B位离子的种类对介孔La0.6Pr0.4BO3复合氧化物的催化性能影响
Study on Catalytic Properties of Mesoporous La0.6Pr0.4BO3 Composite Oxide in the High-Pressure Liquefaction of Bagasse
DOI: 10.12677/HJCET.2017.75032, PDF, HTML, XML, 下载: 1,368  浏览: 2,820  科研立项经费支持
作者: 滕俊江, 李 凝, 张晓华, 刘薛恩:广东石油化工学院化学工程学院,广东 茂名
关键词: B位离子介孔钙钛矿蔗渣液化B-Site Ion Mesoporous Perovskite Bagasse Liquefaction
摘要: 十六烷基三甲基溴化铵(CTAB)为模板剂,以共沉淀法分别制备了介孔La0.6Pr0.4BO3 (B = Mn2+, Cu2+, Co2+, Fe3+, Ni2+)钙钛矿复合氧化物,用XRD、FI-IR、BET和程序升温等技术对复合氧化物的晶相结构、表面积、孔径分布及表面性能等进行了表征,同时在蔗渣高压液化反应中探讨了B位离子种类对介孔La0.6Pr0.4BO3催化活性和液化产物分布及液化油产率的影响。结果表明,Mn2+离子掺杂制备的介孔La0.6Pr0.4MnO3特征衍射峰相对较强,样品的结晶度较高,孔道较好,具有较大的比表面积,为21.98 m2•g−1,最可几孔径为32.27 nm,表面存在较强的氧物种传导性和碱性中心,在蔗渣高压液化反应中液化油产率为59.68%,残渣率为12.62%。液化产物主要成分是对乙基苯酚、苯酚、对苯甲醇、邻愈创木酚。
Abstract: Cationic surfactant CTAB as organic template agent mesoporous, La0.6Pr0.4BO3 (B = Mn2+, Cu2+, Co2+, Fe3+, Ni2+) perovskite-type oxide were synthesized by co-precipitation method. The crystalline structures, surface topography, superficial area, pore size distribution and surface properties were characterized by XRD, FI-IR, BET and temperature programmed technology; at the same time, the catalytic performances of B-site ions replaced of mesoporous La0.6Pr0.4BO3 perovskite and liquefaction product distributions and yield of liquefied oil in the process were studied. The results showed that Mn2+ ions replaced of mesoporous La0.6Pr0.4MnO3 characteristic diffraction peaks relatively stronger, higher degree of crystallinity of the sample, preferably channel, having a larger specific surface area, is 21.98 m2•g−1 and the most probable pore size is 32.27 nm and stronger surface conductivity and oxygen species alkaline center, the yield of liquefied oil is 59.68% and rate of residue is 12.62% on bagasse high-pressure liquefaction reaction. At the same time, the main components of liquefied products are p-ethyl phenol, phenol, p-benzyl alcohol and o-guaiacol.
文章引用:滕俊江, 李凝, 张晓华, 刘薛恩. B位离子的种类对介孔La0.6Pr0.4BO3复合氧化物的催化性能影响[J]. 化学工程与技术, 2017, 7(5): 225-235. https://doi.org/10.12677/HJCET.2017.75032

参考文献

[1] 郭建维, 宋晓锐, 崔英德. 流化床反应器中生物质的催化裂解气化研究[J]. 燃料化学学报, 2001, 29(4): 319-322.
[2] 吕鹏梅, 常杰, 熊祖鸿, 等. 生物质废弃物催化气化制取富氧燃料气[J]. 煤炭转化, 2002, 25(3): 32-36.
[3] Polycarpou, P. (2009) Bioethanol Production from Asphodelus aestivus. Renewable Energy, 34, 2525-2527.
https://doi.org/10.1016/j.renene.2009.04.015
[4] Chouhan, A.P.S. and Sarma, A.K. (2011) Modern Heterogeneous Catalysts for Biodiesel Production: A Comprehensive Review. Renewable & Sustainable Energy Reviews, 15, 4378-4399.
https://doi.org/10.1016/j.rser.2011.07.112
[5] Effendi, A., Gerhauser, H. and Bridgwater, A.V. (2008) Production of Renewable Phenolic Resins by Thermochemical Conversion of Biomass: A Review. Renewable & Sustainable Energy Reviews, 12, 2092-2116.
https://doi.org/10.1016/j.rser.2007.04.008
[6] Endalew, A.K., Kiros, Y. and Zanzi, R. (2011) Inorganic Heterogeneous Catalysts for Biodiesel Production from Vegetable Oils. Biomass & Bioenergy, 35, 3787-3809.
https://doi.org/10.1016/j.biombioe.2011.06.011
[7] Guo, L.J., Lu, Y.J., Zhang, X.M., et al. (2007) Hydrogen Production by Biomass Gasification in Supercritical Water: A Systematic Experimental and Analytical Study. Catalysis Today, 129, 275-286.
https://doi.org/10.1016/j.cattod.2007.05.027
[8] Anastasakis, K. and Ross, A.B. (2011) Hydrothermal Liquefaction of the Brown Macro-Alga Laminaria saccharina: Effect of Reaction Conditions on Product Distribution and Composition. Bioresource Technology, 102, 4876-4883.
https://doi.org/10.1016/j.biortech.2011.01.031
[9] Yilgin, M. and Pehlivan, D. (2004) Poplar Wood-Water Slurry Liquefaction in the Presence of Formic Acid Catalyst. Energy Conversion & Management, 45, 2687-2696.
https://doi.org/10.1016/j.enconman.2003.12.010
[10] 聂海波, 沈志虹, 李淑云, 杨晓红. 渣油催化裂化催化剂基质的改性研究[J]. 燃料化学学报, 2001, 29 (z1): 1-3.
