干细胞巢的主要细胞成分及其组合模型
Main cellular components and their combination models of stem cell niches
摘要: 经络是人体中定向干细胞、成体干细胞、多能干细胞和胚胎干细胞等活动交流、协同进化的巨系统,主要表现为干细胞巢的出现以及不同种类干细胞巢的有序分布。人体成体干细胞有7×4×2×8×7=3136种:7为7个层次,4为4大基本组织(结缔组织、肌肉组织、神经组织和上皮组织),2为左右两侧对称,8为8类细胞,7为从低等级到高等级金字塔式累积叠加的7个进化等级。构建干细胞巢的主要细胞是多种类型的定向干细胞,也常被称为过渡倍增细胞等,其来源及其构建干细胞巢时的组合方式是有规律可循的,亲本干细胞的干细胞巢特定结构一般能够遗传出现在子代干细胞的干细胞巢中。在干细胞与其干细胞巢的互作体系中,干细胞巢的区域性特征决定了干细胞的特异性功能特征,引进地质学中的板块概念主要反映干细胞巢基本稳定不变的静态成分,同一板块内多能干细胞C1 448及其成体干细胞C1 448n(2≤n≤7)的干细胞巢主要细胞成分及其组合模型(6+3+1)是完全相同的,这决定了多能干细胞C1 448与其所辖第一等级乃至第n等级成体干细胞C1 448n拥有高度相同相似的干细胞巢结构。
Abstract: Meridians are the giant system for communication and co-evolution of human committed stem cells, adult stem cells, pluripotent stem cells and embryonic stem cells. It is mainly manifested by the appearance of stem cell niches and the orderly distribution of different kinds of stem cell niches. There are 7×4×2×8×7 = 3136 kinds of human adult stem cells, where 7 is seven levels; 4 is four basic tissues (connective tissue, muscle tissue, nervous tissue and epithelial tissue); 2 is symmetry between the left and right sides; 8 is eight kinds of cells; 7 is seven evolutionary grades of the pyramid-shaped cumulative superposition from low to high grade. The main cells for constructing stem cell niches are various types of committed stem cells, which are also often called transit amplifying cells. Its source and its combined method of building stem cell niches are regular. The specific structure of parent stem cell niches can generally be inherited in the niches of daughter stem cells. In the interaction system of stem cells and their stem cell niches, the regional characteristics of stem cell niches determine the specific functions of stem cells. Introducing the plate tectonics in geology mainly reflects the stable static components of the stem cell niches. In the same plate, the main cellular components and their combination models (6+3+1) of stem cell niches in pluripotent stem cells C1 448and their adult stem cells C1 448n(2≤n≤7) are identical. This determines that pluripotent stem cell C1 448 has a highly similar stem cell niche structure to that of first-grade and even n-grade adult stem cells C1 448n.
文章引用:张建新. 干细胞巢的主要细胞成分及其组合模型[J]. 汉斯预印本, 2018, 3(1): 1-9. https://doi.org/10.12677/HANSPrePrints.2018.31003

参考文献

[1] 张建新. 经络是干细胞系——兼论物种的起源与干细胞系的进化[J]. 中国中医基础医学杂志, 2001, 7(4):17-20.
[2] 张建新. 不同种类干细胞巢的有序分布构成中医经络系统[J]. 中国组织工程研究与临床康复, 2006, 10(21):189-192.
[3] 张建新. 从进化论角度探讨干细胞分化及其干细胞巢分布规律[J]. 中国组织工程研究, 2016, 20(50):7571-7578.
[4] Mantel C R, O'Leary H A, Chitteti B R, et al. Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock[J]. Cell, 2015, 161(7):1553-1565.
[5] Morrison S J, Spradling A C. Stem cells and niches: mechanisms that promote stem cell main-tenance throughout life.[J]. Cell, 2008, 132(4):598-611.
[6] Pardo-Saganta A, Tata P R, Law B M, et al. Parent stem cells can serve as niches for their daughter cells[J]. Nature, 2015, 523(7562):597-601.
[7] Falong Lu, Yi Zhang. Cell totipotency: molecular features, induction, and maintenance [J].National Science Review, 2015, 2(2):217-225.
[8] 丁硕, 张琦, 刘战民,等. 动物细胞全能性的研究[J]. 中国科学:生命科学, 2012, 42(7):517-527.
[9] Antonija Kreso, John E. Dick. Evolution of the Cancer Stem Cell Model[J]. Cell stem cell, 2014, 14(3):275-291.
[10] Chakrabarti R, Wei Y, Hwang J, et al. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling[J]. Nature Cell Biology, 2014, 16(10):1-13.
[11] Torres C M, Biran A, Burney M J, et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity[J]. Science, 2016, 353(6307) : aaf1644-aaf1644.
[12] Vicki Plaks, Niwen Kong, Zena Werb.The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?[J]. Cell stem cell, 2015, 16(3):225-238.
[13] Gauri R Varadhachary, Martin N Raber. Carcinoma of Unknown Primary Site[J]. N Engl J Med , 2014, 371(21):757-765.
[14] Hanahan D, Weinberg R A. Hallmarks of Cancer: the next generation[J]. Cell,2011, 144(5):646-674.
[15] Buganim Y, Markoulaki S, Van W N, et al. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection[J]. Cell Stem Cell, 2014, 15(3):295-309.
[16] Salomonis N, Dexheimer P J, Omberg L, et al. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium[J]. Stem Cell Reports, 2016, 7(1):110-125.
[17] Yang Y, Liu B, Xu J, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency[J]. Cell, 2017, 169(2):243-257.
[18] Choi Y J, Ingram P N, Yang K, et al. Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2[J]. Proc Natl Acad Sci U S A, 2015, 112(50):E6882-6888.
[19] Knox K, Baker J C. Genomic evolution of the placenta using co-option and duplication and divergence[J]. Genome Research, 2008, 18(5):695-705.
[20] 孙艳,蔡雁. 碱性成纤维细胞生长因子在产科疾病中的研究进展[J]. 医学综述, 2016, 22(15):2946-2949.