Gd2O3:Er/Yb纳米线的发光特性
Luminescence Properties of Gd2O3:Er/Yb Nanowires
DOI: 10.12677/NAT.2017.72005, PDF, HTML, XML, 下载: 1,559  浏览: 4,260  国家自然科学基金支持
作者: 杨林梅, 史桂梅:沈阳工业大学,辽宁 沈阳
关键词: 纳米线上转换发光荧光分支比热激活Nanowires Up-Conversion Luminescence Luminescence Intensity Ratio Thermal Actived
摘要: 采用水热法制备了Gd2O3:Er/Yb纳米线,使用980 nm和488 nm激光作为激发光源,研究了Gd2O3:Er/Yb纳米线的上转换和下转换发光特性。研究发现,随着激发功率密度的增大和温度的升高,2H11/2-4I15/2和4S3/2-4I15/2的发射强度之比明显增大,这种现象被归因于电子的热激活速率增大,2H11/2和4S3/2能级上的电子布居数的改变。
Abstract: The Gd2O3: Er/Yb nanowires were prepared by the hydrothermal method. Luminescence properties, mechanism and dependence of luminescence intensity on pump power density were researched. In Gd2O3:Er/Yb nanowires, the intensity ratio of 2H11/2-4I15/2 to 4S3/2-4I15/2 increased dramatically with the pump power increasing, which was attributed to the increase of thermal populations in 2H11/2 energy level caused by irradiation induced temperature increase.
文章引用:杨林梅, 史桂梅. Gd2O3:Er/Yb纳米线的发光特性[J]. 纳米技术, 2017, 7(2): 40-46. https://doi.org/10.12677/NAT.2017.72005

参考文献

[1] Li, H., Hao, H. and Jin, S. (2017) Synthesis and Luminescence Properties of Ho3+/Yb3+ Co-Doped Bismuth Tungstate Nanopowder. Materials Research Bulletin, 89, 51-56.
[2] Ye, X., Luo, Y. and Liu, S. (2017) Intense and Color-Tunable UpConversion Luminescence of Er3+ Doped and Er3+/Yb3+ Co-Doped Ba3Lu4O9 Phosphors. Journal of Alloys and Compounds, 701, 806-815.
[3] Hu, Mi., Ma, D. and Cheng, Y. (2017) Synergistically Enhanced Upconversion luminescence in Li+-Doped Core-Shell-Structured Ultrasmall Nanoprobes for Dual-Mode Deep Tissue Fluorescence/CT Imaging. Journal of Materials Chemistry B, 5, 2662-2670.
https://doi.org/10.1039/C6TB02976K
[4] Fukushima, S., Furukawa, T. and Niioka, H. (2016) Synthesis of Y2O3 Nanophosphors by Homogeneous Precipitation Method Using Excessive Urea for Cathodoluminescence and Upconversion Luminescence Bioimaging. Optical Materials Express, 6, 831-843.
https://doi.org/10.1364/OME.6.000831
[5] Zhang, L., Zeng, L. and Pan, Y. (2015) Inorganic Photosensitizer Coupled Gd-Based Upconversion Luminescent Nanocomposites for in Vivo Magnetic Resonance Imaging and Near-Infrared-Responsive Photodynamic Therapy in Cancers. Biomaterials, 44, 82-90.
[6] Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J. and Bawendi, M.G. (2000) Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science, 290, 314-317.
https://doi.org/10.1126/science.290.5490.314
[7] Pettersson, H., Baath, L., Carlsson, N., Seifert, W. and Samuelson, L. (2001) Case Study of an InAs Quantum Dot Memory: Optical Storing and Deletion of Charge. Applied Physics Letters, 79, 78-80.
https://doi.org/10.1063/1.1382628
[8] Shipway, K.E. and Willner, I. (2000) Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem, 1, 18-52.
https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
[9] Phillips, J. (2002) Evaluation of the Fundamental Properties of Quantum Dot Infrared Detectors. Journal of Applied Physics, 91, 4590-4594.
https://doi.org/10.1063/1.1455130
[10] Coe, S., Woo, W.K., Bawendi, M. and Bulovic, V. (2002) Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature, 420, 800-802.
https://doi.org/10.1038/nature01217
[11] Xia, Y. and Yang, P. (2003) Chemistry and Physics of Nanowires. Advanced Materials, 15, 351-352.
https://doi.org/10.1002/adma.200390086
[12] Pollnau, M., Gamelin, D., Lüthi, S. and Güdel, H. (2000) Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Physic Review B, 61, 3337-3346.
https://doi.org/10.1103/PhysRevB.61.3337
[13] 黄世华. 离子中心的发光动力学[M]. 北京: 科学出版社, 2002: 47.