近视患者SMILE术后NCT测量值昼夜波动变化和校正公式的临床研究
Clinical Study on theDiurnal Fluctuations and Correction Formulas of NCT Measurement Values after SMILE in Myopia Patients
摘要: 目的:探讨低度、中度及高度近视患者的飞秒激光小切口角膜基质透镜取出术(SMILE)术后非接触式眼压计(NCT)测量值的正常眼压波动范围变化,并探索术后眼压(IOP)校正的新方法。方法:前瞻性病例研究。将2018年5月至2019年5月在青岛大学附属医院接受SMILE治疗近视和(或)散光的患者71例(142眼)纳入研究,分别分为低度近视(1)、中度近视(2)、高度近视(3)组,分别测量并记录手术前3天及术后6月24小时IOP、等效球镜度(SE)、中央角膜厚度(CCT)、角膜曲率(K)、3 mm与角膜横径(WTW)之比、角膜体积(CV)、中央直径3 mm范围内角膜体积(CCV3mm)与CV之比、切削体积(ΔCV),将术前与术后IOP、Pentacam校正眼压进行比较,统计术后NCT测量值与各因素的相关性,并通过阶段性多元线性回归分析建立术后IOP的表达模型。结果:术后眼压范围1组8~17 mmHg、2组7~15 mmHg、3组7~14 mmHg,双眼差为0~4 mmHg,昼夜IOP波动 < 6 mmHg,均较术前有统计学意义上的降低(P < 0.05)。建立阶段性多元回归模型:1组术后NCT校正IOP值 = 0.374 × IOP术后 + 4.955 × CCV3mm术后 − 7.331 (F = 26.150, P < 0.01),调整R2 = 0.528;2组术后NCT校正IOP值 = 0.496 × IOP术后 + 4.005 × CCV3mm术后 − 4.698 (F = 42.370, P < 0.01),调整R2 = 0.584;3组术后NCT校正IOP值 = 0.597 × IOP术后 + 4.498 × CCV3mm术后 − 3.302 (F = 40.019, P < 0.01),调整R2 = 0.690。结论:SMILE术后NCT所测得IOP值及昼夜波动范围、双眼差均较术前偏低。CCV3mm对SMILE术后IOP值的校正、指导术后用药具有重要意义,为SMILE术后IOP测值评价的重要指标。
Abstract: Objective: To study changes of the normal intraocular pressure (IOP) fluctuation range measured by non-contact tonometry (NCT) after the small incision lenticule extraction (SMILE) in patients with low, moderate and high myopia and to explore new methods for postoperative IOP (IOPpost) correction. Methods: In this prospective case series study, 71 patients (142 eyes) who underwent SMILE at the Affiliated Hospital of Qingdao University from May 2018 to May 2019 were involved, and they were divided into low myopia (1), moderate myopia (2), and high myopia (3) groups. The 24-hour IOP, spherical equivalent (SE), central corneal thickness (CCT), corneal curvature, 3 mm/ the horizontal corneal diameter (WTW), corneal volume (CV), the central 3-mm diameter CV (CCV3 mm), CCV3 mm/CV, the cutting CV (ΔCV) and ΔCV/CV were measured and recorded on 3 days preoperatively and 6 months postoperatively. The 24-hour IOP changes in both eyes and every group were observed preoperatively and postoperatively. The correlation between the postoperative NCT measurements (NCTpost) and various factors was statistically analysed, and the IOP post expression model was established by phased multiple linear regression analysis. Results: The IOP post range was 8 - 17 mmHg in group 1, 7 - 15 mmHg in group 2, and 7 - 14 mmHg in group 3. The binocular IOP post difference was 0 - 4 mmHg. The IOP post fluctuation was <6 mmHg. All were significantly lower than those before surgery (P < 0.05). A staged multivariate regression model was established: NCTpost corrected(1) = 0.374 × NCTpost + 4.955 × CCVpost3mm − 7.331; NCTpost cor-rected(2) = 0.496 × NCTpost + 4.005 × CCVpost3mm − 4.698; NCTpost corrected(3) = 0.597 × NCTpost + 4.498 × CCVpost3mm − 7.197. Conclusion: The IOP value, diurnal fluctuation range, and binocular difference measured by NCT after SMILE were lower than those before surgery. CCVpost3mm is of great signifi-cance to the correction of IOP after SMILE and to guide the postoperative medication. It is an im-portant indicator for the evaluation of IOP after SMILE.
文章引用:刘胜男, 梁涛, 宋爽, 刘美光, 姜仲泰, 张爱萍. 近视患者SMILE术后NCT测量值昼夜波动变化和校正公式的临床研究[J]. 临床医学进展, 2020, 10(4): 511-519. https://doi.org/10.12677/ACM.2020.104081

