分子模拟在过渡金属催化剂领域的应用
Application of Molecular Simulation in Transition Metal Catalyst
DOI: 10.12677/HJCET.2017.73020, PDF, HTML, XML, 下载: 1,785  浏览: 3,812  科研立项经费支持
作者: 高 琪, 闫志国, 汤 赛, 宋子林:武汉工程大学,绿色化工过程省部共建教育部重点实验室,湖北 武汉
关键词: 分子模拟密度泛函理论过渡金属催化剂均相反应非均相反应Molecular Simulation Density Function Theory Transition Metal Catalyst Homogeneous Reaction Heterogeneous Reaction
摘要: 分子模拟是近年来发展起来的一门新兴的计算化学技术,它在辅助物质设计和分子结构理解方面取得的显著成绩,使得它在其他领域中有着越来越广泛的应用。本文简单介绍了密度泛函理论,综述了使用过渡金属催化剂的几类反应及国内外对于使用DFT (密度泛函理论)方法研究过渡金属催化剂的工作,为使用分子模拟手段设计过渡金属催化剂提供思路及方法。
Abstract: Molecular simulation is a newly developed technology in computational chemistry, it has made significant achievements in assisting materials design and helping understand molecular struc-ture, that make it more and more available in other fields. In this paper, density function theory was introduced, several reactions that catalyzed by transition metals and studies of transition metal catalyst using DFT (Density Function Theory) method were reviewed, solutions and me-thods using molecular simulation to design transition metal catalyst were provided.
文章引用:高琪, 闫志国, 汤赛, 宋子林. 分子模拟在过渡金属催化剂领域的应用[J]. 化学工程与技术, 2017, 7(3): 133-139. https://doi.org/10.12677/HJCET.2017.73020

参考文献

[1] Ruan, J. and Xiao, J. (2011) From α-Arylation of Olefins to Acylation with Aldehydes: A Journey in Regiocontrol of the Heck Reaction. Accounts of Chemical Research, 44, 614-626.
https://doi.org/10.1021/ar200053d
[2] Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. and Lemaire, M. (2002) Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chemical Reviews, 102, 1359-1469.
https://doi.org/10.1021/cr000664r
[3] 李秀荣, 宋心琦. 不对称催化合成开创者——2001年诺贝尔化学奖得主[J]. 百科知识, 2002(1).
[4] 肖唐鑫, 刘立, 强琚莉, 王乐勇. 钯催化的交叉偶联反应——2010年诺贝尔化学奖简介[J]. 自然杂志, 2010, 32(6): 332-337.
[5] Ren, P., Salihu, I., Scopelliti, R., et al. (2012) Copper-Catalyzed Alkylation of Benzoxazoles with Secondary Alkyl Halides. Organic Letters, 14, 1748-1751.
https://doi.org/10.1021/ol300348w
[6] Li, X., Yan, X.Y., Chang, H.H., et al. (2011) ChemInform Abstract: Suzuki—Miyaura Cross-Couplings of Arenediazonium Tetrafluoroborate Salts with Arylboronic Acids Catalyzed by Aluminum Hydroxide Supported Palladium Nanoparticles. Organic & Biomolecular Chemistry, 10, 495-497.
https://doi.org/10.1039/C1OB06752D
[7] Liu, C., Rao, X., Zhang, Y., et al. (2013) An Aerobic and Very Fast Pd/C-Catalyzed Ligand-Free and Aqueous Suzuki Reaction under Mild Conditions. European Journal of Organic Chemistry, 2013, 4345-4350.
[8] Terasawa, M., Kaneda, K., Imanaka, T., et al. (1978) ChemInform Abstract: A Coordinatively Unsaturated, Polymer-Bound Palladium(0) Complex. Synithesis and Catalyst Activities. Journal of Organometallic Chemistry, 162, 403-414.
[9] Zhang, Z., Pan, Y., Hu, H., et al. (1991) ChemInform Abstract: A Facile Approach to Arylacetaldehydes Using Polymeric Palladium Catalysts. ChemInform, 22, 539-542.
[10] Jang, S.B. (1997) Polymer-Bound Palladium-Catalyzed Cross-Coupling of Organoboron Compounds with Organic Halides and Oganic Triflates. Tetrahedron Letters, 38, 1793-1796.
