跳–扩散模型下分红投资及超额损失再保险的联合最优策略
Joint Optimal Strategy for Dividend Investment and Excess-Loss Reinsurance under Jump-Diffusion Model
摘要: 本文主要讨论了在跳扩散模型下分红、投资以及超额损失再保险的联合最优策略。不同于以往大多文献仅考虑单个策略,本文的重点是找到这些策略的最优联合,考虑的因素更加全面也更贴合金融市场,但其复杂性和难度也随之增大。本文利用随机最优控制原理,通过拟变分不等式(QVI),给出了再保险安全系数取值变化时对应最优联合策略,推广了现有文献的相应结果。
Abstract: This paper mainly discusses the joint optimal strategy of dividend, investment and excess loss reinsurance under the jump diffusion model. Unlike most previous literatures, which only consider a single strategy, the focus of this paper is to find the optimal combination of these strategies. The factors considered are more comprehensive and more suitable for the financial market, but their complexity and difficulty are also increasing. In this paper, we use the stochastic optimal control principle and the quasi-variational inequality (QVI) to give the corresponding optimal joint strategy when the reinsurance safety factor changes, which promotes the corresponding results of the existing literature.
文章引用:丁丹丹, 舒慧生. 跳–扩散模型下分红投资及超额损失再保险的联合最优策略[J]. 应用数学进展, 2019, 8(11): 1775-1782. https://doi.org/10.12677/AAM.2019.811207

1. 引言

分红一直是金融界关注的热点话题。自De Finetti [1] 首先研究保险公司分红问题以来,相关话题逐渐受到关注。Azcue和Muler [2] 认为,保险公司的自留额服从Cramer Lundberg过程,他的目标是找到再保险政策和分红策略的动态选择。Gerber和Shiu [3],Asmussen和Taksar [4],Able Cadenillas等 [5],He和Liang [6] 主要研究保险公司的最优分红问题。Zhou和Yuen [7] 首先研究了在方差溢价标准下的最优分红,注资和再保险问题。姚等 [8] 研究了最有分红、交易费用同时存在的假设下,保险公司的注资和再保险问题,使得研究深入。投资是保险公司提高盈余水平的重要手段。Lin和Yang [9] 研究了在扩散风险模型下再保险和投资对分红的影响。Azcue和Muler [10] 从经典模型开始,添加了投资和分红策略,获得了价值函数满足的QVI,但未考虑交易成本。Li [11] 在具有交易成本和投资约束的扩散模型中考虑了最优投资和分红,但没有考虑再保险。Zhao [12] 使用HJB方程求解连续分红,但未考虑交易成本。

实际上,交易成本对公司决策有很大影响,但是由于处理的困难,许多文档当前仅考虑成比例的交易成本,而忽略了固定的交易成本。薛 [13] 在其分红中考虑了固定和成比例的交易成本。目前,许多学者已经研究了分红和投资,分红和注资 [14] [15] [16] [17]。但是,在金融市场中,仅考虑一个或两个条件是不够的。在上述文献的基础上,本文对影响实际金融市场盈余的因素进行了更全面的考虑,使得值函数和最优策略的计算更加复杂。通过使用动态规划准则和随机脉冲控制方法,构造出值函数满足的拟变分不等式(QVI)。在保险市场上,再保险公司的安全系数通常大于或等于前保险公司Hϕjgaard等 [18] 和 [19],认为再保险公司的安全系数和保险公司的安全系数是同一情况。本文考虑再保险公司的安全系数要大于原始保险公司的安全系数,这是对 [18] [19] 的推广。由文献 [20],文章首先将跳跃扩散模型应用于扩散近似,然后应用动态规划原理和拟变分不等式获得最优联合策略下保险公司的盈余过程。将经典模型扩展到跳–扩散模型,在超额损失再保险下,同时考虑了分红和投资,这使得模型更符合金融市场。