1. 引言

青光眼是一类以视神经萎缩和视野缺损为共同特征的疾病,病理性的眼内压增高是其主要的危险因素,而大幅度的眼压波动是其视神经进行性损害的独立危险因素 [1] [2]。高度近视被认为是原发性开角型青光眼的危险因素之一 [3]。全飞秒激光小切口角膜基质透镜取出术(small incision lenticule extraction, SMILE)开启了角膜屈光手术的全新时代 [4]。因各种需求,低度、中度及高度近视的患者行SMILE术的越来越多了 [5]。SMILE术后中央角膜体积、角膜曲率、角膜生物力学等变化,使得术后IOP值较真实值偏低,不再适用10~21 mmHg参考眼压范围及双眼差 ≯ 5 mmHg、昼夜眼压波动 ≯ 8 mmHg的眼压评价标准 [6]。如仍按照原眼压参考标准,则低估青光眼患者随访过程中的实际眼压水平,延误青光眼的早期诊断和随访治疗 [7]。准确评估近视患者术后非接触式眼压计(Non-contact tonometer, NCT)测得眼压值(Intraocular Pressure, IOP)的正常波动范围对SMILE术后青光眼的诊治具有重要意义 [8]。本研究通过对低度、中度及高度近视患者SMILE术前、术后各IOP值与其各影响因素进行相关性分析,调整参考眼压波动范围,评价并校正SMILE术后IOP值,综合评估SMILE术后患者的眼压水平。

2. 对象与方法

2.1. 研究对象

本研究已通过青岛大学附属医院伦理委员会批准,遵循赫尔辛基宣言,所有患者术前均签署知情同意确认书。将2018年5月~2019年5月在青岛大学附属眼科自愿接受SMILE矫正近视和(或)散光的患者71例(142眼)纳入研究。其中,女31例(44%),男40例(56%);年龄18~35岁,平均(22.2 ± 4.3)岁;角膜厚度500~595 μm,平均(546.4 ± 20.9) μm。。纳入标准:最佳矫正视力 ≥ 5.0,等效球镜度(SE) ≤ −10.00 D,柱镜度(DC) ≤ −5.00 D,1年内屈光度无进展,术前停戴角膜接触镜 ≮ 4周、角膜塑形镜 ≮ 3个月;角膜透明,角膜地形图无异常,预测术后角膜基质层厚度 ≮ 280 μm;术前IOP ≤ 21 mmHg,无青光眼、可疑青光眼、视野损害;无眼部活动性炎症或感染、白内障、眼底病等眼部疾病;无既往眼部手术史及外伤史;无糖尿病、甲亢、结缔组织病等全身疾病。分组标准 [9]:低度近视组(1组) (46眼) −1.00D ≤ SE ≤ −3.00D,中度近视组(2组) (60眼) −3.00 D < SE ≤ −6.00 D,高度近视组(3组) (36眼) −6.00 D < SE ≤ −8.00 D,各组研究对象基本情况见表1

Table 1. Basic situation and comparison of research objects in each group

表1. 各组研究对象基本情况及比较

2.2. 测量方法

所有患者均接受SMILE术前常规检查,包括裸眼视力、普通验光、散瞳验光、24小时IOP、裂隙灯显微镜检查、角膜地形图和眼底检查等。随访时间为6个月,于术后1周、1个月、3个月、6个月复查裸眼视力、验光、24小时IOP以及角膜地形图检查。本研究采用术后6个月数据进行统计。

