MNDWI和NDWI指数提取富营养化湖泊水体边界的对比研究
Comparative Study on the Water Index of MNDWI and NDWI for Water Boundary Extraction in Eutrophic Lakes
DOI: 10.12677/AG.2017.76074, PDF, HTML, XML,  被引量 下载: 1,773  浏览: 3,749  科研立项经费支持
作者: 王 泉*, 柳德江, 杨海兰, 尹 娟, 赵 斌, 朱双丽, 张雨萌:玉溪师范学院,云南 玉溪
关键词: 富营养化湖泊NDWIMNDWILandsat 8 OLIEutrophic Lakes NDWI MNDWI Landsat 8 OLI
摘要: 本研究基于Landsat 8 OLI卫星影像,采用云南省中部地区的5个湖泊,即滇池、抚仙湖、阳宗海、星云湖和杞麓湖作为研究对象,其中滇池、星云湖、杞麓湖是富营养化湖泊,比较了两种水体指数,NDWI和MNDWI提取湖泊水体边界的精确度。结果表明:由于近红外波段能够较好的区分植被和水体,但也带来了藻类覆盖的水域容易被误识别为植被的情况。因此,采用NDWI提取的富营养化湖泊水体面积比实际值偏小,中红外波段对水分含量较为敏感,在富营养化湖泊中采用该指数可以有效的区分陆地和水体,排除藻类的干扰。因此,MNDWI更适合用于富营养化湖泊的水体边界提取。
Abstract: This study is based on the Landsat 8 OLI satellite images, and uses 5 lakes as sample, which are Dianchi Lake, Fuxian Lake, Yangzonghai Lake, Xingyun Lake and Qilu Lake, there are all located in the central region of Yunnan province, and Dianchi Lake, Xingyun Lake, Qilu Lake are eutrophic lakes. The accuracy of NDWI and MNDWI index for lake water boundary extraction was compared. The results show that the near infrared band can distinguish vegetation and water body better. But it has also brought the algae covered waters that can be mistakenly identified as vegetation. Therefore, the water area of eutrophic lake extracted by NDWI is smaller than the actual value. The infrared band is more sensitive to moisture content. Using this index in eutrophic lakes can effectively distinguish between land and water, eliminate algal interference. Therefore, the MNDWI index is more suitable for water boundary extraction in eutrophic lakes.
文章引用:王泉, 柳德江, 杨海兰, 尹娟, 赵斌, 朱双丽, 张雨萌. MNDWI和NDWI指数提取富营养化湖泊水体边界的对比研究[J]. 地球科学前沿, 2017, 7(6): 732-738. https://doi.org/10.12677/AG.2017.76074

参考文献

[1] Elsahabi, M., Negm, A. and Hamid M. H. El Tahan, A. (2016) Performances Evaluation of Surface Water Areas Extraction Techniques Using Landsat ETM+ Data: Case Study Aswan High Dam Lake (AHDL). Procedia Technology, 22, 1205-1212.
https://doi.org/10.1016/j.protcy.2016.02.001
[2] Zhang, F., Tiyip, T., Kung, H., et al. (2016) Improved Water Extraction Using Landsat TM/ETM+ Images in Ebinur Lake, Xinjiang, China. Remote Sensing Applications: Society and Environment, 4, 109-118.
https://doi.org/10.1016/j.rsase.2016.08.001
[3] Fisher, A., Flood, N. and Danaher, T. (2015) Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sensing of Environment, 175, 167-182.
https://doi.org/10.1016/j.rse.2015.12.055
[4] Fang-Fang, Z., Bing, Z., Jun-Sheng, L., et al. (2011) Comparative Analysis of Automatic Water Identification Method Based on Multispectral Remote Sensing. Procedia Environmental Sciences, 11, 1482-1487.
https://doi.org/10.1016/j.proenv.2011.12.223
[5] Feyisa, G.L., Meilby, H., Fensholt, R., et al. (2014) Automated Water Ex-traction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sensing of Environment, 140, 23-35.
https://doi.org/10.1016/j.rse.2013.08.029
[6] Gautam, V.K., Gaurav, P.K., Murugan, P., et al. (2015) Assessment of Surface Water Dynamicsin Bangalore Using WRI, NDWI, MNDWI, Supervised Classification and K-T Transformation. Aquatic Procedia, 4, 739-746.
https://doi.org/10.1016/j.aqpro.2015.02.095
[7] Mcfeeters, S.K. (1996) The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 17, 1425-1432.
https://doi.org/10.1080/01431169608948714
[8] Gao, B. (1996) NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58, 257-266.
https://doi.org/10.1016/S0034-4257(96)00067-3
[9] Xu, H. (2006) Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033.
https://doi.org/10.1080/01431160600589179
[10] Haibo, Y., Zongmin, W., Hongling, Z., et al. (2011) Water Body Extraction Methods Study Based on RS and GIS. Procedia Environmental Sciences, 10, 2619-2624.
https://doi.org/10.1016/j.proenv.2011.09.407
[11] 宋英强, 杨联安, 许婧婷, 等. 基于Landsat-8卫星OLI遥感影像和AdaBoost算法的水体信息提取[J]. 测绘地理信息, 2017, 42(3): 44-47.
[12] Sarp, G. and Ozcelik, M. (2017) Water Body Extrac-tion and Change Detection Using Time Series: A Case Study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11, 381-391.
https://doi.org/10.1016/j.jtusci.2016.04.005
[13] 鲁韦坤, 余凌翔, 欧晓昆, 等. 滇池蓝藻水华发生频率与气象因子的关系[J]. 湖泊科学, 2017(3): 534-545.
[14] 陶建霜, 陈光杰, 陈小林, 等. 阳宗海硅藻群落对水体污染和水文调控的长期响应模式[J]. 地理研究, 2016, 35(10): 1899-1911.
[15] Wang, Q., Wu, X., Zhao, B., et al. (2015) Combined Multivariate Statistical Tech-niques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in the Northwest Basin of Lake Fuxian, China. Plos One, 10, e118590.
https://doi.org/10.1371/journal.pone.0118590
[16] Dai, X., Zhou, Y., Ma, W., et al. (2017) Influence of Spatial Variation in Land-Use Patterns and Topography on Water Quality of the Rivers Inflowing to Fuxian Lake, a Large Deep Lake in the Plateau of Southwestern China. Ecological Engineering, 99, 417-428.
https://doi.org/10.1016/j.ecoleng.2016.11.011
[17] 刘园园, 陈光杰, 施海彬, 等. 星云湖硅藻群落响应近现代人类活动与气候变化的过程[J]. 生态学报, 2016, 36(10): 3063-3073.
[18] 周瑜, 张虎才, 常凤琴, 等. 杞麓湖水质参数季节性变化[J]. 地球科学前沿, 2016(4): 487-499.