2. 模型的建立

假设 ( Ω , F , { F t } , t 0 , P ) 为完备概率空间。在t时刻的盈余 R t R t = x + c t + σ W ( t ) i = 1 N ( t ) Y i 。其中x是初始盈余, c > 0 是保险公司收取的保费率, { N ( t ) , 0 < t < T } 是参数为 λ > 0 的Poisson过程,索赔额 { Y i , i = 1 , 2 , } N ( t ) 相互独立,m表示超额损失理赔分布支撑, m = sup { x : F ( x ) < 1 } 。令 a = a ( x ) 表示再保险策略。为了控制风险,假设保险公司进入超额损失再保险,Y是索赔额,进入再保险后保险公司需承担的索赔额为 min ( a , Y i ) ,再保险公司需要承担 Y i min ( a , Y i ) η > θ θ 是原保险公司的安全系数, η 是再保险公司的安全系数。记 u ( a ) = E [ min ( a , Y i ) ] = 0 a [ 1 F ( y ) ] d y v ( a ) = E [ min ( a , Y i ) ] = 0 a 2 y [ 1 F ( Y ) ] d y E [ Y i ] = u m E [ Y i 2 ] = v m 。当索赔超过m时, u m = u ( m ) v m = v ( m ) W ( t ) 是一个标准的布朗运动。考虑在盈余模式中加入投资。其中无风险投资价格服从 d S t 0 = r 0 S t 0 d t ,这里 r 0 > 0 。假设风险投资服从GBM模型,则风险资产的价格服从 d S t = r 1 S t d t + σ p S t d W t 1 。且 r 1 > r 0 W t 1 是一个标准的布朗运动且与 W t 相互独立。令 D t = i = 1 ξ i I ( τ i < t ) 表示到 时刻,保险公司给股东分红的总金额;令 b = b ( t ) 是投资在风险资产上的金额, X ( t ) b ( t ) 表示投资在无风险资产上的金额。由期望保费原理,进入超额损失再保险并加入投资和分红之后,对保险公司的盈余过程扩散近似得

X π ( t ) = x + 0 t [ ( θ η ) λ u m + λ η u ( a ) + ( r 1 r 0 ) b + r 0 x ] d s + 0 t v ( a ) d B ( s ) + 0 t σ d W s + 0 t σ p b d W s 1 D t (2.1)

定义1. 若策略 π : = ( a , b , D ) = ( a ( t ) ; b ( t ) ; τ 1 , τ 2 , τ 3 , , τ n , ; ξ 1 , ξ 2 , , ξ n , ) 。满足如下条件:

(1) 再保险水平 a π = a π ( t ) 关于 { F t } t 0 可测,且 0 a t π 1

(2) τ i 是一列停时, 0 τ 1 < τ 2 < < τ n < , a . s

(3) 0 ξ i X τ i , i = 1 , 2 , 关于 { F t } t 0 可测。

(4) P ( lim i τ i < M ) = 0

我们称其为可行策略, 用 Π 表示所有可行策略的集合。

定义2. 保险公司破产时刻为( τ = τ π = inf t 0 , X t = 0 ), τ 是停时。假设每次分红会产生比例交易费用和固定交易费用。令 L 1 > 0 表示与分红金额无关的固定交易费用, l 1 是分红时产生的比例交易费用率。设定在最优策略 π * Π 下,称增函数

V ( x ) = V ( x , π * ) = max π Π V ( x , π )

是最优值函数。

不难导出: θ 2 ( θ 1 , θ 1 2 m u m v m ) ; θ 2 ( θ 1 2 m u m v m , )

3. QVI的解

本节首先根据动态规划准则和值函数满足的边界条件,推导出值函数满足的拟变分不等式(QVI)。对任意函数 φ ( x ) C 2

定义3. 令 u 1 满足 u 1 = inf { x 0 ; M ω ( x ) = ω ( x ) } u 1 是分红点。

定义如下算子

分红算子: M φ ( x ) : = max ξ 0 { φ ( x ξ ) + l 1 ξ L 1 } (3.1)

这里, ξ > 0 , x ξ

微分算子: A a , b φ ( x ) : = 1 2 ( σ p 2 b 2 + σ 2 + λ v ( a ) ) φ ( x ) + ( λ u m ( θ η ) + λ η U ( a ) + ( r 1 r 0 ) b + r 0 x ) φ ( x ) C φ ( x ) (3.2)

根据动态规划准则,值函数满足如下性质:

