(AgCo)561团簇升温过程中结构与熔化研究
Study of Structure and Melting for (AgCo)561 Nanoclusters during Heating Process
DOI: 10.12677/MS.2017.74062, PDF, HTML, XML, 下载: 1,411  浏览: 4,482  科研立项经费支持
作者: 肖绪洋, 陈润平:重庆文理学院,新型储能器件及应用工程研究中心,重庆
关键词: 纳米团簇掺杂分子动力学方法结构转变Nanoclusters Doping Molecular Dynamics Methods Structural Changes
摘要: 本文采用分子动力学方法模拟Ag及其掺杂团簇升温过程,通过平均原子势能曲线、团簇快照图分析团簇的结构和熔化行为。研究发现Ag团簇在熔化前出现二十面体结构转变,转变温度随团簇尺寸减小而降低。在(AgCo)561掺杂团簇中,Co原子的数量和位置对团簇结构和性质有重要作用:掺杂Co原子促进(AgCo)561团簇的二十面体结构转变,引起转变温度降低,且掺杂原子数越多二十面体结构转变温度越低;中心掺杂团簇的二十面体结构转变温度最高,而外层掺杂可诱导出无序态异常结构,导致团簇升温无二十面体结构转变;掺杂对团簇熔点有影响,掺杂导致团簇熔点降低,但在中心位置掺杂55个Co原子引起熔点升高。
Abstract: In this work, the Ag and doping clusters during the heating processes were studied using molecular dynamics simulations. Based on the potential-temperature curves, the snapshots are obtained and the structural transitions and melting behavior are analyzed. Our results show an icosahedral structure change during the heating processes of Ag clusters and the temperature of structure change is decreased with the size reduction of clusters. For doping Ag clusters, we found that the structure and property were influenced by the number and doping position of Co atoms in (AgCo)561 cluster. The structure change temperature of icosahedral is decreased with the increasing Co atoms and increased with center position doping by Co atoms. For a special case, there is an irregular structure by doping Co atoms in outer layer of clusters and the icosahedral structure change is disappear in this cluster. And the melting temperature is decreased by doping Co atoms, but the higher melting temperature is obtained in Co55Ag506 by Co center doping.
文章引用:肖绪洋, 陈润平. (AgCo)561团簇升温过程中结构与熔化研究[J]. 材料科学, 2017, 7(4): 469-476. https://doi.org/10.12677/MS.2017.74062

参考文献

[1] 王广厚. 团簇物理学[M]. 上海: 上海科学技术出版社, 2003.
[2] Sao, J.S., Giorgio, S., Penisson, J.M., et al. (2005) Structure and Deformations of Pd-Ni Core-Hell Nanoparticles. The Journal of Physical Chemistry B, 109, 342-347.
https://doi.org/10.1021/jp040473i
[3] Pang, H., Jin, Z.H. and Lu, K. (2003) Relaxation, Nucleation, and Glass Transition in Super Cooled Liquid Cu. Physical Review B, 67, Article ID: 094113.
https://doi.org/10.1103/physrevb.67.094113
[4] Ferrando, R., Jellinek, J. and Johnston, R.L. (2008) Nano Alloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chemical Reviews, 108, 845.
[5] Wang, Q., Li, G.J., Li, D.G., et al. (2009) Evolution of Three-Shell Onion-Like and Core-Shell Structures in (AgCo)201 Bimetallic Clusters. Chinese Physics B, 18, 1843-1849.
https://doi.org/10.1088/1674-1056/18/5/021
[6] Li, G.J., Wang, Q., Li, D.G, et al. (2008) Structure Evolution during the Cooling and Coalesced Cooling Processes of Cu-Co Bimetallic Clusters. Physics Letters A, 372, 6764-6769.
https://doi.org/10.1016/j.physleta.2008.09.043
[7] Kim, D.H., Kim, H.Y., Kim, H.G., et al. (2008) The Solid-to-Liquid Transition Region of an Ag-Pd Bimetallic Nanocluster. Journal of Physics Condensed Matter, 20, Article ID: 035208.
https://doi.org/10.1088/0953-8984/20/03/035208
[8] 肖绪洋. 分子动力学模拟Ag-Pd双金属团簇中不同位置Ag原子偏析诱导的异常熔化[J]. 科学通报, 2011(33): 2741-2745.
[9] 孙凌涛, 郭朝中, 肖绪洋. Cu偏析诱导Co团簇结构及性质异常的动力学模拟[J]. 物理学报, 2016(12): 123-131.
[10] 代武春, 肖绪洋, 程正富. Pd-Pt团簇升温过程中Pd原子偏析的分子动力学模拟研究[J]. 西南师范大学学报(自然科学版), 2016, 41(3): 13-25.
[11] Alder, B.J. and Wainwright, T.E. (1957) Phase Transition for a Hard-Sphere System. The Journal of Chemical Physics, 27, 1208-1209.
https://doi.org/10.1063/1.1743957
[12] Zhou, X.W., Wadley, H.N.G., Johnson, R.A., et al. (2001) Atomic Scale Structure of Sputtered Metal Multi-Layers. Acta Materialia, 49, 4005.
[13] Wadley, H.N.G., Zhou, X., Johnson, R.A., et al. (2001) Mechanisms, Models and Methods of Vapor Deposition. Progress in Materials Science, 46, 329.