全固态Tm:LuAG双波长瓦级调Q锁模激光器
Watt-Level Dual-Wavelength Q-Switched Mode-Locked All-Solid-State Tm:LuAG Laser
DOI: 10.12677/OE.2019.94030, PDF,  被引量 下载: 927  浏览: 1,500  国家自然科学基金支持
作者: 陈 晨, 孙 锐:天水师范学院激光技术研究所,甘肃 天水;宝鸡文理学院物理与光电技术学院,陕西 宝鸡;令维军*, 张明霞, 袁 振:天水师范学院激光技术研究所,甘肃 天水;许 强:宝鸡文理学院物理与光电技术学院,陕西 宝鸡;张亚妮:陕西科技大学文理学院,陕西 西安
关键词: Tm:LuAG激光器DWCNT可饱和吸收体调Q锁模双波长Tm:LuAG Laser DWCNT Saturable Absorber Q-Switched Mode-Locked Dual-Wavelength
摘要: 以垂直生长法自制的双壁碳纳米管(Double wall carbon nanotube, DWCNT)作为可饱和吸收体,在全固态Tm:Lu3Al5O12 (Tm:LuAG)激光器中实现了高功率双波长的调Q锁模运转,输出波长分别为2016 nm和2032 nm。以激光二极管(Laser diode, LD)为抽运源,选用5%的输出镜,当泵浦功率大于6.52 W,激光运转进入稳定调Q锁模状态。增加泵浦功率到20 W时,对应调Q锁模运转下的输出功率为1092 mW,斜效率为6.11%,重复频率为106.4 MHz,调制深度接近100%。
Abstract: Employing double-walled carbon nanotube (DWCNT) by vertical growth method as a saturable absorber, we demonstrate a high-power and dual-wavelength passively Q-switched mode-locked (QML) operation of an all-solid-state Tm:Lu3Al5O12 (Tm:LuAG) laser, and the wavelength is 2016 nm and 2032 nm. In this experiment, the laser is pumped by laser diode (LD), and when the pump power is greater than 6.52 W, the laser enters into a stable Q-switched mode-locked operation state by using 5% output coupler. When the pump power reaches 20 W, the Q-switched mode-locking output power is 1092 mW, the slope efficiency is 6.11%, the repetition frequency is 106.4 MHz, the corresponding single pulse energy is 10.26 nJ. Furthermore, the modulation depth is close to 100%.
文章引用:陈晨, 令维军, 孙锐, 许强, 张亚妮, 张明霞, 袁振. 全固态Tm:LuAG双波长瓦级调Q锁模激光器[J]. 光电子, 2019, 9(4): 214-220. https://doi.org/10.12677/OE.2019.94030

参考文献

[1] Ebrahim-Zadeh, M. and Vodopyanov, K. (2016) Mid-Infrared Coherent Sources and Applications: Introduction. Journal of the Optical Society of America B, 33, MIC1.
https://doi.org/10.1364/JOSAB.33.00MIC1
[2] Majkić, A., Zgonik, M., Petelin, A., Jazbinšek, M., Ruiz, B., Medrano, C. and Günter, P. (2014) Terahertz Source at 9.4 THz Based on a Dual-Wavelength Infrared Laser and Quasi-Phase Matching in Organic Crystals OH1. Applied Physics Letters, 105, Article ID: 141115.
https://doi.org/10.1063/1.4897639
[3] Chang, J.H., Wang, T.T., Zhang, C., Ge, Y.X. and Tao, Z.H. (2013) Compact and Tunable mid-ir Light Source Based on a Dual-Wavelength Fiber Laser. Chinese Physics Letters, 30, Article ID: 114206.
https://doi.org/10.1088/0256-307X/30/11/114206
[4] Walsh, B.M. (2009) Review of Tm and Ho Materials; Spec-troscopy and Lasers. Laser Physics, 19, 855.
https://doi.org/10.1134/S1054660X09040446
[5] Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H. and Asom, M.T. (1992) Solid-State Low-Loss Intracavity Saturable Absorber for Nd:YLF Lasers: An Antiresonant Semiconductor Fabry-Perot Saturable Absorber. Optics Letters, 17, 505-507.
https://doi.org/10.1364/OL.17.000505
[6] Ling, W.J., Xia, T., Dong, Z., You, L.F., Zhang, M.X., Zuo, Y.Y, Li, K. Liu, Q. and Lu, F.P. (2019) Passively Mode-Locked Tm, Ho: LLF Laser at 1895 nm. Journal of Optics, 48, 209-213.
https://doi.org/10.1007/s12596-019-00528-y
[7] Wang, Y.C., Xie, G.Q., Xu, X.D., Di, J.Q., Qin, Z.P., Suomalainen, S., Guina, M., Härkönen, A., Agnesi, A., Griebner, U., Mateos, X., Loiko, P. and Petrov, V. (2015) SESAM Mode-Locked Tm:CALGO Laser at 2 µm. Optical Materials Express, 6, 131.
https://doi.org/10.1364/OME.6.000131
[8] Kong, L.C., Xie, G.Q., Yuan, P., Qian, L.J., Wang, S.X., Yu, H.H. and Zhang, H.J. (2015) Passive Q-Switching and Q-Switched Mode-Locking Operations of 2 μm Tm: CLNGG Laser with MoS2 Saturable Absorber Mirror. Photonics Research, 3, A47-A50.
https://doi.org/10.1364/PRJ.3.000A47
[9] Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603.
