AAM  >> Vol. 9 No. 2 (February 2020)

    Modeling Wolbachia Propagation underIncomplete Cytoplasmic Incompatibility by Discrete Competition Model

  • 全文下载: PDF(1344KB) HTML   XML   PP.153-165   DOI: 10.12677/AAM.2020.92018  
  • 下载量: 86  浏览量: 130   国家自然科学基金支持


李艺杰,郭志明:广州大学数学与信息科学学院,广东 广州

Wolbachia不完全CI竞争离散模型稳定性Wolbachia Incomplete CI Competition Discrete Model Stability



Dengue fever is one of the most serious mosquito-borne infectious diseases. Using Wolbachia in-fection mosquitoes to control those diseases is an effective strategy. In this paper, a discrete com-petition model is established to study the dynamic of Wolbachia propagation under incomplete cytoplasmic incompatibility (CI). We systematically analyze the existing conditions of the equilib-rium and global asymptotic behaviors of solutions to this model, then we give the conditions for successful diffusion and the influence of CI strength on the Wolbachia diffusion. Finally, we verify our findings by numerical simulations.

李艺杰, 郭志明. 不完全CI下Wolbachia传播的离散竞争模型[J]. 应用数学进展, 2020, 9(2): 153-165. https://doi.org/10.12677/AAM.2020.92018


[1] Kyle, J.L. and Harris. E. (2008) Global Spread and Persistence of Dengue. Annual Review of Microbiology, 62, 71-92.
[2] Bardina, S.V., Bunduc, P., Tripathi, S., et al. (2017) Enhancement of Zika Virus Pathogenesis by Preexisting Antiflavivirus Immunity. Science, 356, 175-180.
[3] Yen, J.H. and Barr, A.R. (1971) New Hypothesis of the Cause of Cytoplasmic Incompatibility in Culex pipiens L. Nature, 232, 657-658.
[4] Xi, Z.Y., Khoo, C.C., Dobson, S.L., et al. (2005) Wolbachia Establishment and Invasion in an Aedes aegypti Laboratory Population. Science, 310, 326-328.
[5] Yu, J.S. (2018) Modeling Mos-quitoes Population Suppression Based on Delay Differential Equations. SIAM Journal of Applied Mathematics, 78, 3168-3187.
[6] Axford, J.K., Ross, P.A., Yeap, H.L., et al. (2016) Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion. American Journal of Tropical Medicine and Hygiene, 94, 507-516.
[7] Farkas, J.Z. and Hinow, P. (2010) Structured and Unstructured Con-tinuous Models for Wolbachia Infections. Bulletin of Mathematical Biology, 72, 2067-2088.
[8] Zheng, B., Tang, M.X. and Yu, J.S. (2014) Modeling Wolbachia Spread in Mosquitoes through Delay Differential Equations. SIAM Journal of Applied Mathematics, 74, 734-770.
[9] Hu, L.C., Tang, M.X., Wu, Z.D., et al. (2019) The Threshold Infection Level for Wolbachia Invasion in Random Environments. Journal Differential Equations, 266, 4377-4393.
[10] 邱俊雄, 郭文亮, 郑波. 不完全CI下的Wolbachia动力学行为[J]. 广州大学学报, 2016, 15(6): 34-38.
[11] Leslie, P.H. and Gower, J.C. (1958) The Properties of a Stochastic Model for Two Competing Species. Biometrika, 45, 316-330.
[12] Liu, P.Z. and Elaydi, S.N. (2001) Discrete Competitive and Cooperative Models of Lotka-Volterra Type. Journal of Computational Analysis and Applications, 3, 53-73.
[13] Elaydi, S.N. (1999) An Introduction to Difference Equations. 2nd Edition, Springer, New York.
[14] Caswell, H. (2001) Matrix Population Models: Construction, Analysis and Interpretation. 2nd Edition, Sinauer Associates, Inc., Sunderland, MA.