① 视力测量:测量手术前后患者裸眼视力,采用标准对数视力表及五分记录法;NIDEK AR-1型电脑验光仪检查患者的屈光度,综合显然验光结果,换算成SE;

② 24小时IOP:采用日本NIDEK NT-510 NCT进行IOP测量,取一天中2:00、6:00、10:00、14:00、18:00、22:00 IOP作为患者的24小时IOP。测量时嘱患者放松、不要瞬目,注视指示灯,取连续3次测量的平均IOP,要求测量差值 < 3 mmHg;

③ 角膜地形图:采用德国OCULUS眼前节测量评估系统Pentacam观察角膜前、后表面形态,并记录手术前后角膜体积(CV)、中央角膜3 mm直径内体积(CCV3mm)、角膜横径(WTW)、角膜曲率(K)。在半暗室内,检查前嘱咐患者眨眼使泪膜稳定,取3次测量的平均值进行统计;

④ 应用日本TOPCON SL-2G裂隙灯显微镜行眼前节观察,直接眼底镜及眼科A/B型超声诊断仪行眼底检查。

以上检查均由一位经验丰富的技师完成。

2.3. 手术方法

采用德国Carl Zeiss VisuMax飞秒激光手术系统完成SMILE,设定手术参数角膜帽直径7.8 mm、厚度120 μm,透镜直径6.7 mm、边缘处最薄15 μm,首先扫描透镜后表面并进行侧切,再扫描透镜前表面,最后扫描2 mm边切口,钝性分离并取出基质透镜。所有手术均由同一技术熟练的医师完成。术后使用0.1%氟米龙滴眼液滴眼2周;0.5%左氧氟沙星滴眼液滴眼1周;0.1%玻璃酸钠滴眼液滴眼超过4周。

2.4. 统计学方法

前瞻性系列病例研究。使用SPSS 22.0统计软件进行数据分析。正态性数据采用Mean ± SD表示。采用重复测量方差分析对SMILE术前后24小时IOP值进行比较;采用Pearson相关性分析对术后IOP值与各影响因素进行相关性检验;采用阶段性线性回归分析对术后IOP值与各影响因素之间进行回归分析,得到SMILE术后IOP值校正公式。以P < 0.05为差异有统计学意义。

3. 结果

3.1. 术前与术后IOP值及昼夜差值的分布变化

Table 2. Comparison of the mean and fluctuation range of the 24-hour IOP and diurnal difference before and after surgery in each group (mmHg)

表2. 各组术前与术后24小时IOP、昼夜差值的均值及波动区间比较(mmHg)

经单因素方差分析,1~3组术前3天IOP差异及IOP昼夜差值差异均无统计学意义(F1 = 2.310 F2 = 0.224, P1 = 0.100 P2 = 0.799),术后6月IOP差异及IOP昼夜差值差异均有显著统计学意义(F3 = 15.506 F4 = 3.076, P3 < 0.001 P4 = 0.049);术后6月较术前3天IOP、昼夜眼压差值区间范围均降低(见表2)。

3.2. 术前、术后双眼差值的分布变化

术前3天及术后6月双眼平均眼压差分别为1.9 ± 1.4 mmHg、1.4 ± 1.1 mmHg,手术前、后相比,差异具有统计学意义(t = 6.701, P < 0.001);术前3天及术后6月双眼眼压差值波动范围分别为0.0~5.0 mmHg、0.0~4.0 mmHg,说明术后双眼差较术前降低,且波动范围也缩小。

3.3. 术前、术后24小时IOP值及波动范围情况

Table 3. Change of the 24-hour IOP before and after SMILE in group 1

表3. 1组SMILE术前、后24小时IOP值的变化(mmHg, n = 46)