1 = { ( x < u 1 ) : M ω ( x ) < ω ( x ) ; ω ( 0 ) = 0 ; max ( a , b ) l A ( a , b ) ω ( x ) = 0 } . (3.3)

2 = { ( x u 1 ) : max ( a , b ) l A ( a , b ) ω ( x ) < 0 ; ω ( 0 ) = 0 ; M ω ( x ) = ω ( x ) } (3.4)

一、当 θ 2 ( θ 1 , θ 1 2 m u m v m )

0 x x 0 且不考虑分红时,记 m p = r 1 r 0 σ p 2 , γ 1 = ( r 1 r 0 ) 2 2 σ p 2 。令 h ( a ) = u ( a ) v ( a ) 2 a

G ( x ) = a 0 x 2 [ γ 1 + λ η 2 h ( y ) ] y 2 + η σ 2 2 η ( γ 1 + C r 0 ) y 2 + 2 η 2 [ λ η h ( y ) + r 0 x + λ η ( θ η ) ] y σ 2 η 3 d y

a ( 0 ) = a 0 。容易推出 G ( a 0 ) = 0 , a ( x ) = G 1 ( x )

x 0 为再保险的临界点,则有

ω ( x ) = k 0 x 0 e z x 0 η G 1 ( y ) d y d z (3.5)

易得 a ( x ) = G 1 ( x ) , b ( x ) = m p η G 1 ( x ) (3.6)

注1:当不考虑投资策略时,(3.5) (3.6)可退化为文献 [8] (4.16)的结果。

下面考虑当保险公司的盈余超过 x 0 时,即 x [ x 0 , μ 1 ] 。这时保险公司有足够的实力进行赔付,因此可承担全部的索赔且不分红,有 a ( x ) = m , b ( x ) = x a ( x ) , b ( x ) 代入(3.2)式中,整理得

1 2 [ σ p 2 x 2 + σ 2 + λ v ( m ) ] ω ( x ) + [ λ η ( θ η ) + λ η u ( m ) + r 1 x ] ω ( x ) C ω ( x ) = 0 (3.7)

由文献Paulsen and Gjessing (1997) [21] 知,方程(3.7)的解为

ω ( x ) = k 2 T [ H D ( x , ρ + 1 ) + E ( x , ρ + 1 ) ] (3.8)

其中

D ( x , δ 1 ) = x ( t x ) δ 1 K ( t ) d t , 1 < δ 1 < 1 + 2 ρ + 2 r 1 σ p 2

E ( x , δ 1 ) = x ( t x ) δ 1 K ( t ) d t , 1 < δ 1 < 1 + 2 ρ + 2 r 1 σ p 2

K ( t ) = ( σ p 2 + σ 2 + v m λ ) ( 1 + ρ + r 1 σ p 2 ) exp { 2 u m λ θ 1 σ p v m λ + σ 2 arctan σ p t v m λ + σ 2 }

ρ = 1 2 { ( 2 r 1 σ p 2 1 ) 2 + 8 c σ p 2 ( 1 + 2 r 1 σ p 2 ) }

这里 k 2 是任意常数。

T = 1 ( 1 + ρ ) [ E ( u 1 , ρ ) H D ( u 1 , ρ ) ]

H = E ( x 0 , ρ ) + ρ σ p 2 x 0 r 1 E ( x 0 , ρ 1 )

D ( x 0 , ρ ) ρ σ p 2 x 0 r 1 D ( x 0 , ρ 1 )

此处 u 1 是右边方程的解。 E ( u 1 , ρ 1 ) D ( u 1 , ρ 1 ) = H

k = E ( x 0 , ρ ) H D ( x 0 , ρ ) E ( u 1 , ρ ) H D ( u 1 , ρ ) exp { 0 x m p b ( y ) d y }