[11] 李丽, 袁福龙, 付宏刚, 等. Lal−xCexFe1−y−nCoyRunO3三效催化剂的结构表征及催化性能[J]. 高等学校化学学报, 2004, 25(9): 1679-1683.
[12] 彭小圣, 林赫, 上官文峰, 等. K和Cu部分取代对LaMnO3钙钛矿型催化剂同时去除NOx和碳烟的影响[J]. 催化学报, 2006, 27(9): 767-771.
[13] Royer, S., Levasseur, B., Alamdari, H., Barbier, J., Duprez, D. and Kaliaguine, S. (2008) Mechanism of Stearic Acid Oxidation over Nanocrystalline La1−xA'xBO3 (A' = Sr, Ce; B = Co, Mn): The Role of Oxygen Mobility. Applied Catalysis B, 80, 51.
[14] Gao, Z.M. and Wang, R.Y. (2010) Catalytic Activity for Methane Combustion of the Perovskite-Type La1−XSrxCoO3−δ Oxide Prepared by the Urea Decomposition Method. Applied Catalysis B: Environmental, 98, 147-153.
[15] Li, C., Wang, W.D. and Zhao, N. (2011) Structure Properties and Catalytic Performance in Methane Combustion of Double Perovskites Sr2Mg1−xMnxMoO6. Applied Catalysis B Environmental, 102, 78-84.
[16] Kim, J.-M., Hwang, G.-J., Lee, S.-H., et al. (2005) Properties of Oxygen Permeation and Partial Oxidation of Methane in La0.6Sr0.4CoO3−δ,(LSC)-La0.7Sr0.3Ga0.6Fe0.4O3−δ, (LSGF) Membrane. Journal of Membrane Science, 250, 11-16.
[17] 张晓华, 滕俊江, 张荣斌, 等. La1−xPrxNiO3的制备及其对蔗渣高压液化的催化性能[J]. 生物质化学工程, 2015, 49(5): 11-16.
[18] Russo, N., Furfori, S., Fino, D., et al. (2008) Lanthanum Cobaltite Catalysts for Diesel Soot Combustion. Applied Catalysis B Environmental, 83, 85-95.
[19] Choudhary, V.R., Uphade, B.S. and Pataskar, S.G. (1999) Low Temperature Complete Combustion of Methaneoverag-Doped LaFeO3 and LaFe0.5Co0.5O3 Perovskite Oxide Catalysts. Fuel, 78, 919-921.
[20] Singh, R.N. and Lal, B. (2002) High Surface Area Lanthanum Cobaltate and Its A and B Sites Substituted Derivatives for Electrocatalysis of O2 Evolution in Alkaline Solution. International Journal of Hydrogen Energy, 27, 45-55.
[21] Du, Y.C., Shi, S.L. and Dai, H.X. (2011) Water-Bathing Synthesis of High-Surface-Area Zeolite P from Diatomite. Particuology, 9, 174-178.
[22] Liu, H., Wang, Z.G., Hu, H.J., et al. (2009) Synthesis and Characterization of Cr-MSU-1 and Its Catalytic Application for Oxidation of Styrene. Journal of Solid State Chemistry, 182, 1726-1732.
[23] Jacobs, G., Das, T.K., Zhang, Y., et al. (2002) Fischer-Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts. Applied Catalysis: A General, 233, 263-281.
[24] Liang, H., Hong, Y.X., Zhu, C.Q., et al. (2013) Influence of Partial Mn-Substitution on Surface Oxygen Species of LaCoO3 Catalysts. Catalysis Today, 201, 98-102.
[25] Arandiyan, H., Chang, H., Liu, C., et al. (2013) Dextrose-Aided Hydrothermal Preparation with Large Surface Area on 1D Single-Crystalline Perovskite La0.5Sr0.5CoO3, Nanowires without Template: Highly Catalytic Activity for Methane Combustion. Journal of Molecular Catalysis: A Chemical, 378, 299-306.
[26] Kaddouri, A., Ifrah, S. and Gelin, P. (2007) A Study of the Influence of the Synthesis Conditions upon the Catalytic Properties of LaMnO3.15, in Methane Combustion in the Absence and Presence of H2S. Catalysis Letters, 119, 237-244.
https://doi.org/10.1007/s10562-007-9223-5