*主效应的F统计量和P值;▷交互效应的F统计量和P值。

1组SMILE术前、后IOP值进行重复测量方差分析。多变量检验结果显示,术前F = 16.862,P < 0.001,术后F = 13.720,P < 0.001,不同时间点的IOP有统计学差异;而各时间点与术前、术后测量间无交互作用(F = 0.673, P = 0.617),说明时间因素的作用不随术前、术后测量的不同而不同。术前、术后的方差分析显示,F = 30.137,P < 0.001,说明术前和术后IOP测量值之间有统计学差异,经配对T检验,示P < 0.001,说明术前、术后每个时间点IOP值之间存在统计学差异(见表3)。

Table 4. Change of the 24-hour IOP before and after SMILE in group 2

表4. 2组SMILE术前、后24小时IOP值的变化(mmHg, n = 60)

*主效应的F统计量和P值;▷交互效应的F统计量和P值。

2组SMILE术前后IOP值进行重复测量方差分析。多变量检验结果显示,术前F = 20.865,P < 0.001,术后F = 16.484,P < 0.001,不同时间点的IOP有统计学差异;而各时间点与术前、术后测量间无交互作用(F = 0.914, P = 0.465),说明时间因素的作用不随术前、术后测量的不同而不同。术前、术后的方差分析显示,F = 36.728,P < 0.001,说明术前和术后IOP测量值之间有统计学差异。经配对T检验,示P < 0.001,说明术前、术后每个时间点IOP值之间存在统计学差异(见表4)。

Table 5. Change of the 24-hour IOP before and after SMILE in group 3

表5. 3组SMILE术前、后24小时IOP值的变化(mmHg, n = 36)

*主效应的F统计量和P值;▷交互效应的F统计量和P值。

3组SMILE术前后IOP值进行重复测量方差分析。多变量检验结果显示,术前F = 12.618,P < 0.001,术后F = 15.301,P < 0.001,不同时间点的IOP有统计学差异;而各时间点与术前、术后测量间无交互作用(F = 0.795, P = 0.538),说明时间因素的作用不随术前、术后测量的不同而不同。术前、术后的方差分析显示,F = 26.425,P < 0.001,说明术前和术后IOP测量值之间有统计学差异。经配对T检验,示P < 0.001,说明术前、术后每个时间点IOP值之间存在统计学差异(见表5)。

3.4. 术后IOP测量值与各影响因素之间的相关性

各组术后IOP测量值与术前IOP、术后CCT、3 mm/WTW、术后CV、术后CCV3mm、术后CCV3mm / 术后CV呈正相关(P < 0.05),与WTW呈负相关(P < 0.05);与术后角膜曲率、ΔCV、ΔIOP无明显相关性(P > 0.05) (见表6)。

Table 6. Correlation between IOP and corneal parameters after SMILE

表6. SMILE术后IOP测量值与角膜参数的相关性

3.5. 术后IOP测量值的校正公式

将术后IOP测量值、术后CCT、WTW、3 mm/WTW、术后CV、术后CCV3 mm、术后CCV3 mm/CV等因素纳入回归分析,建立各组术后IOP校正值的多元回归方程(逐步法)。

回归方程为:

