内血清NO浓度明显降低,目前考虑该实验结果是由距发生AMI的时间不同所致 [20]。同样的解释似乎支持AMI患者血清ANGPTL6降低的结论。此外,我们的研究发现SAP组血清ANGPTL6水平未见明显降低。类似的实验讨论指出,SAP患者的血小板抗聚集和冠状动脉对NO的血管扩张反应都很弱,这或许是一个合理的解释 [21]。

ANGPTL6通过促进细胞增殖和再生,加快血管新生 [8]。研究显示,多形性胶质母细胞瘤患者可通过micro-RNA128 (mi-RNA 128)下调血清ANGPTL6水平,促进脑细胞增殖 [22]。研究表明,miR-128可提高大鼠心肌微血管内皮细胞的功能,并抑制冠心病的发展。缺氧条件下小鼠心肌细胞中miR-128的表达明显增加,并在12小时时达到峰值 [23]。抑制miR-128可促进心肌内源性再生,修复心肌梗死后的心肌损伤 [24] [25]。我们的研究显示AMI患者血清中ANGPTL6水平明显低于SAP和对照组,这与之前研究在线粒体氧化磷酸化水平受抑制的小鼠血清ANGPTL6的表达是增加的结果相悖 [26]。然而,AMI组中ANGPTL6的低表达是否与miR-128基因水平的调控有关有待研究。此外,不排除ANGPTL6的低表达是由于冠心病的严重程度、发病机制和人群构成等方面的差异引起的。

我们的研究发现ANGPTL6低表达不仅与SAP患者的Gessini评分相关(P < 0.05),在AMI患者中也有相似的结果(P < 0.05),提示ANGPTL6可能反映了冠心病患者冠状动脉疾病的严重程度。散点图的结果也支持这个结果。进一步表明,ANGPTL6可能是冠心病严重程度的预测因子之一。

5. 局限性

样本量较小,可能会影响实验结果的准确性,有必要扩大样本量。考虑到AMI早期机体应激反应,ANGPTL6的表达可能受到抑制。本研究目的在于进一步丰富冠心病的致病机制,为冠心病的预测和治疗提供新的思路。

6. 结论

我们的实验研究显示,冠心病患者血清ANGPTL6水平与冠状动脉严重程度呈负相关,提示ANGPTL6与冠心病具有潜在相关性。我们的研究为ANGPTL6在冠心病中的潜在作用提供了新的见解。