[11] Li, Y., Hong, X.M., Collard, D.M. and El-Sayed, M.A. (2000) ChemInform Abstract: Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution. ChemInform, 31, 2385-2388.
https://doi.org/10.1002/chin.200045066
[12] Liu, Y., Khemtong, C. and Hu, J. (2004) Synthesis and Catalytic Activity of a Poly(N,N-Dialkylcarbodiimide)/Palla- dium Nanoparticle Composite: A Case in the Suzuki Coupling Reaction Using Microwave and Conventional Heating. Chemical Communications, 35, 398-399.
https://doi.org/10.1039/B313210M
[13] Wu, L., Li, B., Huang, Y., et al. (2006) Phosphine Dendrimer Stabilized Palladium Nanoparticles: A Highly Active and Recyclable Catalyst for the Suzuki-Miyaura Reaction and Hydrogenation. Organic Letters, 8, 3605-3608.
https://doi.org/10.1021/ol0614424
[14] Razler, T.M., Hsiao, Y., Qian, F., et al. (2009) A Preparatively Convenient Ligand-Free Catalytic PEG 2000 Suzuki-Miyaura Coupling. Journal of Organic Chemistry, 74, 1381-1384.
https://doi.org/10.1021/jo802277z
[15] Han, J., Liu, Y. and Guo, R. (2009) Facile Synthesis of Highly Stable Gold Nanoparticles and Their Unexpected Excellent Catalytic Activity for Suzuki-Miyaura Cross-Coupling Reaction in Water. Journal of the American Chemical Society, 131, 2060-2061.
https://doi.org/10.1021/ja808935n
[16] Zhou, W.J., Wang, K.H., Wang, J.X. and Huang, D.F. (2010) Reusable, Polystyrene-Resin-Supported, Palladium-Cat- alyzed, Atom-Efficient Cross-Coupling Reaction of Aryl Halides with Triarylbismuths. European Journal of Organic Chemistry, 2010, 416-419.
https://doi.org/10.1002/ejoc.200901210
[17] Ji, M., Hao, C., Xie, Z., et al. (2012) Theoretical Study of Oxygen Chemisorption on Pd(111), Au(111) and Pd-Au(111) Alloy Surfaces. Journal of Computational & Theoretical Nanoscience, 9, 394-400.
https://doi.org/10.1166/jctn.2012.2037
[18] Andersson, M.P. (2016) Density Functional Theory with Modified Dispersion Correction for Metals Applied to Molecular Adsorption on Pt(111). Physical Chemistry Chemical Physics, 18, 19118-19122.
https://doi.org/10.1039/C6CP03289C
[19] Qiu, M., Liu, Y., Wu, J., Li, Y., Huang, X., Chen, W.-K. and Zhang, Y.-F. (2016) Theoretical Investigations of the Activation of CO2 on the Transition Metal-Doped Cu(100) and Cu(111) Surfaces. Chinese Journal of Structural Chemistry, 35, 669-678.
[20] Vasić, D., Ristanović, Z., Pašti, I., et al. (2011) Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals. Russian Journal of Physical Chemistry A, 85, 2373-2379.
https://doi.org/10.1134/S0036024411130334
[21] Shi, H. and Stampfl, C. (2007) First-Principles Investigations of the Structure and Stability of Oxygen Adsorption and Surface Oxide Formation at Au(111). Physical Review B, 76, Article ID: 075327.
https://doi.org/10.1103/PhysRevB.76.075327
[22] Gao, H. (2016) CO Oxidation Mechanism on the γ-Al2O3 Supported Single Pt Atom: First Principle Study. Applied Surface Science, 379, 347-357.
[23] Zhou, H., Chen, X. and Wang, J. (2016) CO Oxidation over Supported Pt Clusters at Different CO Coverage. International Journal of Quantum Chemistry, 116, 939-944.
https://doi.org/10.1002/qua.25104
[24] Hao, X., Shan, B., Hyun, J., et al. (2009) Experimental and Theoretical Study of CO Oxidation on PdAu Catalysts with NO Pulse Effects. Topics in Catalysis, 52, 1946-1950.
https://doi.org/10.1007/s11244-009-9378-y
[25] Wannakao, S., Warakulwit, C., Kongpatpanich, K., et al. (2012) Methane Activation in Gold Cation-Exchanged Zeolites: A DFT Study. ACS Catalysis, 2, 986-992.
https://doi.org/10.1021/cs200653q
[26] Venkataramanan, N.S., Suvitha, A., Mizuseki, H. and Kawazoe, Y. (2013) A Theoretical Study of the Effects of Transition Metal Dopants on the Adsorption and Dissociation of Hydrogen on Nickel Clusters. International Journal of Quantum Chemistry, 113, 1940-1948.
https://doi.org/10.1002/qua.24418
[27] Boronat, M. and Corma, A. (2011) Generation of Defects on Oxide Supports by Doping with Metals and Their Role in Oxygen Activation. Catalysis Today, 169, 52-59.