1 NCT IOP = 0.374 × IOP + 4.955 × CCV 3mm 7.331 ( F = 26.150 , P < 0.01 ) , R 2 = 0.528 ;

2 NCT IOP = 0.496 × IOP + 4.005 × CCV 3 mm 4.698 ( F = 42.370 , P < 0.01 ) , R 2 = 0.584 ;

3 NCT IOP = 0.597 × IOP + 4.498 × CCV 3 mm 3.302 ( F = 40.019 , P < 0.01 ) , R 2 = 0.690.

4. 讨论

目前,SMILE术作为一新兴的手术方式,在治疗低、中、高度近视及散光领域是安全、有效、稳定、可控制的 [10] [11]。术中眼球结构及房水循环并未受到角膜屈光手术影响,术后眼压计测量值较术前偏低。Goldmann眼压计(GAT)仍被认为是眼压计测量的金标准。但是,GAT的IOP测量值受CCT等角膜参数的影响 [12]。NCT本质上是一个GAT,与GAT同样是依据Imbert-Fick原则设计,NCT测量眼压前无需进行表面麻醉,测量时无直接接触,特别适合应用于近视角膜屈光术后的IOP测量,故我们选用NCT进行测量。有研究发现,CCT等角膜参数对NCT可能比GAT的影响更大 [13]。之所以SMILE术后IOP测量值下降,是因为眼表面并非一个理想的平面,而本身存在一定的体积,由于术后角膜被切削部分基质变薄,角膜本身对于被压平的抵抗力变小了,相较术前压平相同面积角膜所需的力减小,使IOP测量值被低估 [14],因此不能作为临床眼压参考依据。对于SMILE术后IOP的校正一直是研究热点,有研究公式示SMILE术后眼压 = NCT测量值 + 0.389 NCT术前 − 0.431球柱镜代数和 − 4.618 [15]。目前,SMILE术后IOP仍没有统一的校正标准。

病理性眼压增高是青光眼的主要危险因素,而大幅度的眼压波动是其视神经进行性损害的独立危险因素 [16]。SMILE术后中央角膜体积、角膜曲率、角膜生物力学等变化,使得术后IOP值较真实值偏低 [17],不再适用10~21 mmHg的正常眼压范围及双眼差 ≯ 5 mmHg、昼夜眼压波动 ≯ 8 mmHg的眼压评价标准 [18]。本研究表明,低度近视、中度近视及高度近视患者,术前及术后一天中不同时间点的IOP均存在统计学差异,而且SMILE手术前后昼夜IOP峰值多出现在夜间,谷值多出现在下午及傍晚,故进一步证明了监测24小时IOP对于SMILE术后可疑青光眼及青光眼的及时诊治与随访非常必要。研究显示,术后眼压范围1组8~17 mmHg、2组7~15 mmHg、3组7~14 mmHg,术后双眼差为0~4 mmHg,术后昼夜IOP波动 ≯ 6 mmHg,均较术前有所下降。

SMILE术切口小,相当于制作了一个角膜帽,而不是需要掀开的角膜瓣,胶原纤维损伤明显减少,更好地保留角膜上皮、Bowman膜、前基质层的完整性,保持了角膜弹性 [19] [20],可能减小术后IOP测量误差 [6] [21]。SMILE基质透镜直径为6.5~7.0 mm,并且对周边角膜形状及结构的改变明显低于LASIK,大大降低了角膜生物力学的改变,从而可能对降低IOP测量值误差起到一定的作用 [7] [22]。可见,SMILE与传统LASIK在手术的操作原理、角膜生物力学结构改变等方面都有所差别,故既往研究的LASIK的术后IOP预测公式并不可以同样地用以SMILE术后IOP测量值的评价。

在LASIK术后随访发现,角膜厚度与术前、术后IOP均相关,术前CCT、切削深度越大,术后IOP读数变化越大 [23] [24]。本研究发现,SMILE术前较大的IOP值、较大的CV、较高的SE、较厚的基质透镜、较小的角膜直径,得到的术后IOP测量值的变化较大。近视患者术前角膜体积各不相同,即使手术透镜体积一致时,术后角膜弹性也有差异,术后IOP测量值变化各有差别。

回归方程为:

1 NCT IOP = 0.374 × IOP + 4.955 × CCV 3mm 7.331

2 NCT IOP = 0.496 × IOP + 4.005 × CCV 3 mm 4.698

3 NCT IOP = 0.597 × IOP + 4.498 × CCV 3 mm 3.302

根据SE等级划分为3组,通过患者术后IOP测量值及术后中央3 mm角膜体积大小即能校正各组术后IOP测量值,便于得到术后实际IOP,对术前不同屈光度等级的SMILE术后可疑青光眼的诊疗及青光眼的随访具有临床应用价值。

目前,本研究尚存在一定的局限性。首先,有研究学者认为SMILE术后会引起角膜滞后量(CH)、角膜阻力因子(CRF)等角膜生物力学因素的改变 [25],而本研究并未考虑角膜生物力学因素对术后IOP测量的影响。此外,眼压计之间存在差异,对术后IOP的测量具有一定的影响。对于SMILE术后IOP的预测尚待进一步扩大样本量后深入研究。