注2:(3.8)是对文献 [18] 在比例再保险条件下得出的(3.24)结果的扩展深入。

当保险公司进行分红,此时由值函数的性质 ω ( x ) = l 1 ,可知,存在 u 0 [ 0 , u 1 ] ,当 x u 1 时,使值函数的表达式为

ω ( x ) = l 1 ( x u 0 ) + ω ( u 0 ) L 1

此时保险公司有足够的实力自留全部风险,即 a ( x ) = m ,投资策略 b ( x ) 是任意数。因此在

θ 2 ( θ 1 , θ 1 2 m u m v m ) 条件下有拟变分不等式的解为

ω ( x ) = { k 0 x 0 e z x 0 η G 1 ( y ) d y d z , 0 x < x 0 k 2 T [ H D ( x , ρ + 1 ) + E ( x , ρ + 1 ) ] , x 0 x < u 0 l 1 ( x u 0 ) + ω ( u 0 ) L 1 , x u 1 (3.9)

对应的最优分红和投资策略为

a π ( x ) = { G 1 ( x ) , 0 x < x 0 m , x x 0 (3.10)

b π ( x ) = { m p η G 1 ( x ) , 0 x < x 0 x , x 0 x < u 0 R , x u 1 (3.11)

这里R是任意实数。

下面讨论安全系数,分红费用因子等对最优策略的影响。

构造一个函数

Y ( x ) = ω ( x ) = { exp ( x x 0 η G 1 ( x ) d y ) , 0 x < x 0 ( ρ + 1 ) T ( H D ( x , ρ ) + E ( x , ρ ) ) , x > x 0

由于积分区间和被积函数都是连续的,因此 Y ( x ) 是一个连续可微函数。已知 D ( x , δ ) > 0 E ( x , δ ) > 0

G ( x 0 ) = 1 < p = Y ( 0 ) < lim x Y ( x ) =

P 1 ( k ) = u 0 k u 1 k ( l 1 k Y ( y ) ) d y k [ l 1 p , l 1 ] 。当 0 < L 1 < P 1 ( l 1 p ) 时,令 0 < u 0 k < x 0 < u 1 k

k Y ( u 0 k ) = k Y ( u 1 k ) = l 1 k = l 1 p , u 0 k = 0 k = l 1 , u 0 k = u 1 k = x 0 P 1 ( k ) 在区间 [ l 1 p , l 1 ] 上严格递减。

max P 1 ( l 1 p ) , min P 1 ( l 1 ) = 0 。则 k 1 * ( l 1 p , l 1 ) P 1 ( k 1 * ) = u 0 k u 1 k ( l 1 k Y ( y ) ) d y = L 1 。令 k = k 1 * u 0 = u 0 k 1 * > 0

u 1 = u 1 k 1 * > 0 。可得 ω ( x ) 满足(3.3)。

x u 1 k 1 * 时,进入分红模式,此时有

M ω ( x ) ω ( x ) = max { ω ( x ξ ) + l 1 ξ L 1 } ω ( x ) = u 0 k * u 1 k * ( l 1 ω ( x ) ) d x L 1 = 0

因此,(3.4)成立。当 L 1 P 1 ( l 1 p ) 时同理可证 ω ( x ) 满足拟变分不等式。

二、当 θ 2 ( θ 1 2 m u m v m , )

假设 ω 1 ( x ) 是值函数的解并令 z 1 为分红点,由边界条件我们可以把区间分为两部分 z 1 ,当 x < z 1 时,不考虑分红,

3 = { ( x < z 1 ) : M ω 1 ( x ) < ω 1 ( x ) ; ω 1 ( 0 ) = 0 ; max ( a , b ) l A ( a , b ) ω 1 ( x ) = 0 } (3.12)

x z 1 时,开始分红

4 = { ( x z 1 ) : max ( a , b ) l A ( a , b ) ω 1 ( x ) < 0 ; ω 1 ( 0 ) = 0 ; M ω 1 ( x ) = ω 1 ( x ) } (3.13)

对任意的 z 1 > x > 0 ,当 θ 2 > θ 1 2 m u m v m 时,保险公司不再购买再保险,即 a ( x ) m

由(3.8)知, ω 1 ( x ) = k ˜ T [ H D ( x , ρ + 1 ) + E ( x , ρ + 1 ) ]

x z 1 时,存在 z 0 ( 0 , z 2 ) 使得

ω 1 ( x ) = l 1 ( x z 0 ) + ω ( z 0 ) L 1

这里最优再保险策略和投资策略为

a π ( x ) = m (3.14)

b π ( x ) = { x , 0 x < z 1 R , x z 1 (3.15)

