气相色谱法分析火灾环境残留物中的汽油/煤油/柴油
Analysis of Gasoline, Kerosene and Diesel Fuel in Fire Environment Residue by Gas Chromatography
DOI: 10.12677/AEP.2017.74048, PDF, HTML, XML, 下载: 1,500  浏览: 4,501  国家科技经费支持
作者: 宋光林, 许锡娟, 陈迪勇, 肖 飞:贵州省分析测试研究院,贵州 贵阳
关键词: 气相色谱残留物汽油煤油柴油Gas Chromatography Residues Gasoline Kerosene Diesel Fuel
摘要: 为定性和定量火灾环境残留物中的汽油、煤油、柴油。采用气相色谱分析方法,把火灾环境残留物提取液与汽油、煤油、柴油进行对照分析,通过主要特征峰的保留时间对汽油、煤油、柴油进行定性。汽油、煤油、柴油的特征组分含量与其峰面积的大小成正比,通过特征峰面积归一化法对汽油、煤油、柴油进行定量。汽油、煤油、柴油的最低检出限分别为100 μL/L、100 μL/L、200 μL/L。中石化93号汽油的体积浓度与5个特征峰面积总值的回归方程为Y = 0.0458X + 0.602,相关系数为1;中石化煤油的体积浓度与4个特征峰面积总值的回归方程为Y = 0.0419X − 2.2658,相关系数为0.9999;中石化0号柴油的体积浓度与11个特征峰面积总值的回归方程为Y = 0.0398X − 7.7023,相关系数为0.9982。
Abstract: To determine qualitative and quantitative analysis of gasoline, kerosene and diesel in fire resi-dues, extracting liquid of fire residue was compared with gasoline, kerosene and diesel by gas chromatography analysis, the gasoline, kerosene and diesel determined qualitatively by the re-tention time of the main characteristic peaks. The content of the characteristic components of gasoline, kerosene and diesel was proportional to the size of its peak area. The gasoline, kerosene and diesel were determined quantitatively by the normalization of the characteristic peak area. The minimum detection limit of gasoline, kerosene and diesel, respectively was 100 μL/L, 100 μL/L, 200 μL/L. The regression equation of Sinopec No. 93 gasoline volume concentration and the total value of five characteristics peak area was Y = 0.0458X + 0.602, the correlation coefficient was 1. The regression equation of Sinopec kerosene volume concentration and the total value of four characteristics peak area was Y = 0.0419X − 2.2658, the correlation coefficient was 0.9999. The regression equation of Sinopec No. 0 diesel fuel volume concentration and the total value of eleven characteristics peak area was Y = 0.0398X − 7.7023, the correlation coefficient was 0.9982.
文章引用:宋光林, 许锡娟, 陈迪勇, 肖飞. 气相色谱法分析火灾环境残留物中的汽油/煤油/柴油[J]. 环境保护前沿, 2017, 7(4): 359-365. https://doi.org/10.12677/AEP.2017.74048

参考文献

[1] 张桂霞, 王继芬, 刘剑. 火场中常见物质对汽油燃烧的干扰研究[J]. 分析化学, 2009(37): B228.
[2] 程平, 张为俊, 储焰南. 用选择离子流动管质谱测定汽油和柴油蒸汽成分[J]. 分析化学, 2003, 31(5): 548-551.
[3] 王涵文, 苗虹, 关亚风. 毛细管色谱切割–反吹法归一化分析汽油中芳烃[J]. 分析化学, 2002, 30(8): 1012-1016.
[4] 邢若葵, 王松才, 温锦锋, 等. 建立火场样品中汽油残留物ATD-GC-MS检验结果的评价方法[J]. 刑事技术, 2012(1): 6-10.
[5] 沈浩, 李盈宇, 梁栋. 定量分析火场残留物中汽油组成[J]. 中山大学学报: 自然科学版, 2012, 51(1): 59-62.
[6] 顾海昕, 黄昊, 张永丰, 等. GC/MS/AMDIS法检测火场常见基质中的汽油目标成分残留[J]. 中国司法鉴定, 2009, 47(6): 28-32.
[7] 杨海鹰. 气相色谱法在石油化工中的应用[M]. 北京: 化学工业出版社, 2005: 100-101.
[8] 李继文, 李薇, 王川. 气相色谱–质谱表征甲醇制烯烃副产汽油中的C5~C7烯烃. 色谱, 2013, 13(11): 1134-1139.