5. 结论

综上所述,术后IOP的评估应考虑角膜体积等因素影响。术后IOP测量值较真实值偏低,可能适用7~17 mmHg的参考眼压范围及双眼差 ≯ 4 mmHg、昼夜眼压波动 ≯ 6 mmHg的眼压评价标准。中央3 mm CV为SMILE术后IOP测量值评价的重要参考指标,可以用来估算SMILE术后IOP测量值。SMILE术后IOP的校正仍待深入探究。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Keel, S., Xie, J., Foreman, J., et al. (2019) Prevalence of Glaucoma in the Australian National Eye Health Survey. British Journal of Ophthalmology, 103, 191-195.
https://doi.org/10.1136/bjophthalmol-2017-311786
[2] Konstas, A.G., Kahook, M.Y., Araie, M., et al. (2018) Diurnal and 24-h Intraocular Pressures in Glaucoma: Monitoring Strategies and Impact on Prognosis and Treatment. Advances in Therapy, 35, 1775-1804.
https://doi.org/10.1007/s12325-018-0812-z
[3] Chen S J, Lu P, Zhang W F, et al. (2012) High Myopia as a Risk Factor in Primary Open Angle Glaucoma. International Journal of Ophthalmology, 5, 750-753.
[4] Lau, Y.T.Y, Shih, K.C., Tse, R.H.K, et al. (2019) Comparison of Visual, Refractive and Ocular Surface Outcomes Between Small Incision Lenticule Extraction and Laser-Assisted In Situ Keratomileusis for Myopia and Myopic Astigmatism. Ophthalmology and Therapy, 8, 373-386.
https://doi.org/10.1007/s40123-019-0202-x
[5] Wang, Y. and Ma, J. (2019) Future Developments in SMILE: Higher Degree of Myopia and Hyperopia. Asia-Pacific Journal of Ophthalmology, 8, 412-416.
https://doi.org/10.1097/01.APO.0000580128.27272.bb
[6] Wang, K.J., Wang, W.W., Tsai, C.L., et al. (2019) Intraocular Pressure Changes in Eyes with Small Incision Lenticules and Laser in Situ Keratomileusis. Clinical and Experimental Optometry, 102, 399-405.
https://doi.org/10.1111/cxo.12861
[7] Li, H., Wang, Y., Dou, R., et al. (2016) Intraocular Pressure Changes and Relationship with Corneal Biomechanics after SMILE and FS-LASIK. Investigative Ophthalmology & Visual Science, 57, 4180-4186.
https://doi.org/10.1167/iovs.16-19615
[8] Shen, Y., Su, X., Liu, X., et al. (2016) Changes in Intraocular Pressure Values Measured with Noncontact Tonometer (NCT), Ocular Response Analyzer (ORA) and Corvis Scheimpflug Technology Tonometer (CST) in the Early Phase after Small Incision Lenticule Extraction (SMILE). BMC Ophthal-mology, 16, 205.
https://doi.org/10.1186/s12886-016-0381-3
[9] 中华人民共和国国家卫生和计划生育委员会. 近视防治指南[J]. 中国实用乡村医生杂志, 2018, 25(8): 1-4.
[10] Kim, J.R., Hwang, H.B., Mun, S.J., et al. (2014) Efficacy, Pre-dictability, and Safety of Small Incision Lenticule Extraction: 6-Months Prospective Cohort Study. BMC Ophthalmology, 14, 117.
https://doi.org/10.1186/1471-2415-14-117
[11] Han, T., Zheng, K., Chen, Y., et al. (2016) Four-Year Observation of Predictability and Stability of Small Incision Lenticule Extraction. BMC Ophthalmology, 16, 149.
https://doi.org/10.1186/s12886-016-0331-0
[12] Yildiz, A. and Yasar, T. (2018) Comparison of Goldmann Applanation, Non-Contact, Dynamic Contour and Tonopen Tonometry Measurements in Healthy and Glaucomatous Eyes, and Effect of Central Corneal Thickness on the Measurement Results. Medicinski Glasnik: Official Publication of the Medical Association of Zenica-Doboj Canton, Bosnia and Herzegovina, 15, 152-157.