伦理声明

本研究获得当地伦理委员会的批准。所有参与者签署知情同意书。

基金项目

研究mir-33a在动脉粥样硬化斑块稳定性中调控血管生成的作用和机制,17-3-3-30-nsh。青岛科技局。

鸣谢

戴红艳、夏芳芳设计研究,解读数据,对稿件进行批判性修改。任蕾完成数据收集、分析,完成稿件。邢明青教授指导完成了实验。所有作者都同意发表这篇文章。

利益冲突

此文章不存在任何利益冲突。

NOTES

*通讯作者。

参考文献

[1] Katsiki, N., Mikhailidis, D.P. and Banach, M. (2018) Leptin, Cardiovascular Diseases and Type 2 Diabetes Mellitus. Acta Pharmaceutica Sinica, 39, 1176-1188.
https://doi.org/10.1038/aps.2018.40
[2] Domouzoglou, E.M., Naka, K.K., Vlahos, A.P., et al. (2015) Fibroblast Growth Factors in Cardiovascular Disease: The Emerging Role of FGF21. Physiology-Heart and Circulatory Physiology, 309, 1029-1038.
https://doi.org/10.1152/ajpheart.00527.2015
[3] Oike, Y., Yasunaga, K. and Suda, T. (2004) Angiopoiet-in-Related/Angiopoietin-Like Proteins Regulate Angiogenesis. International Journal of Hematology, 80, 21-28.
https://doi.org/10.1532/IJH97.04034
[4] Kenneth, C.E., Michelle, L. and Melanie, E. (2019) Tissue-Specific Epigenetics of Atherosclerosis-Related ANGPTL and ANGPTL Genes. Epigenomics, 11, 169-186.
https://doi.org/10.2217/epi-2018-0150
[5] Romeo, S., Yin, W., Kozlitina, J., et al. (2009) Rare Loss-of-Function Mutations in ANGPTL Family Members Contribute to Plasma Triglyceride Levels in Humans. Journal of Clinical In-vestigation, 119, 70-79.
https://doi.org/10.1172/JCI37118
[6] Akhter, S., Rahman, M.M., Lee, H.S., Kim, H.J. and Hong, S.T. (2013) Angiopoietin-Like Proteins 1, 2, 3, 4, 6 and 7 in the Survival and Enhancement of ex Vivo Expansion of Bone-Marrow Hematopoietic Stem. Protein & Cell, 4, 220-250.
https://doi.org/10.1007/s13238-013-2066-5
[7] Namkung, J., Sohn, J.H., Chang, J.S., et al. (2019) Increased Serum Angiopoietin-Like6 ahead of Metabolic Syndrome in a Prospec-tive Cohort Study. Diabetes & Metabolism Journal, 43, 521-529.
https://doi.org/10.4093/dmj.2018.0080
[8] Oike, Y., Yasunaga, K., Ito, Y., et al. (2003) Angiopoietin-Related Growth Factor (AGF) Promotes Epidermal Proliferation, Remodeling, and Regeneration. Proceedings of the National Academy of Sciences of the United States of America, 100, 9494-9499.
https://doi.org/10.1073/pnas.1531901100
[9] Urano, T., Ito, Y., Akao, M., et al. (2008) Angiopoietin-Related Growth Factor Enhances Blood Flow Via Activation of the ERK1/2-eNOS-NO Pathway in a Mouse Hind-Limb Ischemia Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 827-834.
https://doi.org/10.1161/ATVBAHA.107.149674
[10] Bourcier, R., Scouarnec, S.L., Bonnaud, S., et al. (2018) Rare Coding Variants in ANGPTL6 Are Associated with Familial Forms of Intracranial Aneurysm. The American Journal of Human Genetics, 102, 133-141.
https://doi.org/10.1016/j.ajhg.2017.12.006
[11] Nie H., Liang Y., Wang H. X., et al. (2017) Angiopoietin-Related Growth Factor Is Independently Associated with Lower Extremity Peripheral Arterial Disease. Journal of Diabetes and Its Complications, 31, 433-438.
https://doi.org/10.1016/j.jdiacomp.2016.10.019
[12] Rampidis, G.P., Benetos, G., Benz, D.C., et al. (2019) A Guide for Gensini Score Calculation. Atherosclerosis, 287, 181-183.
https://doi.org/10.1016/j.atherosclerosis.2019.05.012
[13] Caland, L., Labbé, P., Mamarbachi, M., et al. (2019) Knockdown of Angiopoietin-Like 2 Induces Clearance of Vascular Endothelial Senescent Cells by Apoptosis, Promotes Endothelial Repair and Slows Atherogenesis in Mice. Aging, 11, 3832-3850.
https://doi.org/10.18632/aging.102020
[14] Lu, X. (2019) Structure and Function of Angiopoietin-Like Protein 3 (ANGPTL3) in Atherosclerosis. Current Medicinal Chemistry, 26, 1-15.
https://doi.org/10.2174/0929867326666190621120523
[15] Aryal, B., Price, N.L., Suarez, Y. and Fernán-dez-Hernando, C. (2019) NGPTL4 in Metabolic and Cardiovascular Disease. Trends in Molecular Medicine, 25, 723-734.
https://doi.org/10.1016/j.molmed.2019.05.010
[16] Abdullah, B., Deveci, K., Atilgan, R., Kiliçli, F. and Söylemez, M.S. (2012) Serum Angiopoietin-Related Growth Factor (AGF) Levels Are Elevated in Gestational Diabetes Mellitus and Associated with Insulin Resistance. Ginekologia Polska, 83, 749-753.
[17] Tuuri, A.L., Jauhiainen, M.S., Ehnholm, C.P., et al. (2013) Elevated Serum Angiopoietin-Like Protein 6 in Women with Subsequent Pregnan-cy-Induced Hypertension: A Preliminary Study. Hypertension in Pregnancy, 32, 203-213.
https://doi.org/10.3109/10641955.2013.784783
[18] Cui, J.G., Zhao, Y., Sethi, P., et al. (2010) Micro-RNA-128 (miRNA-128) Down-Regulation in Glioblastoma Targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, Key Regulators of Brain Cell Proliferation. Journal of Neuro-Oncology, 98, 297-304.
https://doi.org/10.1007/s11060-009-0077-0
[19] Li, J.L., Yang, Z., Wu, S. and Kong, J. (2012) Relationship be-tween Endothelial Nitric Oxide Synthase, Insulin Resistance and Macrovascular Disease in Patients with Acute Myo-cardial Infarction. Journal of International Medical Research, 40, 687-693.
https://doi.org/10.1177/147323001204000232
[20] Weiming, X.U., Charles, I.G., Moncada, S., et al. (2005) Nitric Oxide: Orchestrating Hypoxia Regulation through Mitochondrial Respiration and the Endoplasmic Reticulum Stress Response. Cell Research, 15, 63-65.
https://doi.org/10.1038/sj.cr.7290267
[21] Willoughby, S.R., Stewart, S., Chirkov, Y.Y., Kennedy, J.A., Holmes, A.S., Horowitz, J.D., et al. (2002) Beneficial Clinical Effects of Perhexiline in Patients with Stable Angina Pectoris and Acute Coronary Syndromes Are Associated with Potentiation of Platelet Responsiveness to Nitric Oxide. European Heart Journal, 23, 1946-1954.
https://doi.org/10.1053/euhj.2002.3296
[22] Weiming, X.U., Charles, I.G., Moncada, S., et al. (2005) Nitric Oxide: Orchestrating Hypoxia Regulation through Mitochondrial Respiration and the Endoplasmic Reticulum Stress Response. Cell Research, 15, 63-65.
https://doi.org/10.1038/sj.cr.7290267
[23] Yin J., Liu H., Huan L., et al. (2017) Role of miR-128 in Hyperten-sion-Induced Myocardial Injury Role of miR-128 in Hypertension-Induced Myocardial Injury. Experimental and Therapeutic Medicine, 14, 2751-2756.
https://doi.org/10.3892/etm.2017.4886
[24] Huang, W., Feng, Y., Liang, J., et al. (2018) Loss of microRNA-128 Promotes Cardiomyocyte Proliferation and Heart Regeneration. Nature Communications, 9, 700.
https://doi.org/10.1038/s41467-018-03019-z
[25] Zeng, X.C., Li, L., Wen, H. and Bi, Q. (2016) MicroRNA-128 Inhibition Attenuates Myocardial Ischemia /Reperfusion Injury-Induced Cardiomyocyte Apoptosis by the Targeted Activation of Peroxisome Proliferator-Activated Receptor Gamma. Molecular Medicine Reports, 14, 129-136.
https://doi.org/10.3892/mmr.2016.5208
[26] Kang, S.G., Yi, H.S., Choi, M.J., et al. (2017) ANGPTL6 Expression Is Coupled with Mitochondrial OXPHOS Function to Regulate Adipose FGF21. Journal of Endocrinology, 233, 105-118.
https://doi.org/10.1530/JOE-16-0549