https://doi.org/10.1038/363603a0
[10] Hasan, T., Sun, Z., Tan, P., Popa, D., Flahaut, E., Kelleher, E.J. and Privitera, G. (2014) Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 8, 4836-4847.
https://doi.org/10.1021/nn500767b
[11] Yang, Q., Wang, Y.G., Liu, D.H., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2011) Dual-Wavelength Mode-Locked Yb: LuYSiO5 Laser with a Double-Walled Carbon Nanotube Saturable Absorber. Laser Physics Letters, 9, 135.
https://doi.org/10.1002/lapl.201110111
[12] Qu, Z.S., Wang, Y.G., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2012) Passively Mode-Locked 2-μm Tm: YAP Laser with a Double-Wall Carbon Nanotube Absorber. Chinese Physics B, 21, Article ID: 064211.
https://doi.org/10.1088/1674-1056/21/6/064211
[13] Ling, W.J., Xia, T., Dong, Z., Zhang, M.X., Zuo, Y.Y., Li, K., Lu, F.P., Liu, Q., Zhao, X.L. and Wang, Y.G. (2018) Low Threshold 1895 nm Mode-Locked Laser Based on Double Wall Carbon Nanotubes. Acta Optica Sinica, 38, Article ID: 0614001.
https://doi.org/10.3788/AOS201838.0614001
[14] Kmetec, J.D., Kubo, T.S., Kane, T.J. and Grund, C.J. (1994) Laser Performance of Diode-Pumped Thulium-Doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 Crystals. Optics Letters, 19, 186-188.
https://doi.org/10.1364/OL.19.000186
[15] Stoneman, R.C. and Esterowitz, L. (1990) Efficient, Broadly Tunable, Laser-Pumped Tm:YAG and Tm:YSGG CW Lasers. Optics Letters, 15, 486-488.
https://doi.org/10.1364/OL.15.000486
[16] Yang, K.J., Bromberger, H., Ruf, H., Schäfer, H., Neuhaus, J., Dekorsy, T., Grimm, C.V.B., Helm, M., Biermann, K. and Künzel, H. (2010). Passively Mode-Locked Tm, Ho: YAG Laser at 2 µm Based on Saturable Absorption of Intersubband Transitions in Quantum Wells. Optics Express, 18, 6537-6544.
https://doi.org/10.1364/OE.18.006537
[17] Ma, J., Xie, G.Q., Zhang, J., Yuan, P., Tang, D.Y. and Qian, L.J. (2014) Passively Mode-Locked Tm: YAG Ceramic Laser Based on Graphene. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55.
https://doi.org/10.1109/JSTQE.2014.2361785
[18] Koopmann, P., Lamrini, S., Scholle, K., Fuhrberg, P., Petermann, K. and Huber, G. (2011) Efficient Diode-Pumped Laser Operation of Tm:Lu2O3 around 2 μm. Optics Letters, 36, 948-950.
https://doi.org/10.1364/OL.36.000948
[19] Schmidt, A., Koopmann, P., Huber, G., Fuhrberg, P., Choi, S.Y., Yeom, D.I., Rotermund, F., Petrov, V. and Griebner, U. (2012) 175 fs Tm: Lu2O3 Laser at 2.07 μm Mode-Locked Using Sin-gle-Walled Carbon Nanotubes. Optics Express, 20, 5313-5318.
https://doi.org/10.1364/OE.20.005313
[20] Beil, K., Fredrich-Thornton, S.T., Tellkamp, F., Peters, R., Kränkel, C., Petermann, K. and Huber, G. (2010) Thermal and Laser Properties of Yb: LuAG for kW Thin Disk Lasers. Optics Express, 18, 20712-20722.
https://doi.org/10.1364/OE.18.020712
[21] Feng, T., Yang, K., Zhao, J., Zhao, S., Qiao, W., Li, T., Dekorsy, T., He, J., Zheng, L., Wang, Q., Xu, X., Su, L. and Xu, J. (2015) 1.21 W Passively Mode-Locked Tm: LuAG Laser. Optics Express, 23, 11819-11825.
https://doi.org/10.1364/OE.23.011819
[22] Yang, K.J., Luan, C., Zhao, S.Z., Feng, T.L., He, J.L., Dekorsy, T., Mircea, G. and Zheng, L.H. (2017) Diode-Pumped Mode-Locked Tm: LuAG 2 µm Laser Based on GaSb-SESAM. In: The European Conference on Lasers and Electro-Optics, Optical Society of America, Washington DC, CAP 27.
https://doi.org/10.1109/CLEOE-EQEC.2017.8086322
[23] 孙锐, 陈晨, 令维军, 等. 2017 nm和2029 nm双波长Tm:LuAG调Q锁模激光器[J]. 光学学报, 2019, 39(12): 1214003.
[24] 孙锐, 陈晨, 令维军, 等. 基于氧化石墨烯的瓦级调Q锁模Tm:LuAG激光器[J]. 物理学报, 2019, 68(10): 127-132.
[25] 令维军, 孙锐, 陈晨, 等. 基于反射式MoS2可饱和吸收体调Q锁模Tm:LuAG激光器[J]. 中国激光, 2019, 46(8): 248-253.
[26] Hecht, J. (2010) A Short History of Laser Development. Applied Optics, 49, F99-F122.
https://doi.org/10.1364/AO.49.000F99
[27] 李斌. 二极管泵浦Nd:YVO4固体激光器谐振腔及耦合系统的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2013.