[13] Kouchaki, B., Hashemi, H., Yekta, A., et al. (2017) Comparison of Current Tonometry Techniques in Measurement of Intraocular Pressure. Journal of Current Ophthalmology, 29, 92-97.
https://doi.org/10.1016/j.joco.2016.08.010
[14] Kling, S., Spiru, B., Hafezi, F., et al. (2017) Biomechanical Weakening of Different Re-treatment Options After Small Incision Lenticule Extraction (SMILE). Journal of Refractive Surgery, 33, 193-198.
https://doi.org/10.3928/1081597X-20161221-01
[15] Li, H., Wang, Y., Dou, R., et al. (2016) Analysis of Intra-ocular Pressure Measurement and the Influencing Factors after Small Incision Lenticule Extraction. Chinese Journal of Ophthalmology, 52, 22-29.
[16] Matlach, J., Bender, S., Konig, J., et al. (2019) Investigation of Intraocular Pressure Fluctuation as a Risk Factor of Glaucoma Progression. Clinical Ophthalmology, 13, 9-16.
https://doi.org/10.2147/OPTH.S186526
[17] Hosny, M., Aboalazayem, F., El Shiwy, H., et al. (2017) Comparison of Different Intraocular Pressure Measurement Techniques in Normal Eyes and Post Small Incision Lenticule Extraction. Clinical Ophthalmology, 11, 1309-1314.
https://doi.org/10.2147/OPTH.S132578
[18] Wu, A.M., Wu, C.M., Young, B.K., et al. (2015) Evaluation of Pri-mary Open-Angle Glaucoma Clinical Practice Guidelines. Canadian Journal of Ophthalmology, 50, 192-196.
https://doi.org/10.1016/j.jcjo.2015.03.005
[19] Kanellopoulos, A.J. (2018) Comparison of Corneal Biomechanics after Myopic Small-Incision Lenticule Extraction Compared to LASIK: An Ex Vivo Study. Clinical Ophthalmology, 12, 237-245.
https://doi.org/10.2147/OPTH.S153509
[20] Qin, J. (2019) Meta-Analysis of Corneal Biomechanics after SMILE and FS-LASIK. Hans Journal of Ophthalmology, 8, 89-97.
https://doi.org/10.12677/HJO.2019.83016
[21] Miruna, N., Andrei, F., Vasile, F.M., et al. (2016) Smile: The Next Generation of Laser Vision Correction. Romanian Journal of Ophthalmology, 60, 6-8.
[22] Khamar, P., Shetty, R., Vaishnav, R., et al. (2019) Biomechanics of LASIK Flap and SMILE Cap: A Prospective, Clinical Study. Journal of Refractive Surgery, 35, 324-332.
https://doi.org/10.3928/1081597X-20190319-01
[23] Jethani, J., Dave, P., Jethani, M., et al. (2016) The Applicability of Correction Factor for Corneal Thickness on Non-Contact Tonometer Measured Intraocular Pressure in LASIK Treated Eyes. Saudi Journal of Ophthalmology: Official Journal of the Saudi Ophthalmological Society, 30, 25-28.
https://doi.org/10.1016/j.sjopt.2015.11.001
[24] De Bernardo, M., Capasso, L., Caliendo, L., et al. (2016) Intraocular Pressure Evaluation after Myopic Refractive Surgery: A Comparison of Methods in 121 Eyes. Seminars in Ophthalmology, 31, 233-242.
[25] Shetty, R., Francis, M., Shroff, R., et al. (2017) Corneal Biomechanical Changes and Tissue Remodeling After SMILE and LASIK. Investigative Ophthalmology & Visual Science, 58, 5703-5712.
https://doi.org/10.1167/iovs.17-22864