这里R是任意实数。值函数最优解的计算过程与 θ 2 ( θ 1 , θ 1 2 m u m v m ) 时类似,此处不再重复。

4. 最优策略

由以上可归纳出当安全系数取值变化的时候,最优再保险、投资、分红以及值函数也是变化的。当

θ 2 ( θ 1 , θ 1 2 m u m v m ) 时,最优再保险策略和投资策略可由(3.10),(3.11)确定,最优值函数为(3.9)。在最优联

合策略 π 1 * = ( a * ; b * ; D * ) 下,保险公司的盈余过程为

X π 1 * ( t ) = x + 0 t [ ( θ η ) λ u m + λ η u a ( X s π 1 * ) + ( r 1 r 0 ) b ( X s π 1 * ) + r 0 x ] d s + 0 t v ( a ( X s π 1 * ) ) d B ( s ) + 0 t σ d W s + 0 t σ p b ( X s π 1 * ) d W s 1 i = 1 ξ i (3.16)

最优分红策略 D t π * 可表述为

{ 0 τ π * I t : X t π 1 * < u 1 k 2 * d D t π * = 0 τ 1 π * = inf { t 0 : X t π 1 * u 1 k 2 * } τ 1 π * = inf { t > τ i 1 π * : X t π 1 * = u 1 k 2 * } , i = 2 , 3 , ξ 1 π * = u 1 k 2 * u 0 k 2 * , 0 < x u 1 k 2 * ξ 1 π * = x u 0 k 2 * , x > u 1 k 2 * ξ i π * = u 1 k 2 * u 0 k 2 * , i = 2 , 3 ,

θ 2 ( θ 1 2 m u m v m , ) 时,最优再保险策略为 a π 1 * ( x ) = m ,投资策略可见(3.15)。

在最优策略 π 1 * = ( a * ; b * ; D * ) 下,保险公司盈余过程为

X π 1 * ( t ) = x + 0 t [ ( θ η ) λ u m + λ η u m + ( r 1 r 0 ) b ( X s π 1 * ) + r 0 x ] d s + 0 t v m d B ( s ) + 0 t σ d W s + 0 t σ p b ( X s π 1 * ) d W s 1 i = 1 ξ i

最优分红策略可表述为 { 0 τ π * I t : X t π 1 * < z 1 k 2 * d D t π * = 0 τ 1 π * = inf { t 0 : X t π 1 * z 1 k 2 * } τ 1 π * = inf { t > τ i 1 π * : X t π 1 * = z 1 k 2 * } , i = 2 , 3 , ξ 1 π * = z 1 * z 0 * , 0 < x z 1 * ξ 1 π * = x z 0 * , x > z 1 * ξ i π * = z 1 * z 0 * , i = 2 , 3 ,

5. 结论

文章运用拟变分不等式(QVI)的方法更加全面的考虑了影响保险公司盈余的因素,将脉冲分红、投资和超额损失再保险相结合。一般来说,保险公司寻求最大的期望盈余,当再保险公司安全系数大于一定数值时,意味着收取的保费增加,此时保险公司将不再购买再保险,分红投资策略也随之改变。本文在多方面考虑影响保险公司盈余的因素后,经过一系列复杂的分析计算,最终找到了分红投资以及再保险的联合最优策略。

参考文献

[1] De Finetti, B. (1957) Impostazione Alternative Dell Teoria Colletiva Del Rischio. In: Proceedings of the Transactions of the XVth International Congress of Actuaries, Congress International Actuaires, New York, Vol. 2, 433-443.
[2] Azcue, P. and Muler, N. (2005) Optimal Reinsurance and Dividend Distribution Policies in the Carmer Lundberg Model. Mathematical Finance, 15, 261-308.
https://doi.org/10.1111/j.0960-1627.2005.00220.x
[3] Gerber, H. and Shiu, E. (2006) On Optimal Dividend Strategies in the Compound Poisson Model. North American Actuarial Journal, 2, 76-93.
https://doi.org/10.1080/10920277.2006.10596249
[4] Asmussen, S. and Taksar, M. (1997) Controlled Diffusion Models for Optimal Dividend Payout. Insurance: Mathematics and Economics, 20, 1-15.
https://doi.org/10.1016/S0167-6687(96)00017-0
[5] Cadenillas, A., Choulli, T., Taksar, M. and Zhang, L. (2006) Classical and Impulse Stochastic Control for the Optimization of the Dividend and Risk Policies of an Insurance Firm. Mathematical Finance, 16, 181-202.
https://doi.org/10.1111/j.1467-9965.2006.00267.x
[6] He, L. and Liang, Z. (2009) Optimal Financing and Dividend Control of the Insurance Company with Fixed and Proportional Transaction Costs. Insurance: Mathematics and Economics, 44, 88-94.
https://doi.org/10.1016/j.insmatheco.2008.10.001
[7] Zhou, M. and Yuen, K. (2012) Optimal Reinsurance and Dividend for a Diffusion Model with Capital Injection: Variance Premium Principle. Economic Modelling, 29, 198-207.
https://doi.org/10.1016/j.econmod.2011.09.007
[8] Yao, D.J., Xu, L. and Wang, R.M. (2014) Optimal Dividend, Capital Injection and Reinsurance Strategies with Variance Premium Principle. Scientia Sinica Mathematica, 44, 1123-1140.
https://doi.org/10.1360/012014-45
[9] Lin, X. and Yang, P. (2010) The Impact of Reinsurance and Investment on Dividends under the Diffusion Risk Model. Mathematics in Economics, 27.
[10] Azcue, P. and Muler, N. (2010) Optimal Investment Policy and Dividend Payment Strategy in an Insurance Company. The Annals of Applied Probability, 20, 1253-1302.
https://doi.org/10.1214/09-AAP643
[11] Li, M. (2017) Optimization of Investment-Dividend Problem in a Diffusion Model with Transaction Costs and Investment Constraints. Chinese Journal of Applied Probability and Statistics, 33, 151-169.
[12] Zhao, Q. (2018) Optimal Investment and Dividend Payment Strategies with Debt Management and Reinsurance. Journal of Industrial and Management Optimization, 14, 1328-1348.
https://doi.org/10.3934/jimo.2018009
[13] Xue, T. (2013) Optimal Utility Reinsurance and Dividend Policy in the Risk Model with Capital Injections.
[14] Hui, M. and Tak, K.S. (2011) On Optimal Reinsurance, Dividend and Reinvestment Strategies. Economic Modelling, 28, 211-218.
https://doi.org/10.1016/j.econmod.2010.09.009
[15] Yao, D.J., Wang, Y. and Fan, K. (2017) Optimal Dividend and Risk Control Strategies in a Nonlinear Model. Chinese Journal of Applied Probability and Statistics, 33, 625-641.
[16] Zhuo, J. and Yang, H.L. (2013) Numerical Methods for Optimal Dividend Payment and Investment Strategies of Regime-Switching Jump Diffusion Models with Capital Injections. Automatics, 49, 2317-2329.
https://doi.org/10.1016/j.automatica.2013.04.043
[17] He, L. and Liang, Z.X. (2009) Optimal Financing and Dividend Control of the Insurance Company with Fixed and Proportional Transaction Costs. Insurance: Mathematics and Economics, 44, 8894.
https://doi.org/10.1016/j.insmatheco.2008.10.001
[18] Hjgaard, B. and Taksar, M. (2000) Optimal Dynamic Portfolio Selection for a Corporation with Control Able Risk and Dividend Distribution Policy. Quantitative Finance, 4, 315-327.
https://doi.org/10.1088/1469-7688/4/3/007
[19] Zhang, X. (2016) Optimal Reinsurance-Investment and Dividends Problem with Fixed Transaction Costs.
[20] Li, Q.C. (2015) Research on Optimal Reinsurance and Investment Policies for Insurer under Complicated Financial Models. A Dissertation Submitted to Shanghai Jiao Tong University for the Doctor’s Degree, Shanghai, 5.
[21] Paulsen, J. and Gjessing, H.K. (1997) Optimal Choice of Dividend Barriers for a Risk Process with Stochastic Return of Investment. Insurance: Mathematics and Economics, 29, 965-985.